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Abstract— In this work, two-branch feature 
extraction with semantic enrichment for Building 
Information Modeling (BIM) object classification 
using AI models is presented to address some 
problems associated with the existing BIM object 
classification and also improve cross-disciplinary 
collaboration all through building projects’ 
lifecycle through semantic content enrichment.  
First the IFCNet dataset which has 20 different 
BIM object classes that are stored 
in IFC file format, with about 95,160 data samples 
was obtained and subjected to series of data 
preprocessing procedures. Then, the two-branch 
feature extraction which include geometric feature 
extraction of the BIM object using 3D 
Convolutional Neural Network (CNN) and the 
relational feature extraction of the BIM object 
using Convolutional Neural Network (CNN) were 
conducted. The fusion of the geometric features 
and the relational features using Convolutional 
Neural Network (CNN) was done to generate a 
unified BIM object description.  Next, the unified 
BIM object description was used as input for the 
BIM object classification using Convolutional 
Neural Network (CNN). The results show that the 
CNN model has average prediction accuracy of 
84.74% along with precision, recall and F1 score 
values of 85.86%, 84.74% and 84.97% respectively. 
Also the classification model in this work 
performed better that the published BIM object 
classification model presented by other 
researchers which has prediction accuracy of 
83.20%. The ideas presented in this work is very 
essential to enhance collaboration among the 
various stakeholders always involved in building 
project lifecycle. . 
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1. Introduction 
One of the primary challenges in Building 

Information Modeling (BIM) adoption is the lack of 
automated, standardized methods for classifying BIM 
objects, especially in complex MEP systems (Alam, et al., 
2023; Kineber, et al., 2023). Existing classification 
processes are largely manual, which is time-consuming and 
prone to errors (Morais et al., 2022). Moreover, many BIM 
objects lack rich semantic context, which limits their 
usefulness throughout the lifecycle of a building (Dinis et 
al., 2022). As a result, data fragmentation, 
miscommunication and inefficiencies persist across 
construction teams, leading to project delays and higher 
costs (Marsh, 2024; Latif, et al.,2023; Alzeraa, 2018).The 
problem is particularly critical for MEP systems, where 
complex interdependencies and diverse components are 
often poorly represented in BIM models. To address this, 
there is a need for intelligent systems capable of classifying 
objects correctly and enhancing their semantic content for 
better cross-disciplinary collaboration. 

Despite the growing adoption of BIM in the 
Architecture, Engineering and Construction (AEC) 
industry, the classification of BIM objects remains a 
significant challenge, especially for complex systems like 
MEP. The current methods are often manual, inconsistent 
and inefficient, leading to errors and delays in the 
construction process (Mophethe, 2024). Additionally, the 
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lack of semantic enrichment of BIM data results in limited 
utility for stakeholders throughout the project lifecycle 
(Dinis et al., 2022). The MEP domain, in particular, 
presents unique challenges due to its intricate components 
and interdependencies. Existing BIM models often fail to 
fully capture the complexity of these systems, resulting in 
poor data representation and difficulty in managing MEP 
systems during design, construction and operation (Teo et 
al., 2022). This research aims to address these challenges 
by developing an AI-based classification model and a 
semantic enrichment framework that will automate the 
classification process and improve the contextual 
information associated with BIM objects. 

2. Methodology 
In this work, a two-branch feature extraction with 

semantic enrichment for building information modeling 

object classification using AI-models is presented.  The 
system model for the study is presented in Figure 1. 
According to the system model in Figure 1, the two-branch 
feature extraction consists of the geometric feature 
extraction model and the relational feature extraction 
model; the BIM object description output from the two 
branches are then fused together by the feature fusion 
model to obtained a unified BIM object description which 
serves as input to the BIM object classification model and 
the semantic enrichment module. Also, the BIM object 
classification output is fed into the semantic enrichment 
module as the second input and then the semantic 
enrichment module utilizes the two inputs for the sematic 
enrichment purpose.  

 
Figure 1  The system model for the two-branch feature extraction with semantic enrichment for BIM object 

classification 

The geometric feature extraction is conducted 
using the details of the PointNet which is a form of 3D 
CNN (Convolutional Neural Network) model. The details 
of the PointNet model is presented in Figure 3. The 
relational feature extraction is conducted using Graph 
Neural Network Transformer model and the flow diagram 
for the relational feature extraction is presented in Figure 4. 
Similarly, the flow diagram for the semantic enrichment 
layer is presented in Figure 5.  

The annotated flow diagram for the system model 
is presented in Figure 2. The system requires five major 
steps that begins in step 1 with acquisition and 
preprocessing of the IFCNet dataset for the BIM objects. In 
step 2, the IFCNet dataset, the data items for each of the 
BIM objects are stored in IFC (Industry Foundation 

Classes) format. The feature extraction using two-branch 
feature extraction approach is performed in the step 2 which 
gives geometric feature description and relational feature 
description of the BIM object.  

The BIM geometric feature extractor model takes 
point cloud data input while the relational features (are 
presented as edge maps using gradient-based detection) to 
the relational feature extractor model. In step 3, feature 
fusion which produce unified BIM object description is 
carried out. The unified BIM object description from the 
feature fusion model is fed to the BIM object classification 
model and then the classification model is trained to predict 
the BIM objects in step 4. Finally, in step 5, the semantic 
enrichment module takes input from the feature fusion 
model and the BIM object classification model and use the 
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two inputs to generate the required semantic enrichment outputs.  

 
Figure 2 The annotated flow diagram for the system model  
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Figure 3 The PointNet Geometric Feature Extraction Model Architecture (Adapted from Qi et al., 2017) 

 
Figure 4 The flow diagram for the relational feature extraction using the Graph Neural Network Transformer 

model 
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Figure 5 The flow diagram for the semantic enrichment layer

3. Results and Discussion 
The case study IFCNet dataset used has 95160 BIM object 
samples with 20 different BIM object classes as shown in 
Table 1.  The pie chart showing the imbalanced data 
samples distribution among the 20 BIM object classes 
before the data balancing  is applied is shown in Figure 6 
while balanced BIM object class distribution is shown in 

Figure 7. In the balanced dataset, a total of 12,000 data 
samples are used with each of the 20 BIM object classes 
having 600 data samples. Essentially, the original dataset 
was under sampled to ensure that each of the 20 data 
classes is equally represented in the balanced dataset used 
for the model training and validation.  
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In addition, the work considered semantic enrichment 
which also depended on the outputs from both the BIM 
object classification model and the feature fusion model. 
With the two inputs knowledge graph was created along 
with semantic database which enables query to be used to 
elicit the relational information and element’s class 
information from the semantic database. The ideas 
presented in this work is very essential to enhance 
collaboration among the various stakeholders always 
involved in building project lifecycle.  
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