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Abstract— This study investigates the effect of 
response surface methodology (RSM) and Grey-
wolf optimizer (GWO) in the optimization of 
biodiesel yield. Blends of palm kernel shell and 
cocoa pods oils were used for the production of 
biodiesel through transesterification process. 
Titanium oxide was used as a nano catalyst to 
increase the oil yield and reduce cost of 
production and time. The results obtained were in 
two sets – the actual (experimental) and the 
predicted values - using the design matrix. The 
matrix design was adopted to study the combined 
(predicted) effects of the process parameters in 
the production of the biodiesel. A two level five 
factor RSM full factorial composite response, 
which identified the various design points was 
employed to achieve the optimum process 
parameters for the produced biodiesel. For the 
single effect (experimental), maximum yield of 
72.98% was obtained, whereas for the combined 
effect, the yield of 76.05% was gotten. A 
comparative analysis was carried out on the 

biodiesel yield using the RSM and Grey-wolf 
optimization tools. The optimization process 
revealed that the biodiesel yield was closely 
related with a yield of 79.50 and 83.412% 
respectively. This result shows that the Grey-wolf 
optimizer (GWO) and the response surface 
methodology (RSM) are good optimization tools 
for biodiesel production. . 

Keywords— Biodiesel, Catalyst, Response 
Surface Methodology, Grey-wolf Optimizer, Oil 
Yield 

1. INTRODUCTION 
Industrialization’s need for energy, over the years, 

resulted in the transition from wood to coal and from coal 
to fossil fuels. Since then, fossil fuels have come to 
dominate the world’s energy supply; and the global thirst 
for energy have gradually become unquenchable [1]. This 
rapid demand for energy is due to the increase in human 
population, advancement in technology, industrial 
applications and the limited availability of non-renewable 
energy resources in the world. The continuous use of fossil 
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products have resulted in depletion of the oil reserves, 
increase in cost of production and sales as well as depletion 
of the ozone layer due to emission of greenhouse gases 
(GHGs) generated from heavy-duty trucks, city transport 
buses, heavy-duty/small generators, power plants systems, 
quarry etc [2]. In addition, fossil fuel emissions will 
continue indefinitely [3]. Therefore, an alternative and 
renewable fuel resources that is capable of solving these 
current problems is very important. Consequently, biofuels 
(example, biodiesel) have been very promising in that 
regard. The International Energy Agency (IEA) wants 
biofuel to meet more than a quarter of the world demand for 
transportation fuels by 2050 in order to reduce pendency on 
petroleum [4]. Presently, the production and consumption 
of biofuels according to the report have not yet met the 
IEA’s sustainable development scenario, but from 2020 to 
2030, global biofuel output has to increase by 10% each 
year to reach the IEA’s goal. Biodiesel is produced from 
edible and non-edible oils known as feedstock [5]. To meet 
the energy requirements of the future, different feedstock 
oils can be blended. Also, to avoid waste, increase oil yield, 
reduce time and cost of production, a catalyst is used 
through transesterification process. In this work a nano 
catalyst (Titanium oxide), which is highly environmental 
friendly, cost effective, safe and efficient [1, 6] was used to 
produce the biodiesel from hybrid of palm kernel and cocoa 
pods oils in the presence of alcohol (methanol) through 
transesterification process, which is easier, cheaper, faster 
and with a higher potential of increased yield [3, 7]. Before 
use, the catalyst was prepared and dried in accordance with 
the drying methods specified by [1, 6, 8, 9]. To further 
increase the biodiesel yield, the process parameters: 
reaction time, reaction temperature, catalyst concentration, 
agitation speed and methanol/oil ratio, were considered and 
varied individually and combined within different ranges to 
anticipate biodiesel yield in a matrix. The need to optimize 
the process parameters in a systematic way was necessary 
to achieve a higher output characteristic/responses using an 
optimization tool [10]. The response surface methodology 
(RSM) was used to find the relationships among process 
variables and response in an efficient manner using a 
minimum number of experiments. The Grey-wolf algorithm 
was also adopted to develop a model to analyse and predict 
the yield of cocoa pods and palm kernel shell oil methyl 
ester using the same process parameters; and the obtained 
biodiesel yield was set as response. 
  
2. LITERATURE REVIEW 

Various works have been carried out by different 
researchers in the production of biodiesel from different 
feedstocks and methods [7, 11 12, 13, 14]. For optimization 
process, others have also employed different optimization 
tools like MINITAB, Taguchi, Artificial Neural Network, 
Box-Behnken fractional design, RSM etc, to obtain 
maximum result [7, 9, 13, 14, 15, 16]. It is worthy of note 
that these tools have been utilized in one way or the other to 
optimize biodiesel production data obtained from the 
corresponding experimental runs, which gave rise to 
improved results and production yield/outcomes. However, 
all the aforementioned software has notable drawdowns at 
one point or the other, such as the results obtained not being 
relative and not exactly indicating what parameter had the 

highest effect on the performance characteristic, etc. In 
order to address these setbacks and obtain better results, 
this study focused on the utilization of another supportive 
tool, known as the Grey-wolf optimizer for the optimization 
of biodiesel production. Moreover, to accelerate the 
reaction time and oil yield, a nano catalyst was used. 
Records have shown that very limited research works have 
considered Grey-wolf optimizer for the optimization of the 
oil yields. Records have also shown that blends of palm 
kernel shell and cocoa pods oils have rarely been 
considered for the production of biodiesel, whereas the raw 
material for these none edible oils have always been wasted 
over the years, especially in Nigeria and other sub-Saharan 
African countries [1].  

Review of previous studies demonstrate that the 
RSM could predict homogeneous, heterogeneous and nano 
catalysts based-biodiesel from various classes of feedstocks 
and their diverse engine characteristics [7, 12, 14]. RSM 
model demonstrates its capacity to enhance catalytic-based 
biodiesels from various oils. It has the ability to detect the 
correct quantity of catalyst in combination with other 
process parameters in order to increase the rate of methylic 
process. In addition, the RSM model's extraordinary 
development in efficiency and correlation of multi-input 
parameters and response [7].  

The Grey-wolf optimizer on the other hand have 
also proven to be an excellent metaheuristic optimization 
algorithm. It draws inspiration from natural phenomena to 
guide search towards optimal solutions. It is a specific type 
of swam intelligence metaheuristic optimization algorithm 
that mimics the social hierarchy and hunting behaviour of 
grey wolves, introduced by Seyedali Mirjalili et al., in 2014 
[17]. Grey-wolf optimizer is highly recommended for its 
novelty, low number of parameters, fast convergence speed, 
high precision, balanced exploration and exploitation and 
simplicity [18, 19, 20, 21, 22].  
For these and other reasons, the choice of the RSM and 
Grey-wolf optimizer was made for the modelling and 
optimization of biodiesel production from blends of palm 
kernel shell and cocoa pods oils using titanium oxide as 
catalyst in this study. This will go a long way to mitigating 
the adverse effect of fossil fuels, improve economy, 
improve biofuel production/yield and bridge the gap that 
existed in the production and optimization of biodiesel.   
 
3. METHODLOGY 
3.1 Grey-Wolf Optimization 
As an innovative swarm intelligence technique, the grey-
wolf optimizer (GWO) is modest with differential evolution 
and gravitational search algorithm. As already stated, the 
GWO algorithm mimics the leadership hierarchy and 
hunting behaviour of grey-wolves in nature. The Grey wolf 
is known to reside at the top of the food chain and as a top-
level predator. Also, they animate in groups that averagely 
consist of five to twelve wolves. In addition to that, they 
adopt the three (3) main steps of hunting prey - searching 
for prey, encircling prey, and attacking the prey. The GWO 
adopts same for implementation. 
Four types of grey-wolves such as alpha (α), beta (β), delta 
(δ), and omega (ω) are employed for simulating the 
leadership hierarchy, according to fitness. According to the 
hierarchy of wolves as seen in Figure 1, the group is led by 
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preventing the wolves from converging too quickly or easily 

and potentially getting stocked in local optima. 

 𝑋𝑎𝑙𝑝ℎ𝑎ሺ𝑡ሻ, 𝑋𝑏𝑒𝑡𝑎ሺ𝑡ሻ, 𝑎𝑛𝑑 𝑋𝑑𝑒𝑙𝑡𝑎ሺ𝑡ሻ  represents 

the position vectors alpha, beta and delta wolves at current 

iteration (t). 
 

The GWO commences by developing a random group of 

grey wolves, which can be displayed by candidates for the 

answer; and throughout the modelling, α, β, and δ wolves 

govern the probable state of the hunt. Overall, the Grey-

wolf application flowchart for iterating the respective 

search agents is presented in Figure 2. 

 

 
Figure 2: Grey-wolf application flowchart for iterating the respective search agents 

 

3.2 Fractional Factorial Design of Experiment: 

Response Surface Methodology (RSM) 

A two-level, five factor, factorial central composite design 

was used to study the combined effect of process 

parameters. To achieve this, design expert (DOE) was used 

to design the experimental study, which summed up to 32 

experiments. Five study points were used in order to predict 

good estimation of errors and experiments performed in a 

randomized order. Five process conditions (independent 

variables) which included: effects of temperature, reaction 

time, catalyst concentration, agitation speed and methanol / 

sample mole ratio were studied. The dependent variable 

was the biodiesel yield.  

That is:   

25-1 + 2*5 + 6 = 32 experiments  (6) 

 

The factor levels shown in Tables 1 and 2. The matrix for 

the five variables were varied at two levels (-1 and +1). The 

lower level of variables was designated as -1 and the high 

level as +1. The coded values were designated by -2 

Initialized Grey wolf population Xi  (1, 2, 3…, a) and maximum number of iteration , N 
Where Xi signifies Grey wolf location (Search agent) 

Initialize a, A and C 
(Where A and C are coefficient, a is a decreasing vector as indicated by iteration)  

Is Iteration, a < Max N?

Return best 
solution 

Update A and C 
a = a + 1  

Start

Calculate the fitness of each search agent 

Sort out the pack with respect to the fitness value and the 
rank of wolves: where X, Xα, Xβ and Xδ are the best 

search, second and third best search agents 

Stop 
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(minimum), -1 (mid-minimum), 0 (centre), +1 (mid 

maximum) and +2 (maximum) respectively. 

The optimization of transesterification using Central 

Composite Design (CCD), a Response Surface 

Methodology (RSM) was performed to determine the 

optimum values of the process variables.  

The distance from the centre point, which can either be 

inside or outside the range, with the maximum value 2n/5, 

where n is the number of factors, is designated by alpha (α). 

The empirical equation is represented as shown in equation 

(6). 

 

Y ൌ  𝛽଴ ൅ ∑ ൌ ହ
ଵ 1 𝛽௜𝑋௜ ൅ ∑  ൌ ହ

ଵ 1 ൅ 1 𝛽௜௝𝑋௜ 𝑋௃ ∑  ൌହ
ଵ

 𝛽௜௜𝑋௃
ଶ   (7) 

Where: 

Y = predicted yield of biodiesel (%)  

Xi and X j = the transesterification process 

variables 

 β0 = the offset term 

  βi = the coefficient of linear effect (single effect) 

 βij = the coefficient of interaction effect 

  βii = the coefficient of quadratic effect 

 

The choice of the RSM for predicting and 

modelling the transesterification process was due to its 

simplicity and ability to correlate the input variables with 

responses; thereby achieving increased oil yield, and 

reduced production cost.  

 

Table 1: Studied range of each factor in actual and coded form for heterogeneous catalysts 

Factors Units Low level High level -⍺ +⍺ 0 level 

Catalyst conc. (A) Wt% 2(-1) 4(+1) 1(-2) 5(+2) 3 

Methanol,        (B) Mol/mol 4(-1) 8(+1) 2(-2) 10(+2) 6 

Temperature,   (C) °C 50(-1) 60(+1) 45(-2) 65(+2) 55 

Reaction time  (D) Minutes 60(-1) 120(+1) 30(-2) 150(+2) 90 

Agitation speed ( E) Rpm 200(-1) 300(+1) 150(-2) 350(+2) 250 

 

It is noteworthy to point out that the software uses the 

concept of the coded values for the investigation of the 

significant terms, thus studying the effect of the variables 

on the response using coefficient equation, normal plot of 

standardized effect, normal probability scatter plot, 

interaction plots such as 3D plots and contour plots. 

 

Table 2: Experimental design matrix for transesterification studies catalyzed by activated titanium oxide 
catalyst 

Run 
order 

Catalyst conc. 
(wt %) 
A 

Methanol/Oil molar 
ratio 
B 

Temperature  
(oC) 
C 

Time 
 (Minutes) 
D 

Agitation Speed 
(Rpm) 
E 

Coded Real Coded Real Coded Real Coded Real Coded Real 
1 -1 2 -1 4 -1 50 -1 60 +1 300 
2 +1 4 -1 4 -1 50 -1 60 -1 200 
3 -1 2 +1 8 -1 50 -1 60 -1 200 
4 +1 4 +1 8 -1 50 -1 60 +1 300 
5 -1 2 -1 4 +1 60 -1 60 -1 200 
6 +1 4 -1 4 +1 60 -1 60 +1 300 
7 -1 2 +1 8 +1 60 -1 60 +1 300 
8 +1 4 +1 8 +1 60 -1 60 -1 200 
9 -1 2 -1 4 -1 50 +1 120 -1 200 
10 +1 4 -1 4 -1 50 +1 120 +1 300 
11 -1 2 +1 8 -1 50 +1 120 +1 300 
12 +1 4 +1 8 -1 50 +1 120 -1 200 
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13 -1 2 -1 4 +1 60 +1 120 +1 300 
14 +1 4 -1 4 +1 60 +1 120 -1 200 
15 -1 2 +1 8 +1 60 +1 120 -1 200 
16 +1 4 +1 8 +1 60 +1 120 +1 300 
17 -2 1 0 6 0 55 0 90 0 250 
18 +2 5 0 6 0 55 0 90 0 250 
19 0 3 -2 2 0 55 0 90 0 250 
20 0 3 +2 10 0 55 0 90 0 250 
21 0 3 0 6 -2 45 0 90 0 250 
22 0 3 0 6 +2 65 0 90 0 250 
23 0 3 0 6 0 55 -2 30 0 250 
24 0 3 0 6 0 55 +2 150 0 250 
25 0 3 0 6 0 55 0 90 -2 150 
26 0 3 0 6 0 55 0 90 +2 350 
27 0 3 0 6 0 55 0 90 0 250 
28 0 3 0 6 0 55 0 90 0 250 
29 0 3 0 6 0 55 0 90 0 250 
30 0 3 0 6 0 55 0 90 0 250 
31 0 3 0 6 0 55 0 90 0 250 
32 0 3 0 6 0 55 0 90 0 250 

 

 
4.0 RESULTS AND DISCUSSION 

RSM and GWO algorithms were adopted to 

develop a model predicting the yield of cocoa pods and 

palm kernel shell oil methyl esters. The reaction time, 

reaction temperature, catalyst concentration, agitation speed 

and methanol/oil molal ratio, were chosen as the process 

parameters on which the optimization was analysed; and 

the obtained biodiesel yield set as the response.  

Table 3 presents the RSM boundary variables used for the 

GW optimization via MATLAB R2022 software. 

Table 3: Values of the GWO Variables 
Variables GWO 

Number of  particles 30 
Number of iterations 100 
Cognitive Acceleration - 
Inertia weight - 
 

Figure 3 shows the optimized biodiesel yield from the 

GWO and RSM models at the boundaries. The figure 

reveals that the yield of Grey-wolf optimization (YGWO) 

have closely related relationship compared to the yield of 

the response surface methodology (YRSM). 

 

The result obtained for the 20 runs shown in Figure 3 are 

presented in Table 4. 

 

Figure 3: Optimized yield of GWO and RSM optimization 
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