Radiological Hazard Assessment of Soils from Lumoru Dumpsite, Kenya

Wanjala Bilha¹, Robert Wanjala Nyukuri², Horace Kibe³, Makokha John¹, Tsimbasi stanley¹
Department of Science, Technology and Engineering

2 Department of Biological and Environmental Sciences, Kibabii University.

³Department of Physical and Biological Sciences. Bomet University College.

Abstract— This study assessed the radiological status of soils from Lumoru measuring activity dumpsite, Kenya, by concentrations of 40K, 232Th, and 238U using a thallium-activated sodium iodide (Nal(TI)) detector, and evaluating radium equivalent (Ra_{eq}), absorbed dose rates, and annual effective dose equivalents (AEDE). Average activities were 25 Bq/kg for 40K, 57 Bq/kg for 232Th, and 7 Bq/kg for ²³⁸U, all below global average thresholds of 420, 45, and 35 Bq/kg, respectively. Ra_{eq} averaged 91 Bq/kg, absorbed dose rate 39.2 nGy/h, AEDEout 0.09 mSv/y, and AEDEin 0.20 mSv/y, all within recommended safety limits, although indoor exposure was higher. Spatial heterogeneity, particularly of ²³²Th, was linked to mineral-rich construction debris and uneven waste disposal. Patterns align with Machinjoni and Dandora dumpsites in Kenya, and sites in Dar es Salaam, Tanzania. Overall, Lumoru soils are broadly safe, but localized hotspots and elevated indoor exposure highlight the need for monitoring, improved waste and management, awareness.

Keywords— Lumoru dumpsite; natural radionuclides; radium equivalent; absorbed dose rate; annual effective dose; ²³²Th hotspots; radiological risk; Kenya

I. INTRODUCTION

Soil serves as a natural reservoir for radionuclides and other contaminants, controlling how these substances move through the air, water, and living organisms, and ultimately influencing the environment we all rely on [1]. Municipal waste dumpsites introduce radionuclides into the soil, often in concentrated pockets due to construction debris and uneven disposal practices, creating localized hotspots that pose potential health risks to nearby communities [2]. These radioactive substances can enter the human body through inhalation, ingestion, or skin contact, gradually accumulating through the food chain [3]. including activities, the generation, management, and disposal of waste, can exacerbate these impacts, highlighting the need for effective waste management and community awareness to safeguard both environmental and public health [4]. In agricultural regions such as Bungoma County, studies on maize and beans have shown that radionuclides from soils can accumulate in food crops, linking environmental contamination directly to human exposure [5].

According to the World Health Organization, approximately one quarter of all diseases affecting humans are linked to environmental risks, with children being particularly vulnerable. Among children under the age of five, environmentally related diseases account for over 4.7 million deaths annually. In developing countries, 25% of all deaths are attributed to environmental factors, compared with 17% in developed countries. While proper waste disposal is essential for public health and environmental protection, failure to comply with regulations such as the Environmental Management and Coordination Act (EMCA) of 1999 can aggravate health risks and environmental degradation.

Lumoru dumpsite, an open dump without leachate collection or treatment, has been a source of growing concern for residents, with reports of increased health complaints since its establishment in 2016 (Republic of Kenya in the Environment and Land Court at Bungoma, 2019). This study assessed the levels of natural radioactivity in topsoil from the Lumoru dumpsite, Bungoma County, by analyzing composite samples using a thallium-activated sodium iodide (NaI(TI)) detector. The activity concentrations of key radionuclides, ²³⁸U, ²³²Th, and ⁴⁰K were measured, and radiological parameters including absorbed dose rate, radium equivalent, and annual effective dose equivalents were calculated to evaluate potential health risks to the local population. The study provides essential baseline information on naturally occurring site, highlighting spatial radionuclides at the heterogeneity and localized hotspots, particularly of ²³²Th, which may be influenced by construction debris and uneven waste disposal. These findings are critical for informing regulatory oversight by the National Management Authority Environment (NEMA). supporting compliance with the Environmental Management and Coordination Act (EMCA) of 1999, and raising public and governmental awareness about environmental contamination and potential radiological risks from unmanaged waste.

II. MATERIALS AND METHODS

A. Area of study

Lumoro dumpsite is geographically located at latitude 0.3360° N and longitude 34.3300° E, within Muanda village, South Bukusu Ward, Bumula Sub-County, Bungoma County, Kenya. The surrounding village has a total population of 14,320, with approximately 257 households situated near the dumpsite [6]. The site is also in close proximity to an active commercial area

consisting of numerous Juakali workshops, located about 200 meters from the dumpsite along the route to Bungoma town, highlighting the potential for human exposure and interaction with waste-derived contaminants.

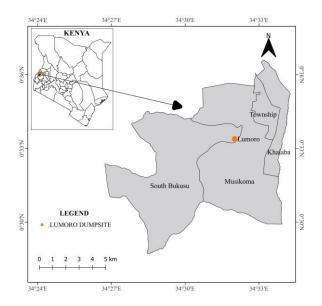


Figure 1: study area

B. Sample collection and preparation

Soil sampling was conducted at 15 administrative locations within the study area. A random sampling technique was employed to enhance the statistical representativeness of the samples[7][8]. At each location, three soil samples were collected using a trowel at depths ranging from 10 to 50 cm. The samples from each site were combined to form a single composite sample weighing approximately 700 g. In the laboratory, the soil samples were initially airdried on plastic sheets at room temperature for one week, followed by oven drying at 110°C for 8 hours. Stones and organic matter were removed, and the dried soil was pulverized to a particle size appropriate for gamma spectroscopic analysis. The soil was then sieved through a 2 µm mesh to ensure homogeneity [8]. Finally, the homogenized soil was treated with concentrated hydrochloric acid and STORED for at least one month to achieve secular equilibrium between radon and its progeny prior to gamma spectroscopic measurement [9].

C. Nal (TI) Spectrometer Calibration and sample analysis

Detector calibration was performed to convert counting rates into gamma-ray intensities for ²¹⁴Bi, ²⁰⁸TI, and ⁴⁰K, with corrections applied for background radiation, atmospheric noise, and Compton scattering [10]. Sample analysis employed a 7.6 cm × 7.6 cm NaI (TI) detector coupled to a photomultiplier tube (PMT), housed within a 6 cm lead shield lined with cadmium and copper to minimize background and scattered radiation. Soil samples were placed in the detector cavity and measured for 29,000 seconds each. The peak area of each energy spectrum was used to

calculate specific activity concentrations and associated radiological hazard parameters[11].

D. Radiological parameters

1) Specific Activity Concentration

The calculation for specific activity concentration was done by procedure given in equation 1 [12][13].

$$A_{\mathcal{C}}(Bq/kg) = \frac{c_a}{n_{P_r}m_s} \tag{1}$$

 $\it Ca-$ Net gamma counting rate (counts per second), $\it n-$ Detector efficiency of the specific gamma ray, $\it Pr-$ The absolute transition probability of gamma decay and $\it Ms-$ The mass of the sample(kg).

2) Radium Equivalent (Ra_{ea})

This radiological parameter will be estimated using empirical equation 2[14].

$$Ra_{eq} = C_{Ra} + 1.423C_{Th} + 0.077C_{K}$$
 (2)

Where C_{Ra} is the mean activity of $^{226}\mathrm{Ra}$, C_{Th} is the mean activity $^{232}\mathrm{Th}$ and C_K is the mean activity concentrations of $^{40}\mathrm{K}$ in soil samples expressed in Bg/kg.

3) Absorbed Dose Rate (ADR)

It is a measure of radiation dose intensity (or. It can also be defined as a measure of the chemical or physical effect created by given radiation exposure or physical effect created by given radiation exposure to a living matter. The absorbed gamma dose rates were calculated from activity concentration of ²³²Th, ²³⁸U and ⁴⁰K using the activity concentration-dose (nGy-1 per Bq/kg) conversion coefficients of 0.622, 0.462 and 0.0432 as provided by UNSCEAR reports. Equation 3.3 shows the model used to estimate the dose rate from the activity concentrations.[15]

$$ADR (nGy/h) = 0.427 C_U + 0.622 C_{Th} + 0.043 C_K$$
(3)

where C_U , C_{Th} , and C_K are the average activities concentration of ²³⁸U, ²³²Th and ⁴⁰K respectively.

4) Annual Effective Dose Rate (AED).

To evaluate the effective dose to the population attributable to radioactivity in the soil a conversion factor of 0.7 Sv/Gy was used [15]. The evaluation of the indoor and outdoor doses used the occupancy factors of 0.6 and 0.4 respectively for Kenyan setup [16]. The corresponding indoor and outdoor AED was evaluated using the resulting equations 4 and 5 respectively in the mixture of the soil samples.

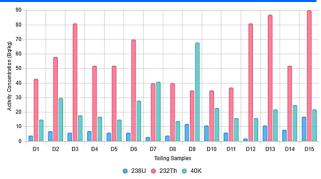
$$AED_{IN}(mSvy^{-1}) = ADR(nGyh^{-1}) \times 8760 \times 0.6 \times$$

$$0.7(SvGy^{-1}) \times 10^{-6}$$
 (4)

$$AED_{OUT}(mSvy^{-1}) = ADR(nGyh^{-1}) \times 8760 \times 0.4 \times 0.7(SvGy^{-1}) \times 10^{-6}$$
 (5)

where; AED_{IN} and AED_{OUT} are Annual effective dose rate for indoor and outdoor environments respectively, $ADR(nGyh^{-1})$ is the absorbed dose rate in air, 8760 is the time in hours for one year, 0.7 (SvGy⁻¹) is the conversion factor which converts the absorbed dose rate in the air to an effective dose, 0.6 is the indoor occupancy factor and 0.4 is the outdoor occupancy factor [11][14].

III. RESULTS AND DISCUSSIONS


3.1 The activity concentrations

The activity concentrations of three primordial radionuclides (²³⁸U, ²³²Th, and ⁴⁰K) were measured in all samples and presented in Table 1.

Table1: Activity Concentration, Absorbed Dose Rate and Annual Effective Dose Rate.

SAMPLE	Activity Concentration			Dose	Ra _{eq}	AEDin	AEDout
	(Bq/Kg)			(nGy/h	(Bq/Kg)		
	²³⁸ U	²³² Th	40 K	-	(-48)		
D1	4±0.2	43±2.19	15±0.76	29±1.45	67±3.38	0.1±0	0.07±0
D2	7±0.38	58±2.92	$30{\pm}1.52$	40±2	93±4.65	0.1 ± 0	0.09 ± 0
D3	6±0.3	81 ± 4.08	18 ± 0.92	53±2.65	123±6.19	0.1 ± 0	0.13 ± 0
D4	7±0.38	52±2.62	17 ± 0.87	36±1.8	83±4.18	0.1 ± 0	0.08 ± 0
D5	6±0.33	52±2.62	15±0.76	35±1.77	82±4.13	0.1 ± 0	0.08 ± 0
D6	6±0.34	70±3.5	28±1.41	46±2.33	108±5.43	0.1 ± 0	0.11 ± 0
D7	3±0.15	40 ± 2.04	41 ± 2.06	27±1.39	64±3.22	0.1 ± 0	0.06 ± 0
D8	4±0.2	40 ± 2.04	14 ± 0.7	27±1.36	63±3.17	0.1 ± 0	0.06 ± 0
D9	12 ± 0.63	35 ± 1.75	68 ± 3.42	29±1.49	67±3.39	0.1 ± 0	0.07 ± 0
D10	11 ± 0.55	35±1.75	23±1.19	27±1.36	62±3.14	0.1 ± 0	0.06 ± 0
D11	6±0.31	37±1.89	16 ± 0.81	26±1.32	61±3.08	0±0	0.06 ± 0
D12	2±0.12	81 ± 4.08	16 ± 0.81	51±2.55	120±6	0.1 ± 0	0.12 ± 0
D13	11±0.56	87±4.38	22±1.14	59±2.95	137±6.88	0.2 ± 0.01	0.14 ± 0
D14	8±0.44	52±2.62	25±1.25	36±1.84	85±4.28	0.1 ± 0	0.09 ± 0
D15	17±0.87	90 ± 4.52	22±1.14	63±3.18	148±7.4	0.2 ± 0.01	0.15 ± 0
AVERAGE	7±0.38	57±2.87	25±1.25	39±1.96	91±4.57	0.1±0	0.09±0

The activities for ⁴⁰K varied from 14 ±0.7 Bq/kg to 68 ± 3.42 Bq/kg with an average of 25±1.25Bq/kg, ²³²Th had activities that ranged from 35 ± 1.75 Bq/kg to 90±4.52 Bq/kg with an average of 57±2.87 Bq/kg and ²³⁸U had activities that ranged from 2 ± 0.12 Bq/kg to 17 ± 0.87 Bq/kg with an average of 7±0.38 Bq/kg, Table 1. The global average activity concentration according to UNSCEAR for the radio nuclides for instance ⁴⁰K, ²³²Th and ²³⁸U are 420 Bq/kg, 45 Bq/kg and 35 Bq/kg respectively. The activities of ⁴⁰K and ²³⁸U were within safe levels and therefore causing no risks for human exposure.

Figure 2: Activity Concentration of ⁴⁰K, ²³²Th, and ²³⁸U in the samples collected from Lumoru Dumpsite.

Despite having the low activity concentration of uranium (238U) but comparatively homogeneous within the region with only a minimal number of the extreme values (17 0.87 Bq/kg in D15, 12 0.63 Bq/kg in D9), thorium (232Th) was on the other hand, uniformly distributed in the region where a small amount of the samples indicated a high activity concentration (90 4.52 Bq/kg in D15), see figure 1, This is owing to the fact that thorium is highly mobile compared to uranium and also due to dumping of construction materials rich in granites, sandstone and quartzite since this is a municipal dumpsite. Activity concentration of 40K in all samples was below permissible value of 420 Bq/kg hence no significant radiological threat due to this radionuclide in the study area.

The difference in activity levels across soil samples at the Lumoru dumpsite can be explained by variations in dumping practices. Activities such as selective waste sorting, periodic turning of waste to enhance decomposition, open burning, and scavenging disturb soil layers and redistribute radionuclides unevenly. Similar influences have been documented in West Africa, where dumpsites like Accra's municipal solid waste site showed that burning and heterogeneous disposal practices contributed to localized radiological anomalies [17]. In Nigeria, Ademola et al. [18] reported that construction debris and waste handling methods introduce measurable variability in natural radionuclide concentrations. Within Kenya, Barasa et al. [19] observed comparable patterns at Machinjoni dumpsite in Kitale, where thorium enrichment was partly attributed to dumping of construction waste and site-specific waste management practices. These parallels suggest that the spatial variations observed at Lumoru are not unique, but consistent with the broader regional evidence that waste handling and composition strongly influence radiological distribution.

3.2 Radium equivalent

Radium equivalent that was found in all the samples varied between 61 ± 3.08 Bq/kg to 148 ± 7.4 Bq/kg at an average of 91 ± 4.57 Bq/kg as indicated in Table 1. The spread in radium equivalent of the soil samples changed because of the unequal distribution of terrestrial radionuclide in the soils and rocks of the study area. The average of the radium equivalent which was reported by the present study in all the whole samples collected is 91 ± 4.57 Bq/kg and this was not in excess of the proposed radioactivity criterion levels so this is less than the recommended optimal level of 370 Bq/kg[15].

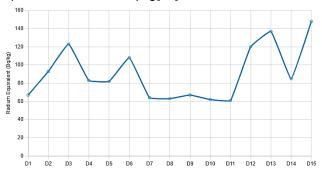


Figure 3: Radium Equivalent.

However, localized peaks in samples such as D15 and D13 suggest spatial heterogeneity, Figure 3, likely arising from both natural geological variability and the disposal of mineral-rich construction debris. When compared internationally, current study mean Raea was considerably lower than values reported in Brazil, where Santos et al. [20] observed average Ra_{eq} levels of 319 Bq/kg in granite-rich soils, with some samples reaching 758 Bq/kg. In India, Mehra [21] reported Ra_{ea} values between 92.7 and 140.6 Bg/kg, with a mean of 111.8 Bq/kg, which is slightly higher but broadly comparable to current study values. Regionally, Barasa et al. (2024) documented Ra_{eq} values at Machinjoni dumpsite that similarly showed elevated ²³²Th and variable Ra_{eq} distributions attributed to the disposal of construction debris and local geology, mirroring the localized thorium enrichment and Raea variability at Lumoru. Importantly, health studies from other Kenyan dumpsites such as Dandora highlight the risks of chronic exposure: Gitau [22] reported elevated cases of respiratory illnesses, skin disorders, and possible bioaccumulation among workers and residents chronically exposed to contaminated soils and wastes. Together, these comparisons emphasize that while Lumoru's average Ra_{eq} values remain within safe global limits, the existence of localized hotspots and parallels with other dumpsites suggest that sustained monitoring and health surveillance are essential to prevent long-term radiological and nonradiological health burdens.

3.3 Absorbed Dose Rate of Soil Samples

The absorbed dose rates in soils from the Lumoru dumpsite ranged between 26.132 and 63.318 nGy/h, with a mean of 39.196 nGy/h (Table 1). Localized peaks, particularly in samples D15 and D13, Figure 4, reflected uneven radionuclide distribution arising from the disposal of ²³²Th-rich construction debris such as sandstone, quartzite, and granite. Despite these hotspots, the mean value remained below the global average of 60 nGy/h [15], indicating minimal radiological health risks under current conditions. Comparable findings have been reported at the Machinjoni dumpsite in Trans-Nzoia County, Kenya, where Barasa et al. [19] observed elevated dose rates linked to construction materials and heterogeneous dumping practices, underscoring that localized anomalies are common in municipal dumpsites. Similarly, Kassenga [23] reported that solid waste disposal sites in Dar es Salaam, Tanzania, not only influenced soil radiological profiles but also posed broader environmental risks through contamination of surface and groundwater, illustrating the multifaceted pathways by which dumpsites affect human and ecosystem health. Taken together, these comparisons suggest that although Lumoru's mean absorbed dose rate is within safe limits, localized variations may present chronic exposure pathways for waste pickers and surrounding communities, emphasizing the importance of regular monitoring and integrated waste management strategies.

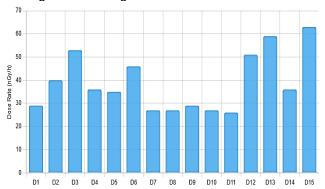


Figure 4: Absorbed Dose Rate for the samples.

3.4 Annual effective Dose

At Lumoru dumpsite, the AEDE_{out} ranged between 0.06 and 0.15 mSv/y (average 0.09 mSv/y), while AEDE_{in} ranged between 0.10 and 0.02 mSv/y (average 0.01 mSv/y). Although both are within the 1 mSv/y safety limit, AEDE_{in} is consistently higher, meaning that people living or working indoors near the dumpsite are at greater radiological risk than those outdoors. Over time, this higher indoor exposure could contribute to subtle but cumulative health effects, including increased risk of respiratory complications, weakened immunity, and a slightly elevated lifetime cancer risk [5] [15], especially among vulnerable groups such as children and waste-pickers who spend extended hours in close proximity to the site.

Conclusion

The radiological assessment of soils from Lumoru dumpsite shows that the average concentrations of 40K, 232Th, and 238U were 25, 57, and 7 Bq/kg respectively, while the mean radium equivalent was 91 Bq/kg, the absorbed dose rate was 39.2 nGy/h, and the annual effective doses were 0.09 mSv/y outdoors and 0.20 mSv/y indoors. These values are all within internationally recommended safety limits. However, localized hotspots, particularly for ²³²Th, and elevated indoor exposure indicate potential health risks for residents engaging with the site through scavenging and reuse of construction debris. These patterns are consistent with findings from other East African and global dumpsites, highlighting the need for continuous monitoring, improved waste management, and heightened public awareness to mitigate long-term environmental and health impacts.

Acknowledgement

The authors gratefully acknowledge Kibabii University for approving this research and the Department of Science, Technology, and Engineering for their invaluable guidance and support throughout the research process. We also extend our sincere appreciation to NACOSTI for granting the research license and to Bungoma County for facilitating access to the Lumoru dumpsite, enabling the successful execution of this research.

Conflicts of interest

The authors declare no conflict of interest.

REFERENCES

- [1] Cao, F., Li, H., Yang, T., Li, Y., Zhu, T., & Zhao, L. (2017). Evaluation of diffuse solar radiation models in Northern China: New model establishment and radiation sources comparison. *Renewable Energy*, 103, 708-720.
- [2] Gibson, A. B. (1954). Geology of the Broderick Falls Area: Degree Sheet 33, NE Quadrant, with Coloured Geological Map (No. 26). Geological Survey of Kenya. India. Environmental earth sciences, 72(2), 511-523.
- [3] Wanyama, C. K., Masinde, F. W., Makokha, J. W., & Matsitsi, S. M. (2020). Estimation of radiological hazards due to natural radionuclides from the Rosterman gold mine soils, Lurambi, Kakamega, Kenya. Radiation Protection Dosimetry, 190(3), 324-330.
- [4] Dhawal, S. J., Phadatare, M. R., Kulkarni, G. S., & Pawar, S. H. (2018). Gamma radiation levels in the villages of South Konkan, Maharashtra,

- [5] Tsimbasi, S. C., Makokha, J. W., & Odumo, B. O. (2024). Natural Radioactivity Levels and Radiological Risk Assessment in Locally Grown Maize and Beans from Bungoma County. *Open Access Library Journal*, 11(12), 1-18.
- [6] Kenya National Bureau of Statistics. (2019). Population of Bumula sub-county. Retrieved from https://www.knbs.or.ke.
- [7] IAEA. (2017). Handbook of Parameter Values for the Prediction of Radionuclide Transfer in Terrestrial and Freshwater Environments. (Vienna: International Atomic Energy Agency) (2017).
- [8] IAEA. (2018). Methodology for the assessment of innovative nuclear reactors and fuel cycles, 1-182. IAEA. (2018). Classification of Radioactive Waste, (21), 1–68.
- [9] Ramasamy, V., Senthil S., Meenakshisundaram, V. and Gajendran, V. (2018). Measurement of natural radioactivity in beach sediments from north east coast of Tamilnadu, India, Research and Applied Science Engineering Technology Journal 1 (2): 54-58. Rittersdorf I., (2007).
- [10] Grasty, R.L. (1977). A General Calibration Procedure for Gamma-ray Spectrometers -Project 720084; in Report of Activities, part C;, Geol. Survey of Canada, Paper 77-1C.
- [11] Butiki, G. W., Makokha, J. W., Masinde, F. W., & Wanyama, C. K. (2021). Annual effective dose from radon-222 concentration levels in underground water in Bungoma south sub-county, Kenya. ITEGAM-JETIA, 7(28), 78-82.
- [12] Abbady, A.G.E, Uosif, M.A.M and El- Taher, A. (2005). Natural radioactivity and dose assessment for phosphate rocks from Wadi El- mashal and El-Mahamid mines in Egypt. Journal of Environmental Radioactivity 84:65-78
- [13] Kolo, M. T., Baba-Kutigi, A. N., Olarinoye, I. O., & Sharifat, I. (2018). Assessment of Natural Radioactivity Levels and Radiation Hazards in the Tertiary Institutions in Minna, Niger State, Nigeria.
- [14] Quindos, L. S., Fernandez, P. L., and Soto, J. (1987). Building material as a source of exposure in houses. Indoor Air. 87(2): 365.
- [15] United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR). (2000). Sources and effects of ionizing radiation: UNSCEAR 2000 report to the General Assembly, with scientific annexes. New York, NY: United Nations.
- [16] Mustapha, A. O., Patel, J. P., and Rathore, I. V. S. (1999). Assessment of Human Exposures to

- Natural Sources of Radiation in Kenya. Radiation Protection Dosimetry. 82(4): 285–292.
- [17] Faanu A., Lawluvi H., Kpeglo D.O., Darko E.O., Emi-Reynolds G., Awudu R., Adukpo O.K., Kansaana C., Ali I.D., Agyeman B., Agyeman L., and Kpodzro R. (2018). Assessment of natural and anthropogenic radioactivity levels in soils, rocks, and water in the vicinity of chirano gold mine in Ghana. Radiant prot Dosim. 158(1):87-99
- [18] Ademola, A. K., Bello, A. K., & Adejumobi, A. C. (2014). Determination of natural radioactivity and hazard in soil samples in and around gold mining area in Itagunmodi, south-western, Nigeria. Journal of Radiation research and applied sciences, 7(3), 249-255.
- [19] Barasa, E. S., Nakitare, M. W., & Ouma, L. (2023). Activity concentration and associated radiation dose in Machinjoni dumpsite in Trans-Nzoia County, Kenya. International Journal of Novel Research and Development, 8(9).
- [20] Santos Junior, J. A., Amaral, R. S., Silva, C. M., & Menezes, R. S. C. (2010). Radium equivalent and

- annual effective dose from geological samples from Pedra–Pernambuco–Brazil. Radiation Measurements, 45(7), 861–864. https://doi.org/10.1016/j.radmeas.2010.03.011
- [21] Mehra, R. (2010). Radiological risk assessment in soil samples of Western Haryana, India. International Journal of Environmental Sciences and Development, 1(1), 80–82. Retrieved from https://publications.waset.org/11885/radiological-risk-assessment-in-soil-samples-of-western-haryana-india
- [22] Gitau, B. M. (2020). Occupation Health Risks Associated with Garbage Recycling at Dandora Dumpsite, Nairobi County, Kenya (Doctoral dissertation, SCHOOL OF PURE AND APPLIED SCIENCES, KENYATTA UNIVERSITY). https://doi.org/10.1177/117863022221123456
- [23] Kassenga, G. R. (2009). Impacts of a solid waste disposal site on soil, surface and groundwater in its neighbourhood (Case study: Dar es Salaam, Tanzania). U.S. EPA HERO Project.