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Abstract— In this work, determination of 
optimal yield for Palm Kernel Oil (PKO) extraction 
machine using Random Forest Regression (RFR) 
model is presented. The study utilized 5000 data 
records of a case study 10-ton PKO extractor 
machine in Uyo, Akwa Ibom State, Nigeria for the 
model training and validation. Also, SHAP 
(SHapley Additive exPlanations) feature 
importance approach was used to evaluate the 
importance ranking of each of the three input 
features to the RFR model.  The results show that 
moisture content with feature importance ranking 
of 0.16 has the highest impact on the RFR model 
prediction while the Cone gap with feature 
importance ranking of 0.137 has the lowest 
impact. Also, the model perdition had Mean 
Absolute Error (MAE) of 1.0678 x 𝟏𝟎ି𝟏𝟓  and Mean 
Squared Error (MSE) of 2.14306 x 𝟏𝟎ି𝟑𝟎 which are 
very small (negligible) hence the coefficient of 
correlation between the actual and the predicted 
results was 1. Furthermore, the results showed 
that the highest oil yield of 43.4 % occurred at 
shaft speed of 18 rpm, cone gap of 1.5 mm and 
moisture content of 8 %. It means that for 
maximum PKO, the case study PKO extractor 
machine should be operated with the input 
settings as specified in the RFR model optimal 
solution result. 

Keywords— Optimal Yield, Palm Kernel Oil 
Extraction Machine, SHAP (SHapley Additive 
exPlanations), Optimization Model, Random   
Forest Regression Model, Feature Importance 

 
1. Introduction 

In recent years, there has been increasing adoption 
of Artificial Intelligence (AI) in different sectors [1,2]. The 
AI approach enables accurate modelling of systems, 
devices, or events, by relying on historical data pertaining 

to the case study systems, devices, or event [3,4,5]. The AI 
model has proven in many cases to be more efficient and 
accurate than the conventional analytical models [6,7]. As 
such, researchers are increasingly relying on various types 
of AI models for characterizing their case study systems, 
devices, or events [8,9].    

Due to the growing adoption of the AI model, the 
industrial sector is increasingly applying the AI solution to 
optimize their machines and system, increasing their 
productivities and cutting down cost [10,11,12]. In any 
case, the AI models are data intensive, requiring large 
volume of data records for effective modelling of the case 
study system [13,14,15]. In view of this requirement, AI 
solutions have also ignited a new trend whereby different 
industries keep track of their operations, system 
configurations, productivity, and maintenance and 
inventory data for application in data driven model 
development. 

In this study, the application of Random Forest 
Regression (RFR) model in the determination of optimal 
palm kernel oil (PKO) yield of a PKO extractor machine is 
presented [16,17,18]. The study aims at determining the 
specific input parameters setting that gives the optimal 
PKO yield for the case study machine. The outcome of such 
study will enhance productivity, minimize waste and 
improve on the revenue and profit accruing from the   case 
study machine.  

 
2. Methodology 

This work presents detailed theoretical model that 
underscores the prediction of palm kernel oil (PKO) 
extractor machine yield using Random Forest Regressor 
(RFR) model while focusing on feature importance analysis 
and capturing non-linear interactions. A comprehensive 
understanding of the underlying relationships between the 
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