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Abstract— While 5G networks are still being 
constructed in many parts of the world, the 
conversation has already shifted toward sixth-
generation (6G) wireless systems, a leap that 
promises unprecedented speed, responsiveness, 
and connectivity. To meet the demands of sub-
millisecond latency, multi-terabit-per-second 
(Tbps) data rates, and ultra-dense device 
deployments, existing spectrum resources are no 
longer sufficient. This has turned global attention 
to the terahertz (THz) band (0.1–10 THz), a largely 
unexploited spectral frontier with the potential to 
unlock vast bandwidths. Yet, the THz band is not 
without its constraints. Severe free-space path 
loss, high molecular absorption, and limited 
transmission range pose significant challenges to 
its practical deployment. This paper presents an 
analytical estimate of the channel capacity of THz 
communication systems under the high-humidity, 
tropical conditions of Southern Nigeria (27°C, 88% 
RH). The findings reveal a trade-off between 
bandwidth and range, severely exacerbated by 
molecular absorption. The analysis demonstrates 
that while the 1.5 THz band is rendered practically 
unusable beyond 10 meters, the 300 GHz band 
deliver up to 56.6 Gbps at 10 meters and 
maintains a viable link greater than 1 Gbps up to 
60 meters. A key finding of this work is the 
quantification of extreme SNR decay, measured at 
28.8 dB/decade for 300 GHz and a prohibitive 
130.7 dB/decade for 1.5 THz, confirming that 
molecular absorption is the dominant impairment 
beyond free-space loss. The study concludes that 
the 300-600 GHz spectrum is the most viable 
window for short-range, high-density 6G 
applications in tropical climates. To overcome the 
inherent limitations, it is strongly recommended 
that 6G deployments in such environments 
integrate advanced beamforming with Ultra-
Massive MIMO (UM-MIMO), Reconfigurable 
Intelligent Surfaces (RIS) for path loss mitigation, 
and hybrid network architectures that synergise 
THz small cells with robust fibre and mmWave 
backhaul. 
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networks, channel capacity, molecular absorption, 
and high-density applications  

 

1. Introduction 

Living in a time where digital experiences are evolving 
faster than ever, from holographic telepresence that 
brings distant people into the same room, to extended 
reality (XR) that blurs the line between the physical 
and the virtual worlds, and the ever-expanding 
Internet of Everything (IoE) that will connect billions of 
devices in real time [1]. These innovations aren’t just 
futuristic dreams anymore; they seem to be knocking 
on our door. With expectations of delivering peak data 
rates beyond one terabit per second (Tbps) [2], near-
instantaneous latency measured in fractions of a 
millisecond, and the ability to support ultra-dense 
device ecosystems, 6G is poised to redefine 
connectivity as we know it. Achieving these ambitious 
goals, however, means venturing into new spectral 
territory, beyond the familiar millimetre wave 
(mmWave) bands. 

That’s where the terahertz (THz) band comes into 
play. Stretching from 0.1 to 10 THz, it is believed that 
this spectrum will offer vast, contiguous bandwidths 
that could unlock the kind of data rates 6G demands. 
But it’s not all smooth sailing. THz signals are said to 
face steep hurdles: intense free-space path loss, 
significant atmospheric molecular absorption, and the 
current limitations of transceiver hardware [3]. 

To truly understand whether THz can rise to the 
occasion, we need a deep dive into its channel 
capacity, how much data it can realistically carry 
under real-world conditions. This paper takes on that 
challenge, laying the groundwork for assessing THz’s 
potential in powering the high-density, high-
performance future of 6G. 

 
2. Review of Related Works 

Analytical modelling of channel capacity in the 
terahertz band has emerged as a critical research 
area as 6G networks push towards terabit-per-second 
(Tbps) data rates. Classical Shannon capacity 
models, while foundational, require adaptation to 
account for THz-specific impairments such as 
molecular absorption, frequency-dependent path loss, 
and non-Gaussian noise [4] and [5], Reference [6] 
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emphasized that THz channels exhibit unique noise 
characteristics due to absorption-induced fluctuations, 
which must be integrated into capacity calculations to 
avoid overestimation. 

Several studies have proposed modified capacity 
formulas that incorporate stochastic fading models 
tailored to THz propagation. Authors in [7] validated 
the fluctuating two-ray (FTR) model for indoor THz 
environments, showing improved accuracy over 
Rayleigh or Rician assumptions. Reference [8] 
introduced hybrid statistical models that combined 
deterministic path loss with probabilistic fading, 
offering a more realistic basis for capacity estimation. 
These models are particularly relevant for short-range 
indoor deployments, where multipath effects and 
material interactions dominate. 

Molecular absorption not only attenuates signal 
strength but also introduces absorption-induced noise, 
which can degrade spectral efficiency if not properly 
modelled [4] and [9]. Accurate atmospheric modelling 
is therefore essential. Comparative assessments by 
[9] and [10] revealed that small deviations in 
environmental parameters such as humidity and 
temperature can significantly affect capacity 
predictions, underscoring the need for precise 
simulation tools and real-time environmental sensing. 

Advanced modelling frameworks now incorporate 
multi-antenna systems and spatial multiplexing. [11] 
explored MIMO configurations in THz bands, showing 
that large antenna arrays can partially compensate for 
path loss and improve ergodic capacity. [12] extended 
this by proposing adaptive beamforming algorithms 
that dynamically optimize link capacity in mobile THz 
environments. These techniques are particularly 
promising for high-density urban deployments, where 
spatial diversity can be exploited. Simulation-based 
studies have also contributed to analytical 
assessments. For example, [13] modelled near-field 
THz propagation and highlighted the limitations of far-
field assumptions in mobile scenarios. While [14] 
integrated RIS and UAV platforms into their models, 
showing that intelligent surfaces can reshape channel 
conditions and enhance capacity under blockage and 
mobility constraints. Reference [15] demonstrated that 
large-area programmable metasurfaces can 
dynamically manipulate THz wavefronts, improving 
ergodic and outage capacity in realistic environments. 

In addition to propagation and hardware challenges, 
waveform design is said to play a role in capacity 
optimisation. Traditional schemes like OFDM are said 
to struggle with Doppler shifts and frequency 
selectivity in THz channels. Emerging formats such as 
orthogonal time frequency space (OTFS), orthogonal 
delay-Doppler division multiplexing (ODDM), and 
affine frequency division multiplexing (AFDM) offer 
improved robustness in high-mobility scenarios [16] 
and [17]. These innovations complement analytical 

models by enabling more efficient use of available 
spectrum.  

The literature converges on the need for hybrid 
analytical models that combine empirical channel 
measurements, stochastic fading distributions, and 
deterministic absorption profiles. These models will 
form the basis for accurate capacity estimation and 
system-level optimisation in THz-operated 6G 
networks. However, gaps remain in large-scale 
dataset availability, unified simulation frameworks, 
and scalable deployment strategies, all of which must 
be addressed to unlock the full potential of THz 
communications. This work analytically evaluates a 
realistic, non-technology-enhanced channel capacity 
of the terahertz frequency band vis-à-vis the tropical 
terrain-specific weather conditions.   

3. Methodology. 
To analytically assess the channel capacity in the 
terahertz band for 6G high-density applications. The 
following steps were deployed for selected 
frequencies of 300 GHz, 600 GHz, 1 THz, 1.2 THz 
and 1.5 THz. 

3.1 Computation of Parameters 

The pathloss at different distances is generally 
calculated using the model given in (1) [18], [19], [20] 
and [21]. 

𝑃𝐿஼ூሺ𝑑ሻ ൌ 𝑃𝐿ሺ𝑑௢ሻ ൅ 𝑛10𝑙𝑜𝑔ଵ଴ ቀ
ௗ

ௗ೚
ቁ ൅ 𝑋ఙ  (1) 

Where  𝑃𝐿஼ூሺ𝑑ሻ  is the pathloss at distance 𝑑  (dB), 
𝑃𝐿ሺ𝑑௢ሻ is the pathloss at a reference distance 𝑑௢ (dB), 
𝑋ఙ is the log-normal shadow fading term, 𝑛 is the path 
loss exponent, and  
𝑑௢ is the reference distance taken as one meter in this 
work. For easy analytical evaluation, (2) was 
considered.  
 
3.1.1. Determination of pathloss at a 
distance ሺ𝒅ሻ. 
Pathloss can be represented conveniently by a 
stochastic large-scale model of (2), which 
compensates for shadowing and molecular absorption 
[6] and [22].  (2) was deployed in this analysis. 

𝑃𝐿ௗ஻ሺ𝑑ሻ ൌ 20𝑙𝑜𝑔ଵ଴ሺ𝑓ሻ ൅  20𝑙𝑜𝑔ଵ଴ሺ𝑑ሻ ൅ 32.4 ൅
 𝐾௔௕௦ሺ𝑓ሻ. 𝑑 ൅ 𝑋ఙ   (2) 

where, 
𝑃𝐿ௗ஻ሺ𝑑ሻ Pathloss from transmitter to receiver at the 
distance 𝑑 in dB. 
𝑑 is the distance from the transmitter in metres. 
𝑓 is the frequency of transmission in Hertz. 
𝐾௔௕௦ሺ𝑓ሻ. 𝑑 is the absorption loss and 
𝑋ఙ is the shadow fading. 
3.1.2. Computation of the absorption loss for the 
terahertz frequencies.  
Taking into consideration the respective frequencies 
(300 GHz, 600 GHz, 1 THz, 1.2 THz and 1.5 THz ),  at 
distances from ten meters to two hundred meters,  at 
temperature of 27 degrees centigrade, relative 
humidity (RH) (%) of 88% [23] as reported by NIMET 
[24], and sea level pressure of 1013.25 hPa [24], the 
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Therefore, THz communications will not 
replace existing technologies but will instead become 
a vital component of a heterogeneous 6G network 
architecture, providing the ultimate solution for 
localised, ultra-high-speed connectivity. Future work 
must focus on experimental validation of these models 
in real-world tropical settings and the development of 
efficient resource allocation algorithms for THz-based 
ultra-dense networks. 

This study provides essential foundation and 
a clear set of design guidelines for network engineers 
and policymakers aiming to harness the terahertz 
spectrum for the future of wireless communication in 
Nigeria and similar tropical regions. 
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