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Abstract— In this work, data augmentation for 

palm kernel oil  (PKO) extraction machine model 
development using Generative Adversarial 
Network (GAN) approach is presented. The 
essence of the study is to address the problem of 
paucity of data in situations where empirical data 
collection is expensive for data-driven modelling; 
a situation that is prevalent in many industrial 
setups. The case study Palm Kernel Oil (PKO) 
extraction machine has only 125 data records 
whereas over 1000 data records are required for 
effective machine learning modeling of the 
machine’s performance. The parameters of the 
PKO extractor machine considered are moisture 
content, oil yield, shaft speed and cone gap.  The 
results show that the original dataset (with 125 
data records) and the GAN augmented dataset 
(with 5000 data records) have the same correlation 
results with shaft speed having the highest 
correlation coefficient of 0.71 with respect to the 
oil yield in both datasets (the original and 
augmented datasets), the moisture content has 
correlation coefficient of -0.11 with respect to the 
oil yield in both datasets, while the cone gap has 
the least correlation coefficient of -0.056 with 
respect to the oil yield in both datasets. Also, at 95 
% confidence level there is no significant 
difference between the mean of the original and 
augmented datasets for each of the four 
parameters since the confidence interval of the 
augmented dataset contains the mean of the 
original dataset for each of the four parameters. 
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1. Introduction 
Nowadays, there is growing adoption of precision and 

smart technologies in virtually every discipline [1,2,3]. The 
precision and smart concepts have also permeated the 
industrial sector where data driven approaches are used in 
conjunction with artificial intelligent models to characterize 
the behavior and operations of industrial machines and 
systems [4,5,6]. In many cases, the needed data for studying 
a given case study machine is grossly insufficient requiring 
that additional data must either be acquired through 
empirical means or through data augmentation [7,8,9]. In 
the cases where empirical data collection is expensive, data 
augmentation becomes the best option [10,11].  

In data augmentation, the sample original dataset is 
employed to generate additional data items that maintains 
the same statistical features are the original dataset [12,13]. 
There are several ways that such synthetic data can be 
generated however the performance of each approach can 
be assessed using different statistical measures [14,15]. The 
statistical parameters like mean, standard deviation, 
confidence interval, among other features are used and the 
goal is to ensure that the synthesized data records 
accurately maintains the pattern of the original dataset.  

Accordingly, in this study, the data records empirically 
acquired for a 10-ton palm oil extractor machine is studied. 
The 125-record dataset was used in a Generative 
Adversarial Network (GAN) model to generate thousands 
of additional data records and the results are evaluated to 
assess the effectiveness of the GAN model is replicating the 
original data records of the PKO extractor machine [16,17]. 
The results obtained in such study is relevant in machine 
learning modeling of the PKO extractor machine with focus 
on prediction and optimization of the oil yield of such 
machine. 
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2. Methodology 
In this work, data augmentation is carried out for palm 

kernel oil extraction machine using available data on four 
parameters empirically acquired from the case study 
machine. The parameters considered are moisture content, 
oil yield, shaft speed and cone gap. The available dataset 
has about 125 rows of data with each of the four parameters 
present. However, for machine learning model, several 
hundreds of data records are required. This is because: 

i. The machine learning models require a significant 
amount of data to learn complex patterns and 
avoid overfitting. 

ii. With 125 rows, splitting into training and 
validation sets would leave very few samples for 
learning and testing. 

So, this study presents an approach to conduct the required 
data augmentation to generate additional data records which 
maintain the same pattern as the original dataset. 
Specifically, Generative Adversarial Networks (GANs) is 
used to augment the dataset by generating synthetic data 
that follows the same distribution as the original data. 
2.1 How Generative Adversarial Networks (GANs)  

Work  
The GAN model architecture is shown in Figure 1. 

The architecture shows that the GAN model has a data 
sample Generator and data sample Discriminator. The 
Generator is train with the case study data records such that 

it can randomly generate sample data records that fits the 
patterns present in the actual data records. At the same 
time, the Discriminator tries to identify the data sample 
generated by the Generator as fake. At the initial time, the 
Discriminator will easily identify the generated data records 
as fake but as the training continues, the Generator masters 
the data pattern and then generates random data samples 
which cannot be identified as fake by the Discriminator. In 
this way, the GAN model can be used to generate the 
required data records which are good representation of the 
machine operation settings without being empirically 
measured. 

i. A GAN consists of two neural networks: 
a) Generator (G): Creates synthetic data 

points. 
b) Discriminator (D): Distinguishes between 

real and synthetic data. 
ii. They are trained in a min-max game: 

a) The Generator tries to produce realistic 
data. 

b) The Discriminator tries to identify 
whether the data is real or synthetic. 

iii. The training continues until the Discriminator can 
no longer distinguish between real and synthetic 
data, ensuring high-quality synthetic data 
generation. 

 
Figure 1 The GAN model architecture 

2.2 Analytical procedure employed in the GAN for Data 
Augmentation  

a) Step 1: Data Preparation 
i. Normalize the data to a range suitable for neural 

networks (e.g., [0, 1]). 
ii. Arrange the dataset with input features: 

a) Main Shaft Speed (rpm) 
b) Cone Gap (mm) 
c) Moisture Content (%) 

iii. Output feature: Oil Yield 
b) Step 2: GAN Architecture 

i. Generator (G): 
a) Input: Random noise vector 𝑧 sampled 

from a Gaussian distribution. 

b) Output: Synthetic data which maintains 
the same pattern as the original dataset. 

c) Activation Function: ReLU for hidden 
layers, Tanh for output layer. 

ii. Discriminator (D): 
a) Input: Real or synthetic data point. 
b) Output: Probability of the data point 

being real. 
c) Activation Function: Leaky ReLU for 

hidden layers, Sigmoid for output layer. 
c) Step 3: Loss Functions and Training 

i. Generator Loss (G-Loss): 

𝐿ீ ൌ െ log ቀ𝐷൫𝐺ሺ𝑧ሻ൯ቁ        (1) 
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This maximizes the probability of the 
Discriminator classifying the synthetic data as 
real. 

ii. Discriminator Loss (D-Loss): 

𝐿஽ ൌ െ ቂlogሺ𝐷ሺ𝑥ሻሻ ൅ log ቀ1 െ 𝐷൫𝐺ሺ𝑧ሻ൯ቁቃ         (2) 

This minimizes the probability of 
misclassification. 

iii. Training Process: 
a) Step 1: Train the Discriminator on real 

and synthetic data. 
b) Step 2: Train the Generator to produce 

more realistic synthetic data. 
c) Repeat until the Discriminator can't 

distinguish real from synthetic data. 
d) Step 4: Data Augmentation and Evaluation 

i. Generate synthetic samples until the dataset size 
is significantly increased (e.g., from 125 to 5000 
rows). 

ii. Combine the synthetic data with the original 
data for training the machine learning models. 

iii. Validate the augmented dataset using: 
a) t-SNE visualization to check for realistic 

distribution overlap between real and 
synthetic data. 

b) Statistical tests (e.g., KS Test) to ensure 
the augmented data follows the same 
distribution as the original data. 

2.3 Implementation of GAN in Python 
The models presented in the Equations 1 and 2 

were implemented. The following hyperparameters were 
tuned and their impacts are discussed below: 

Noise Dimension: The is part of the input which 
represents the latent space. It introduces randomness and 
diversity in the generated data. A larger noise dimension 
provides more variation, potentially generating more 
diverse samples. However, if too large, it might lead to 
overfitting or difficulty in learning a smooth mapping from 
noise to data space. Conversely, a small value might restrict 
diversity, leading to mode collapse (where the generator 
produces limited variations). In this work, a noise 
dimension of 100 was selected. 

Learning Rate: It controls the step size for 
updating model weights during backpropagation. It also 
balances the speed and stability of training. If the learning 
rate is too high, the model might overshoot the optimal 
solution, leading to instability and failure to converge. If 
too low, the model may converge slowly or get stuck in 
local minima. The generator is trained at a low learning rate 
while the discriminator has slightly higher learning rate. 

This ensures the discriminator does not become too 
powerful too quickly, allowing the generator to learn 
effectively. In this work, the generator learning rate of 1𝑒ିସ 
was selected while 1𝑒ି଼ was selected for discriminator. 
Batch Size: The batch size impacts gradient estimation and 
model stability. In this work, batch size of 64 was selected. 

Label Smoothing: Instead of using 1 for real and 0 
for fake, labels are smoothed to 0.9 for real data. This 
prevents the discriminator from becoming too confident and 
reduces the risk of overfitting in the discriminator. Makes 
the GAN training more stable by preventing the 
discriminator from overpowering the generator. In this 
work 0.9 was selected for label smoothening. 

Number of Epochs: In this work, 10000  epochs 
was selected. The summary of the GAN model’s 
hyperparameters and their values are presented in Table 1. 

Table 1: The summary of the GAN model’s 
hyperparameters and their values 

Hyperparameter Value 
Noise dimension 100 
Discriminator learning rate 1𝑒ି଼ 
Generator learning rate 1𝑒ିସ 
Batch size 64 
Label smoothening 0.9 
Number of Epochs 10000 

 
3. Results and Discussion 

The results in Table 2 and Figure 2 are for the 
GAN model. The results in Table 2 and Figure 2 show that 
between the 1௦௧ െ 1000௧௛  epochs, the generator struggled 
to fool the discriminator on synthetic data. However, from 
2000௧௛  and above (after sufficient training) the negative 
value trend on the generator loss shows that the generator 
got too confident in fooling the discriminator on synthetic 
data. 

Table 2: Discriminator losses and Generator losses 
Epoch Discriminator loss Generator loss 

0 8.6726 0.0639 
1000 20.4780 -12.1951 
2000 85.2671 -76.3618 
3000 227.6830 -220.3845 
4000 468.8762 -464.8153 
5000 816.1927 -819.8204 
6000 1305.7658 -1289.1628 
7000 1922.7521 -1906.0122 
8000 2627.3137 -2581.6962 
9000 3558.2502 -3467.1650 
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CI of the augmented dataset contains the 
mean of the original dataset. 

3.3.2   Cone Gap 
i. Mean of reference dataset: 1.500000 

ii. Original 95% CI: 
(np.float64(1.3743155869127142), 
np.float64(1.6256844130872858)) 

iii. Augmented 95% CI: 
(np.float64(1.4997274536735585), 
np.float64(1.5388725463264417)) 

iv. t-Test: t-statistic = -0.30186424514155114, 
p-value = 0.7627678062512935 

v. The interpretation: At 95 % confidence 
level there is no significant difference 
between the mean of the original and 
augmented data on Cone Gap since the CI 
of the augmented dataset contains the mean 
of the original dataset. 

 
3.3.3   Moisture Content 

i. Mean of reference dataset: 10.000000 
ii. Original 95% CI: 

(np.float64(9.497262347650857), 
np.float64(10.502737652349143)) 

iii. Augmented 95% CI: 
(np.float64(9.942439498979542), 
np.float64(10.099160501020457)) 

iv. t-Test: t-statistic = -0.0812601013849461, p-
value = 0.9352382777896682 

v. The interpretation: At 95 % confidence level 
there is no significant difference between the 
mean of the original and augmented data on 
Moisture Content since the CI of the 
augmented dataset contains the mean of the 
original dataset. 

3.3.4   Oil Yield  
i. Mean of reference dataset: 38.879200 

ii. Original 95% CI: 
(np.float64(38.443576759585724), 
np.float64(39.31482324041427)) 

iii. Augmented 95% CI: 
(np.float64(39.08372920353116), 
np.float64(39.21639079646883)) 

iv. t-Test: t-statistic = -1.249358713788711, p-
value = 0.21159097979058905 

v. The interpretation: At 95 % confidence level 
there is no significant difference between the 
mean of the original and augmented data on 
Oil Yield since the CI of the augmented 
dataset contains the mean of the original 
dataset. 

4. Conclusion 
An approach to synthetically generate additional 

data items based on available original data is presented. In 

this case, the Generative Adversarial Network (GAN) 
approach is used to generate additional data for a case study 
palm kernel oil extraction machine. The study is conducted 
due to the paucity of original dataset for carrying out 
machine learning-based modeling of the machine 
performance. Hence, the GAN model was used to generate 
a dataset with about 5000 data records which maintained 
the same pattern and arithmetic mean as the original 125 
data records. This approach is cost effective when 
compared with empirical data collection for different 
machine configurations that will usually require materials, 
time and labour which together amounts to high cost of data 
collection.   

 
References 

1. Mhlongo, S., Mbatha, K., Ramatsetse, B., & 
Dlamini, R. (2023). Challenges, opportunities, and 
prospects of adopting and using smart digital 
technologies in learning environments: An 
iterative review. Heliyon, 9(6). 

2. Mittal, S., Khan, M. A., Romero, D., & Wuest, T. 
(2019). Smart manufacturing: Characteristics, 
technologies and enabling factors. Proceedings of 
the Institution of Mechanical Engineers, Part B: 
Journal of Engineering Manufacture, 233(5), 
1342-1361. 

3. Oosthuizen, R. M. (2022). The fourth industrial 
revolution–smart technology, artificial 
intelligence, robotics and algorithms: Industrial 
psychologists in future workplaces. Frontiers in 
artificial intelligence, 5, 913168. 

4. Trakadas, P., Simoens, P., Gkonis, P., Sarakis, L., 
Angelopoulos, A., Ramallo-González, A. P., ... & 
Karkazis, P. (2020). An artificial intelligence-
based collaboration approach in industrial iot 
manufacturing: Key concepts, architectural 
extensions and potential 
applications. Sensors, 20(19), 5480. 

5. Peres, R. S., Jia, X., Lee, J., Sun, K., Colombo, A. 
W., & Barata, J. (2020). Industrial artificial 
intelligence in industry 4.0-systematic review, 
challenges and outlook. IEEE access, 8, 220121-
220139. 

6. Wan, J., Li, X., Dai, H. N., Kusiak, A., Martinez-
Garcia, M., & Li, D. (2020). Artificial-
intelligence-driven customized manufacturing 
factory: key technologies, applications, and 
challenges. Proceedings of the IEEE, 109(4), 377-
398. 

7. Ding, J., Li, X., Kang, X., & Gudivada, V. N. 
(2019). A case study of the augmentation and 
evaluation of training data for deep 
learning. Journal of Data and Information Quality 
(JDIQ), 11(4), 1-22. 



Journal of Multidisciplinary Engineering Science and Technology (JMEST) 
ISSN: 2458-9403 

Vol. 11 Issue 10, October - 2024 

www.jmest.org 
JMESTN42354569 17711 

8. Bansal, M. A., Sharma, D. R., & Kathuria, D. M. 
(2022). A systematic review on data scarcity 
problem in deep learning: solution and 
applications. ACM Computing Surveys 
(Csur), 54(10s), 1-29. 

9. Lemley, J., Bazrafkan, S., & Corcoran, P. (2017). 
Smart augmentation learning an optimal data 
augmentation strategy. Ieee Access, 5, 5858-5869. 

10. Mumuni, A., & Mumuni, F. (2022). Data 
augmentation: A comprehensive survey of modern 
approaches. Array, 16, 100258. 

11. Nanni, L., Paci, M., Brahnam, S., & Lumini, A. 
(2021). Comparison of different image data 
augmentation approaches. Journal of 
imaging, 7(12), 254. 

12. Fazekas, B., & Kiss, A. (2018, August). Statistical 
data generation using sample data. In European 
Conference on Advances in Databases and 
Information Systems (pp. 29-36). Cham: Springer 
International Publishing. 

13. Lu, Y., Shen, M., Wang, H., Wang, X., van 
Rechem, C., Fu, T., & Wei, W. (2023). Machine 
learning for synthetic data generation: a 
review. arXiv preprint arXiv:2302.04062. 

14. Figueira, A., & Vaz, B. (2022). Survey on 
synthetic data generation, evaluation methods and 
GANs. Mathematics, 10(15), 2733. 

15. Alaa, A., Van Breugel, B., Saveliev, E. S., & Van 
Der Schaar, M. (2022, June). How faithful is your 
synthetic data? sample-level metrics for evaluating 
and auditing generative models. In International 
conference on machine learning (pp. 290-306). 
PMLR. 

16. Antoniou, A., Storkey, A., & Edwards, H. (2017). 
Data augmentation generative adversarial 
networks. arXiv preprint arXiv:1711.04340. 

17. Biswas, A., Md Abdullah Al, N., Imran, A., 
Sejuty, A. T., Fairooz, F., Puppala, S., & Talukder, 
S. (2023). Generative adversarial networks for data 
augmentation. In Data Driven Approaches on 
Medical Imaging (pp. 159-177). Cham: Springer 
Nature Switzerland. 

 


