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Abstract— In this work, enhancement of 
maintenance strategies in crude oil refinery plant 
equipment using k-Nearest Neighbors 
(KNN) model is presented. The study focused on 
predicting equipment failure and thereby 
optimizing maintenance strategies in the crude oil 
refinery plant. The KNN model is used for the 
prediction of the likelihood of equipment failure 
thereby triggering warning for preventive 
maintenance scheduling. The analysis is based 
exclusively on the available time-series data for 
discharge pressure, temperature, and vibration, 
spanning from early January 2025 to early April 
2025. The original data contains only three 
parameters, pressure status, temperature status, 
and vibration status. The equipment (target) 
status is derived from the three available 
parameters. The dataset had 500 data records and 
the KNN model was trained with 75% of the data 
while validation evaluation was done with the 
remaining 25 % of the data. The results show that 
the KNN model has mean prediction accuracy of 
87.75 %, precision of 91%, recall of 86 % and F1-
score of 88% with support score of 253. Also, the 
equipment had 100 critical status before the 
application of the KNN model however after the 
application of the KNN model the critical status 
reduced to 31 instances which is about 69 % 
improvement in the maintenance scheduling 
mechanism. 

Keywords— Preventive maintenance, Crude Oil 
Refinery Plant, Reactive Maintenance, 
k-Nearest Neighbors (KNN), Sensor 
Data 

 

 
1. INTRODUCTION 

The oil and gas industry in Nigeria faces major 
hurdles in managing and maintaining its equipment, which 
is crucial for ensuring operational efficiency, safety, and 
reliability [1,2,3] The sophistication and scale of equipment 
in the oil and gas industry, coupled with rough operating 
environments, make traditional maintenance practices often 
ineffective and costly [4,5,6]. Conventionally, maintenance 
in refinery plants has relied heavily on reactive strategy in 
response to equipment failure and preventive strategy 
which seeks to avoid equipment failure [7,8]. Preventive 
maintenance, while more proactive, is scheduled at regular 
intervals regardless of the actual condition of the 
equipment, which can lead to unnecessary maintenance 
actions or failure to detect impending issues [9,10,11]. Both 
approaches have limitations in terms of cost efficiency, 
resource allocation and effectiveness in preventing critical 
failures. 

Notably, in recent years, advancements in machine 
learning (ML) and data analytics have opened new 
opportunities for predictive maintenance, which aims to 
forecast equipment failures before they occur based on 
historical and real time operational data [14,15]. Predictive 
strategies basically utilize data from the equipment 
components status collected over time which are then fed to 
powerful algorithms to predict likelihood of impending 
fault [16,17].  When integrated into maintenance strategies, 
these techniques not only enhance equipment reliability and 
availability but also optimize maintenance schedules, 
reduce operational costs and improve safety performance 
[16]. Accordingly, the purpose of this work is to explore the 
role of AI-driven predictive maintenance in transforming 
equipment management in the oil and gas industry. The 
study employed the K-Nearest Neighbor (KNN) model on a 
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Figure 1 The scatter plot of the  Pressure Status data 

 

 
Figure 2 The scatter plot of the Temperature Status data 

 
Figure 3 The scatter plot of the Vibration Status data 
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Algorithm 1 
Step 1: Data Collection 

Step 1.1  Gather historical maintenance and operational data. 
Step 1.2  Collect sensor data from equipment. 

Step 2 : Data Preprocessing: 
Step 2.1  Clean and preprocess the data (handling missing values, normalization). 
Step 2.1  Feature selection and engineering. 

Step 3 Model Development: 
Step 3.1  Split the data into training and testing sets. 
Step 3.2  Train machine learning models (KNN). 
Step 3.3  Model Evaluation: 
Step 3.4  Validate model performance using metrics such as accuracy, precision, recall, and F1 score. 
Step 3.5  Adjust hyper-parameters for optimization. 

Step 4  Prediction and Analysis: 
Step 4.1  Use the trained models to predict equipment failures. 
Step 4.2  Analyze the predicted outcomes to identify patterns and trends. 

Step 5  Optimization of Maintenance Strategies: 
Step 5.1  Develop maintenance schedules based on predictive results. 
Step 5.2  Create a decision-making framework for proactive maintenance. 

Step 6  Implementation and Monitoring: 
Step 6.1  Implement optimized maintenance strategies in the refinery. 
Step 6.16  Continuously monitor model performance and refine as necessary. 

3. RESULTS AND DISCUSSION 
3.1 Results for the KNN Model Training and Evaluation 
The result show that the KNN model has prediction 
accuracy of mean 87.75 %, precision of 91%,  recall of 86 
% and F1-score of  88% with  support score of 253, as 
shown in Table 3.  

                 Table 3: The KNN  prediction performance  
Class Precision Recall F1-Score Support 

1 
(Normal) 

0.83 0.94 0.88 108 

2 
(Warning) 

0.91 0.83 0.87 123 

3 
(Critical) 

1.00 0.82 0.90 22 

Overall 
Accuracy 

— — 0.88 253 

Macro 
Average 

0.91 0.86 0.88 253 

Weighted 
Average 

0.88 0.88 0.88 253 

 
For the Class 1 (Normal) the KNN had high recall (0.94)  
which shows that the model successfully identifies most of 
the normal cases. Also, slightly lower precision (0.83) 
means some warnings/critical were predicted as normal. 
For the Class 2 (Warning) the KNN had very good balance 
between precision (0.91) and recall (0.83). Suggests the 
model understands this intermediate class quite well.  For 
the  Class 3 (Critical) the KNN had perfect precision (1.00).  
The recall (0.82)) means the KNN model misses a few 
critical cases, but still captures most. F1-score (0.90) 
reflects strong but improvable sensitivity to critical events. 

In general, the KNN had very good prediction performance. 
The K-Nearest Neighbors (KNN) model also shows strong 
overall performance with accuracy at 87.75%. Moreover, 
the  KNN demonstrated good precision, recall, and F1-
scores across all classes, with macro and weighted averages 
generally in the range of 0.86 to 0.91.  

After the prediction of equipment failure using 
KNN Model, the model was trained to flag warning signal 
status when two of the parameters records warning (2) and 
critical (3). With this, the reactive maintenance of the 
equipment and corrective maintenance is reduced by a 
preventive maintenance whereby the equipment will be 
booked for maintenance. With this, there will be reduction 
in downtime in the refinery plant. 

It is clearly seen that before the predictive 
maintenance strategy, that the number of critical entries( 
breakdown) were 100 and after the model has been trained 
for the prediction of equipment failure, and was used to 
optimize the maintenance strategies, the critical entries 
(breakdown) reduced to 31 entries which has a significant 
impact on the equipment health. The summary of the 
number of incidence of the three status categories for 
equipment (target) status before the application of the KNN 
model and after the KNN model application is presented in 
Figure 7. It showed that the equipment had 100 critical 
status before the application of the KNN model however 
after the application of the KNN model the critical status 
reduced to 31 instances which is about 69 % improvement 
in the maintenance scheduling mechanism.  
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Figure 7  The summary of the number of incidence of the three status categories for equipment (target) status before the 

application of the KNN model and after the KNN model application 

4. CONCLUSION 
This study explored the application of machine 

learning (ML) for predictive maintenance in crude oil 
refinery plants, focusing on critical equipment such as 
compressors. The work aimed to predict equipment failures, 
optimize maintenance strategies, using sensor data 
(temperature, pressure, vibration). The k-Nearest Neighbors 
(KNN)  was used and the results showed that the equipment 
failure was reduced by 69 % through the prediction of 
likelihood of equipment failure based on the sensor 
parameters. The study successfully demonstrated that ML-
driven predictive maintenance can transform refinery 
operations by reducing unplanned downtime through early 
failure detection. 
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