
Journal of Multidisciplinary Engineering Science and Technology (JMEST)
ISSN: 2458-9403

Vol. 12 Issue 4, April - 2025

www.jmest.org
JMESTN42354560 17609

EVALUATION OF SOFTWARE BUG DETECTION USING RANDOM FOREST AND
LOGISTIC REGRESSION CLASSIFIER

Nwachukwu-Nwokeafor Kenneth C1

Department of Computer Engineering,

Michael Okpara University of Agric, Umudike,
Nwachukwu.nkenneth @mouau.edu.ng, nwachukwuken72@gmail.com

Simeon Ozuomba2

Department of Computer Engineering,
University of Uyo, Akwa Ibom, Nigeria

simeonoz@yahoomail.com , simeonozuomba@uniuyo.edu.ng

Philip Asuquo3

Department of Computer Engineering,
University of Uyo, Akwa Ibom, Nigeria

philipasuquo@uniuyo.edu.ng

Stephen Bliss U.4

Department of Computer Engineering,
University of Uyo, Akwa Ibom, Nigeria

blissstephen@uniuyo.edu.ng

Abstract— The focus in this work is to provide
efficient machine learning models that can be
used to minimize or entirely eliminate bugs from
software solution before they are deployed to the
end users. Specifically, the Random Forest model
(RFM) and the Logistic Regression Model (LRM)
were considered in the study. The study used
historical software metrics dataset obtained from
the NASA Metrics Data Program (MDP) repository.
The models were trained and evaluated for the
baseline case without data balancing and also for
the case were data balancing was implemented
using Adaptive Synthetic Sampling (ADASYN).
The results show that the RFM has higher
prediction accuracy than the LRM. The prediction
accuracies for the baseline were 73.68 % and
90.01% for the LRM and the RFM respectively.
Equally, the prediction accuracies for the case
with ADASYN-based data balancing were 85.05 %
and 92.53% for the LRM and the RFM respectively.
Hence, in respect of the prediction accuracy, the
RFM with data balancing is recommended for the
software bug detection in the case study dataset.
However, the LRM has lower training time than the
RFM in both cases. The training time of the RFM
is about 18 times the training time of the LRM in
the baseline case and about 31 times the training
time of the LRM in the case with data balancing. In
this wise, hybrid model that can take advantage of
the low training time of the LRM and the high
prediction accuracy of the RFM is recommended
as topic for further studies.

Keywords— Software Bug Detection, Random
Forest Model, Logistic Regression Classifier,
Adaptive Synthetic Sampling (ADASYN), Data
balancing

1. INTRODUCTION

Over the years, software development processes
and tools have improved with much focus on meeting the
growing demand for high quality software solutions that are
devoid of bugs [1,2]. Software bugs are such errors or flaws
which can cause a software to deviate from it intended
output or operation [3,4]. In some cases, software bug can
cause minor damages but in some other cases the
consequences of software bugs are so high resulting in life
threatening situation, very high financial losses, and costly
law suits [5,6]. In practice, software developers try as much
as possible to detect and eliminate all possible bugs in a
software solution before deployment [7,8]. However, it is
always very difficult to achieve that by relying on manual
checking of the software artifacts [9,10,11].

Consequently, over the years, several approaches
and tools have been developed to facilitate efficient
software bug detection [12]. One of such approaches in the
present day is the use of machine and deep learning models
for the detection or prediction of software bug [13,14]. The
approach relies on the availability of historical dataset of
the software artifacts. In addition, the performance of the
models depends on a number of factors one of which is the
highly imbalance nature of the software bug dataset.
Accordingly, experts are relying on effective data balancing
methods for the enhancement of the software prediction
models [15,16]. Consequently, in this study, the Random
Forest Model (RFM) and the Logistic Regression Model
(LRM) are considered for software bug detection while the
Adaptive Synthetic Sampling (ADASYN) is used for the
data balancing [17,18,19]. The performance of the models
in the baseline case without data balancing and in the case
where the ADASYN-based data balancing are performed.
In both cases, the training time is also considered to assess
both prediction performance and the latency of the model.
In all, the study use the key performance parameters to

Journal of Multidisciplinary Engineering Science and Technology (JMEST)
ISSN: 2458-9403

Vol. 12 Issue 4, April - 2025

www.jmest.org
JMESTN42354560 17610

recommend the most suitable model for the software bug
detection.

2. METHODOLOGY

The focus in this work is to use the Random Forest
model (RFM) and then, the Logistic Regression Model
(LRM) for detecting software bug based on the features
present in a software bug dataset. The details of the dataset,
the pre-processing and model training are presented in this
section while section 3 presents the results of the model
software bug predictions as well as the performance
evaluation. The key components in this study are listed as
follows:

(i) Data acquisition and description
(ii) Description of the software bug detection machine

learning models: the Random Forest model (RFM)
and the Logistic Regression Model (LRM)

(iii) Description of the data balancing approach: the
Adaptive Synthetic Sampling (ADASYN)

(iv) Comparison of the performance of the two selected
software bug detection models in the case of
imbalanced data and in the case of balanced dataset

2.1 DATA ACQUISITION AND DESCRIPTION

The study used historical software metrics dataset
obtained from the NASA Metrics Data Program (MDP)
repository which is commonly used for predicting whether
a software has defect or not. The target variable in the
dataset is binary in nature, denoting whether a software
module is fault-prone or non-fault-prone. The dataset is
divided into various .arff files (example, CM1.arff,
JM1.arff, KC1.arff, among others). The dataset is
imbalanced and it also has so many features. Data
balancing was done using the Adaptive Synthetic Sampling
(ADASYN) method presented in section 2.3.

2.2 DEVELOPMENT OF THE MACHINE
LEARNING MODELS FOR SOFTWARE BUG
PREDICTION

2.2.1 Development of the Random Forest Model
(RFM) for Software Bug Prediction

Random Forest Model (RFM) is an ensemble-
based machine learning algorithm which combines the
predictions of multiple decision trees to deliver robust and
accurate results. In classification tasks such as imbalanced
class problems, it is known for its resistance to overfitting
and its ability to model complex decision boundaries. The
decision tree in the RFM works by recursively partitioning
the feature space using axis-aligned splits to minimize an
impurity metric (Gini index in this research). Each split
aims to improve class homogeneity. Given a dataset:

𝐷 ൌ ቄ൫𝑥ሺ௜ሻ, 𝑦ሺ௜ሻ൯ | 𝑥ሺ௜ሻ ∈ 𝑅ௗ, 𝑦ሺ௜ሻ ∈ ሼ0, 1ሽቅ, 𝑖 ൌ 1, 2, 3, … , 𝑛,

where 𝑥ሺ௜ሻ ൌ ൣ𝑥ଵ
ሺ௜ሻ, 𝑥ଶ

ሺ௜ሻ, 𝑥ଷ
ሺ௜ሻ, … , 𝑥ௗ

ሺ௜ሻ൧ is a feature vector and
𝑦ሺ௜ሻ is the class label. To build a Decision Tree, at each

internal node 𝑁, we seek the feature 𝑗 and threshold 𝑡 that
minimizes an impurity criterion 𝐼, such as the Gini Index
where:

𝐺𝑖𝑛𝑖ሺ𝑆ሻ ൌ 1 െ ሺ∑ 𝑝௞
ଶ௄

௞ୀଵ ሻ (1)

Where, 𝑝௞ is the proportion of sample in class 𝑘 in subset 𝑆.
Given the high variance of individual decision trees, RF
introduces Bootstrap Aggregating (Bagging), where
multiple trees are trained on bootstrap samples. Bootstrap
sample 𝐷௕ ⊆ 𝐷 is performed using sample with
replacement for every bootstrap tree 𝑇௕ and a decision tree
is fitted on 𝐷௕ with some randomization. The RF model
prediction, 𝑦ොሺ𝑥ሻ is based on voting by majority as follows:

𝑦ොሺ𝑥ሻ ൌ 𝑚𝑜𝑑𝑒ሺሼℎ௕ሺ𝑥ሻሽ௕ୀଵ
஻ ሻ (2)

Where, ℎ௕ሺ𝑥ሻ is the prediction of the 𝑏௧௛ tree and 𝐵 is the
number of trees. Variance in the model output is minimised
by using bagging approach. The analytical expression for
bagging is given as;

𝑉௔௩௚ ൌ 𝜌𝑉௜௡ௗ௜௩ ൅
ଵିఘ

஻
𝑉௜௡ௗ௜௩ (3)

Where, 𝑉௔௩௚ is the average variance, 𝑉௜௡ௗ௜௩ is the individual
variance, 𝜌 is the average pairwise correlation between the
base learners.

The strength of RFM lies in reducing ρ through
feature randomization. At each split within a decision tree
in RFM, only a random subset of features is considered.
This further de-correlate the trees and avoids overfitting.
For a node 𝑁, a subset of random features is selected as
ℱ ⊂ ሼ1, 2, … , 𝑑ሽ . Among this subset, the best split is
selected based on impurity. This randomness contributes to
model diversity which is necessary in ensemble learning.
Any 𝑥ሺ௜ሻ that was not used in the bootstrap sample for tree
𝑇௕ has its prediction included in the out-of-bag (OOB)
estimate. It should be noted that OOB is used in this context
to refer to the test set. Supposed 𝐵௜ denotes a set of trees not
trained on 𝑥ሺ௜ሻ, is given as:

𝑦ොைை஻
ሺ௜ሻ ൌ 𝑚𝑜𝑑𝑒൫൛ℎ௕൫𝑥ሺ௜ሻ൯ | 𝑇௕∄𝑥ሺ௜ሻൟ൯

 (4)

Where, 𝑦ොைை஻
ሺ௜ሻ is the OOB prediction output. This OOB error

gives a reliable estimate of the model generalization
without a separate validation set. RF by default tends to
favour majority classes in imbalanced datasets. However, in
this work, the Adaptive Synthetic Sampling (ADASYN) is
used to increase the minority instances. Class weights are
introduced to penalize misclassification of the minority
class, while Gini index implicitly adjust when data
distribution is balanced via oversampling. Consider a class
imbalance expressed as:

𝐺𝑖𝑛𝑖௔ௗ௝ ൌ 1 െ ∑ ቀ
௪ೖ௡ೖ

∑ ௪ೖ௡ೖೖ
ቁ

ଶ
௄
௞ୀଵ (5)

Where, 𝑤௞ is the weight of class 𝑘, and 𝑛௞ is the number

of samples in class 𝑘. If ∆𝑥௝
ሺ௕ሻ is used to describe the total

decrease in impurity form feature 𝑗 in tree 𝑇௕, then, feature
importance scoring according to the Gini approach for
RFM model is given as follows:

Journal of Multidisciplinary Engineering Science and Technology (JMEST)
ISSN: 2458-9403

Vol. 12 Issue 4, April - 2025

www.jmest.org
JMESTN42354560 17611

𝐼𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒ሺ𝑗ሻ ൌ
ଵ

஻
∑ ∆𝑥௝

ሺ௕ሻ஻
௕ୀଵ (6)

In the use-case of this work, RFM attempts to identify
which features are most decisive. The training time
complexity analytical model for each tree is given as;

𝜏௖ ൌ 𝑂ሺ𝑛 ∙ 𝑑 ∙ log 𝑛ሻ (7)

The time complexity for training 𝐵 trees with 𝑚 features is
given as:

𝜏௖
஻ ൌ 𝑂ሺ𝐵 ∙ 𝑛 ∙ 𝑚 ∙ 𝑑 ∙ log 𝑛ሻ (8)

Where, 𝑛 is the number of samples, 𝑑 total number of
features, and 𝑚 is a subset of features in 𝐵 trees.

2.2.2 Development of Logistic Regression Model
(LRM) for Software Bug Prediction

Logistic Regression Model (LRM) is a binary
classifier model. Unlike Linear Regression which predicts
continuous outcomes, Logistic Regression predicts discrete
outcomes by estimating the probability of class
membership, constrained within the range [0,1]. In the
context of this work, LRM is used to detect rare class
instances, where the minority class is underrepresented.
Hence, data resampling techniques like ADASYN is also
explored to balance the data and identify relevant features.
Let the dataset 𝐷 be described as:

𝐷 ൌ ൛൫𝑥ሺ௜ሻ, 𝑦ሺ௜ሻ൯ൟ
௜ୀଵ

௠
 (9)

Where, 𝑥ሺ௜ሻ ∈ 𝑅௡ is the input vector for the 𝑖௧௛ instance,
𝑦ሺ௜ሻ ∈ ሼ0,1ሽ is the class label, and 𝑚 is the number of
training samples. The LRM adopts the response variable
log-odds which is expressed in respect of the inputs as
follows:

log ቀ
௉ሺ௬ୀଵ | ௫ሻ

ଵି௉ሺ௬ୀଵ | ௫ሻ
ቁ ൌ ሺ𝜃்ሻሺ𝑥ሻ (10)

Where, 𝜃 ∈ 𝑅௡ is the parameter vector to be learned, and
𝑃ሺ∙ሻ is the probability function. To solve for 𝑃ሺ𝑦 ൌ 1 | 𝑥ሻ,
a sigmoid function ℎఏሺ𝑥ሻ can be obtained as:

ℎఏሺ𝑥ሻ ൌ
ଵ

ଵା௘షഇ೅ೣ
 (11)

Equation 11 maps real valued output to the range ሾ0, 1ሿ
which is interpreted as the probability that the output 𝑦 ൌ
1.The model is trained to minimize the cost function which
the log-loss is given as:

𝐽ሺ𝜃ሻ ൌ െ ቀ
ଵ

௠
ቁ ቈ∑ ቆ൫𝑦ሺ௜ሻ൯ log ቀሺℎఏሻ൫𝑥ሺ௜ሻ൯ቁ ൅௠

௜ୀଵ

൫1 െ 𝑦ሺ௜ሻ൯ log ൬1 െ ቀሺℎఏሻ൫𝑥ሺ௜ሻ൯ቁ൰ቇ቉ (12)

This penalizes incorrect confident predictions harshly
(example, predicting 0.99 when true class is 0). The cost
function utilised in the model is convex and the convexity
of the cost function must satisfy expression shown as
follows:

∀𝜃ଵ, 𝜃ଶ ∈ 𝑅௡, ∀𝜆 ∈ ሾ0, 1ሿ: 𝐽൫𝜆𝜃ଵ ൅ ሺ1 െ 𝜆ሻ𝜃ଶ ൑
𝜆𝐽ሺ𝜃ଵሻ ൅ ሺ1 െ 𝜆ሻ𝐽ሺ𝜃ଶሻ൯ (13)

Where, 𝜆 is used to denote the eigen values for the Hessian
matrix, and 𝐽 is used to denote the Hessian matrix. In case
of functions that can be differentiated two times, a function
is considered to be convex if and only if the Hessian matrix
of that function is positive semi-definite. The hypothesis
function is defined as:

ℎఏሺ𝑥ሻ ൌ 𝜎ሺ𝑧ሻ (14)

Where 𝑧 ൌ 𝜃்𝑥 . Then the cost function is the negative
likelihood for 𝑚 training samples as shown in Equation 12,
which is an average of individual loss term given as:

ℓ൫𝜃; 𝑥ሺ௜ሻ, 𝑦ሺ௜ሻ൯ ൌ െ ቂ𝑦ሺ௜ሻ log ቀℎఏ൫𝑥ሺ௜ሻ൯ቁ ൅ ൫1 െ

𝑦ሺ௜ሻ൯ log ቀ1 െ ℎఏ൫𝑥ሺ௜ሻ൯ቁቃ (15)

This implies that if each term ℓሺ𝜃; 𝑥, 𝑦ሻ is convex in 𝜃, then
the whole function is convex as a non-negative weighted
sum of convex functions is convex. For a given data point
ሺ𝑥, 𝑦ሻ, the sigmoid function can be defined as:

𝑧 ൌ ሺ𝜃்ሻሺ𝑥ሻ ⟹ ሺℎఏሻሺ𝑥ሻ ൌ 𝜎ሺ𝑧ሻ (16)

Then the loss function becomes as shown as:

ℓሺ𝜃ሻ ൌ െൣ𝑦 log൫𝜎ሺ𝑧ሻ൯ ൅ ሺ1 െ 𝑦ሻ log൫1 െ 𝜎ሺ𝑧ሻ൯൧
 (17)

Hessian rule can be used to compute the convexity. First, it
must be established that the complement of the sigmoid
function 𝜎ᇱሺ𝑧ሻ is given as:

𝜎ᇱሺ𝑧ሻ ൌ 𝜎ሺ𝑧ሻ൫1 െ 𝜎ሺ𝑧ሻ൯ (18)

Hence, the derivative of the loss can be written as a
standard gradient of logistic loss is given as:

∇ఏℓሺ𝜃ሻ ൌ ሺ𝜎ሺ𝑧ሻ െ 𝑦ሻ𝑥 (19)

Where, ∇ఏሺ∙ሻ is the gradient function. Furthermore, the
function , ∇ఏ

ଶ ℓሺ𝜃ሻ has second derivative H given as as
presented as:

𝐻 ൌ ∇ఏ
ଶ ℓሺ𝜃ሻ ൌ 𝜎ሺ𝑧ሻ൫1 െ 𝜎ሺ𝑧ሻ൯ ∙ 𝑥𝑥் (20)

Notably, ሺ𝜎ሻሺ𝑧ሻ൫1 െ 𝜎ሺ𝑧ሻ൯ is the derivative of 𝜎ሺ𝑧ሻ. Since
𝑧 ൌ ሺ𝜃்ሻሺ𝑥ሻ, and ∇𝑧 ൌ 𝑥, then is given as;

∇ఏ
ଶ ℓሺ𝜃ሻ ൌ ቀ

ௗఙሺ௭ሻ

ௗఏ
ቁ

்
∙ ቀ

ௗఙሺ௭ሻ

ௗఏ
ቁ ൅

ௗమఙሺ௭ሻ

ௗఏమ (21)

The expansion of Equation 21 results in Equation 20. From
Equation 13, the gradient descent optimization technique is
used to minimize 𝐽ሺ𝜃ሻ by computing the partial derivative
with respect to 𝜃௝ is given in Equation 22:

డ௃ሺఏሻ

డఏೕ
ൌ

ଵ

௠
∑ ൫ℎఏ൫𝑥ሺ௜ሻ൯ െ 𝑦ሺ௜ሻ൯𝑥௝

ሺ௜ሻ௠
௜ୀଵ (22)

The update rule for the parameter vector is given as:

𝜃: 𝜃 െ 𝛼∇ఏ𝐽ሺ𝜃ሻ (23)

Where, 𝛼 is the learning rate. In this research, the function
solver is set to ‘bilinear’. This solver employs Newton-
Raphson method (a second order optimization algorithm)
which enhances convergence properties in logistic models
compared to traditional algorithms. The parameter 𝜃 is
updated using Newton Raphson method with the rule given
as:

Journal of Multidisciplinary Engineering Science and Technology (JMEST)
ISSN: 2458-9403

Vol. 12 Issue 4, April - 2025

www.jmest.org
JMESTN42354560 17612

𝜃ሺ௧ାଵሻ ൌ 𝜃௧ െ ൫𝐻ିଵ∇𝐽ሺ𝜃௧ሻ൯ (24)

Where, ∇𝐽ሺ𝜃ሻ is the gradient vector (first derivative), and 𝐻
is the Hessian matrix (second derivative). Suppose 𝑋 ∈
𝑅௠ൈ௡ is the design matrix, where each row is denoted as
𝑥ሺ௜ሻ, 𝑦 ∈ 𝑅௠ൈଵ is the label vector, and ℎ ൌ 𝜎ሺ𝑋𝜃ሻ ∈ 𝑅௠ൈଵ
is the vector of predictions; then the gradient of the cost
function 𝐽ሺ𝜃ሻ is given as:

∇𝐽ሺ𝜃ሻ ൌ 𝑋்ሺℎ െ 𝑦ሻ (25)

Where, ℎ ൌ ൣℎఏ൫𝑥ሺଵሻ൯, ℎఏ൫𝑥ሺଶሻ൯, … , ℎఏ൫𝑥ሺ௠ሻ൯൧
்

. The
Hessian matrix is given as:

𝐻 ൌ ∇ଶ𝐽ሺ𝜃ሻ ൌ 𝑋்𝑹𝑋 (26)

Where 𝑹 ∈ 𝑅௠ൈ௠ is a diagonal matrix, then for the second
derivative of the sigmoid function is given as Equation 27
and Equation 28:

𝑹௜௜ ൌ ℎሺ௜ሻ൫1 െ ℎሺ௜ሻ൯ (27)

ௗమఙሺ௭ሻ

ௗ௭మ ൌ 𝜎ሺ𝑧ሻ൫1 െ 𝜎ሺ𝑧ሻ൯൫1 െ 2𝜎ሺ𝑧ሻ൯ (28)

But since the matrix form is used in Newton Raphson
method, Hessian matrix is sufficient as given in Equation
29:

𝐻 ൌ ∑ ℎሺ௜ሻ൫1 െ ℎሺ௜ሻ൯𝑥ሺ௜ሻ𝑥ሺ௜ሻ೅௠
௜ୀଵ ൌ 𝑋்𝑅𝑋 (29)

Then the final Newton Raphson update rule is given as:

𝜃ሺ௧ାଵሻ ൌ 𝜃ሺ௧ሻ െ ሺ𝑋்𝑹𝑋ሻିଵ𝑋்ሺℎ െ 𝑦ሻ (30)

Notably, Equation 30 is the core update formula
used in Newton Raphson for logistic regression model and
simulation in this work. The selected solver (liblinear) uses
an optimized quasi-Newton method, particularly coordinate
descent. It performs regularization, and often includes
penalty, modifying the cost function to Equation 31:

𝐽௥௘௚ሺ𝜃ሻ ൌ 𝐽ሺ𝜃ሻ ൅
ఒ

ଶ
‖𝜃‖ଶ (31)

Where 𝐽௥௘௚ሺ𝜃ሻ is the regularized cost function, and 𝜆 is the
regularization strength.Equation 31 adds 𝜆𝐼 to the Hessian.
This regularized Hessian (shown in Equation 32) is also
positive definite, improving numerical stability and
convergence, is given in Equation 32:

𝐻௥௘௚ ൌ 𝑋்𝑹𝑋 ൅ 𝜆𝐼 (32)

After training the dataset, for any input 𝑥 , the binary
classification prediction is made as given in Equation 33;

𝑦ො ൌ ቄ1 𝑖𝑓 ℎఏሺ𝑥ሻ ൒ 0.5
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (33)

2.3 Description of the Adaptive Synthetic Sampling
(ADASYN) Used for the Data Balancing

The data balancing is implemented using the
Adaptive Synthetic Sampling (ADASYN) Method which
builds upon the Synthetic Minority Over-sampling
Technique (SMOTE) method by introducing an adaptive
component. Instead of treating all minority samples equally,

ADASYN focuses more on those harder to learn samples
that lie in areas of high majority-class density. Given a
minority sample 𝑥௜, the number of synthetic samples 𝑔௜ to
be generated is given as:

𝑔௜ ൌ
௥೔

∑ ௥ೕ
೙೘
ೕసభ

∙ 𝐺 (34)

Where, 𝑟௜ ൌ
ఋ೔

௞
, is the difficulty ratio with 𝛿௜ being the

number of majority class samples among the 𝑘 nearest
neighbours of 𝑥௜ , 𝑛௠ is the number of minority class
samples, and 𝐺 is the total number of samples to generate.
Also, in ADASYN, new points are generated using
Equation 35.

𝑥௡௘௪ ൌ 𝑥௜ ൅ 𝜆 ∙ ൫𝑥௜
ሺ௞ሻ െ 𝑥௜൯ (35)

Particularly, ADASYN prioritizes minority samples near
the decision boundary, assuming that these are more
"difficult" and thus more informative. This introduces a
bias toward "difficult" samples, which can potentially
improve classification performance but also may increase
the risk of adding noise. By the application of the ADSYN
on the dataset, the number of samples of the minority class
is increased to match the majority class sample size.

3. Results and discussion

3.1 The results of the data acquisition and pre-
processing

The case study NASA MDP dataset has about 13 different
data files containing different aspects of the software
historical files. The list of all the features contained in the
12 dataset files available in the case study NASA Metrics
Data Program (MDP) dataset are presented in Table 1. For
each dataset (from CM1 to PC 5) in Table 1, the available
feature is marked ‘Y’, while the unavailable is marked ‘N’.

In this work, the PC1.arff file which is one of the
13 files in the NASA MDP dataset is used for the
description of the results obtained. Specifically, the
PC1.arff file has a total of 759 labelled data records with 61
defective instances and 698 non defective instances. Data
balancing was conducted using ADASYN method and the
statistical profile of the original data and the synthetic data
generated using the ADASYN method for the PC1.arff file
is presented in Table 2. According to the results in Table 2,
the original dataset has mean of 15.12 and standard
deviation of 21.61 while the synthetic data has mean of
14.97 and standard deviation of 23.34. The confidence
interval at 95 % confidence level shows that there is no
significant difference between the mean of the original and
the synthetic datasets. Hence, the dataset obtain after the
data balancing using ADASYN method is a good
representation of the original data record.

Journal of Multidisciplinary Engineering Science and Technology (JMEST)
ISSN: 2458-9403

Vol. 12 Issue 4, April - 2025

www.jmest.org
JMESTN42354560 17613

Table 1: The Binary Representation of Feature Availability in NASA MDP Datasets

Feature CM
1

JM
1

KC
1

KC
3

MC
1

MC
2

MW
1

PC
1

PC
2

PC
3

PC
4

PC
5

LOC_BLANK Y Y Y Y Y Y Y Y N Y Y Y

BRANCH_COUNT Y Y Y Y Y Y Y Y Y Y Y Y

CALL_PAIRS Y N N Y Y Y Y Y Y Y Y Y

LOC_CODE_AND_COMMENT Y Y Y Y Y Y Y Y Y Y Y Y

LOC_COMMENTS Y Y Y Y Y Y Y Y Y Y Y Y

CONDITION_COUNT Y N N Y Y Y Y Y Y Y Y Y

CYCLOMATIC_COMPLEXITY Y Y Y Y Y Y Y Y Y Y Y Y

CYCLOMATIC_DENSITY Y N N Y Y Y Y Y Y Y Y Y

DECISION_COUNT Y N N Y Y Y Y Y Y Y Y Y

DECISION_DENSITY Y N N Y N Y Y Y Y Y Y N

DESIGN_COMPLEXITY Y Y Y Y Y Y Y Y Y Y Y Y

DESIGN_DENSITY Y N N Y Y Y Y Y Y Y Y Y

EDGE_COUNT Y N N Y Y Y Y Y Y Y Y Y

ESSENTIAL_COMPLEXITY Y Y Y Y Y Y Y Y Y Y Y Y

ESSENTIAL_DENSITY Y N N Y Y Y Y Y Y Y Y Y

LOC_EXECUTABLE Y Y Y Y Y Y Y Y Y Y Y Y

PARAMETER_COUNT Y N N Y Y Y Y Y Y Y Y Y

GLOBAL_DATA_COMPLEXITY N N N Y Y Y N N N N N Y

GLOBAL_DATA_DENSITY N N N Y Y Y N N N N N Y

HALSTEAD_CONTENT Y Y Y Y Y Y Y Y Y Y Y Y

HALSTEAD_DIFFICULTY Y Y Y Y Y Y Y Y Y Y Y Y

HALSTEAD_EFFORT Y Y Y Y Y Y Y Y Y Y Y Y

HALSTEAD_ERROR_EST Y Y Y Y Y Y Y Y Y Y Y Y

HALSTEAD_LENGTH Y Y Y Y Y Y Y Y Y Y Y Y

HALSTEAD_LEVEL Y Y Y Y Y Y Y Y Y Y Y Y

HALSTEAD_PROG_TIME Y Y Y Y Y Y Y Y Y Y Y Y

HALSTEAD_VOLUME Y Y Y Y Y Y Y Y Y Y Y Y

MAINTENANCE_SEVERITY Y N N Y Y Y Y Y Y Y Y Y

MODIFIED_CONDITION_COUNT Y N N Y Y Y Y Y Y Y Y Y

MULTIPLE_CONDITION_COUNT Y N N Y Y Y Y Y Y Y Y Y

NODE_COUNT Y N N Y Y Y Y Y Y Y Y Y

NORMALIZED_CYLOMATIC_COMPL
EXITY

Y N N Y Y Y Y Y Y Y Y Y

NUM_OPERANDS Y Y Y Y Y Y Y Y Y Y Y Y

NUM_OPERATORS Y Y Y Y Y Y Y Y Y Y Y Y

NUM_UNIQUE_OPERANDS Y Y Y Y Y Y Y Y Y Y Y Y

JM

NUM

NUM

PER

LOC

Defe

label

3.2

rep
dat
can
of
Pos
inc
ins
neg
pos
a h

MESTN423545

M_UNIQUE_O

MBER_OF_LI

RCENT_COM

C_TOTAL

ective

l

Table

2 The results
Logistic Reg

The co
presents the
taset without
n be observed

the negative
sitives (FP):

correctly class
stances of the
gative. True
sitive class w
high tendency

560

OPERATORS

INES

MENTS

 2: Statistical

of the softw
gression Mod

onfusion ma
model's perf
any resampli

d that: True N
e class were
37 instances

sified as posit
positive class
Positives (TP
ere correctly
y to predict

Fi

S

l profile of th

ware bug dete
del

trix presente
formance on
ing or balanc
Negatives (TN
e correctly
s of the nega
tive. False N
s were incorre
P): Only 9
classified. Th
the negative

gure 1: Conf

w

Y Y

Y N

Y N

Y Y

Y N

N Y

he synthetic a

ection using

ed in Figure
the imbalan

ing technique
N): 103 instan
classified. Fa
ative class w
egatives (FN)

ectly classified
instances of

he model exhi
class correc

fusion matrix

Journal

www.jmest.or

Y Y

N Y

N Y

Y Y

Y Y

N N

and original d

the

e 1
nced
e. It
nces
alse

were
): 3
d as
the

ibits
ctly,

wh
acc
the
rec
cas

im
sco
pre
the
im
cla

x for the basel

of Multidisciplin

rg

Y Y

Y Y

Y Y

Y Y

Y Y

N N

data for PC1.

hich is a comm
curacy appear
e severe unde
call score of
ses were corre

Howev
mplying a larg

ore (0.310)
ecision and r
e need for

mbalance and
ass.

line model ca

nary Engineerin

Y Y

Y Y

Y Y

Y Y

Y Y

N N

arff in the NA

mon issue in im
rs moderately
er-representati
0.75 indicate

ectly detected.

er, the prec
e proportion
reflects poo

ecall. This pe
resampling t
improve sen

ase for the LR

ng Science and T

Vol. 12

Y Y

Y Y

Y Y

Y Y

Y Y

N N

ASA MDP D

imbalanced da
high, this is m

ion of the po
es that 75% o
.

cision is ver
of false posit

or harmonic
erformance s
techniques to
nsitivity towa

RM

Technology (JME
ISSN: 2458-9

Issue 4, April - 2

17

Y Y

Y Y

Y Y

Y Y

Y Y

N N

atasets

atasets. While
misleading du
ositive class.
of actual posi

ry low (0.1
tives, and the

mean betw
trongly indic

o mitigate c
ard the mino

EST)
9403
2025

614

Y

Y

Y

Y

Y

N

e the
ue to
The
itive

96),
e F1
ween

ates
class
ority

JM

on
num
inc
to
due
slig
to
bas
led
in
sub
tog
sug
bet
abo
giv
sig
tow

Fi

3.3
Ra

For
(TN
Fal
min
mis
min
For
the
ma
me
uns
abo
pre
0.2
sep
und
ske
res
sen

MESTN423545

With A
both classes

mber of cor
creased signifi
11 compared
e to the incr
ghtly decrease
109. ADASY
sed on the dif
d to a much be

the sharp
bstantially to
gether boosted
ggests the m
tween classes.
out 0.019s to
ven the pe
gnificantly en
ward the mino

igure 2: Conf

3 The results
andom Forest

The co
rest model as
N): 135 maj
lse Positives
nority. False N
sclassified as
nority instanc
rest being an

e baseline pe
ajority class. W
etrics related
satisfactory.
out17% of
ecision is also
211. The A
parability und
derperformanc
ewed distribu
sampling tech
nsitivity.

560

ADASYN app
has improve

rrectly classif
icantly to 130
to 3 in the b

rease in sen
ed to 31, and

YN creates syn
fficulty of cla
etter detection

increase in
0.807, and

d the F1-score
model has le
. The minor in
about 0.023s

erformance
nhanced mode
ority class.

fusion matrix
the L

 of the softw
t Regression M

onfusion matr
 shown in Fig
ority class in
(FP): 5 major
Negatives (FN
s majority. T
ces correctly
ensemble-bas
erformance is
While overall
d to mino
The recall
defective m
poor (0.286),

AUC of 0.85
der the class
ce reflects Ra
utions and j
hniques such

lied, the mod
ed as shown i
fied positive
. The false ne

baseline, but t
sitivity. False
true negative

nthetic minori
assification. It
n of minority i
n TP. Prec
recall rose t

e to 0.861. Th
arned to bet
ncrease in tra
s) is negligibl
gains. Over
el robustness

x after applyi
LRM

ware bug dete
Model

rix for the b
gure 3 reveals
nstances corr
rity instances

N): 10 minorit
True Positive

classified. D
sed, relatively
s heavily bia
accuracy is hi
ority class
of 0.167 im

modules were
, resulting in a
50 highlight
s imbalance
andom Forest
justifies the
as ADASYN

w

el’s performa
in Figure 2. T

instances (T
gatives increa
his is a trade-
e positives (
s (TN) increa
ity class samp
t appears to h
instances, as s
cision impro
to 0.922, wh
he AUC of 0.9
tter discrimin

aining time (fr
le and justifia
rall, ADAS
s and sensitiv

ng ADASYN

ection using

baseline Rand
s True Negati
rectly identif
 misclassified
ty class instan
s (TP): Only
Despite Rand
robust classif

ased toward
igh (90.13%),

detection
mplies that o

 detected. T
a low F1-score
s limited cl
condition. T

t’s innate bias
application

N to impr

Journal

www.jmest.or

ance
The
TP)

ased
-off

(FP)
ased
ples

have
seen
oved
hich
904
nate
rom
able
YN
vity

N to

the

dom
ives
fied.
d as
nces
y 2
dom
fier,
the

 the
are

only
The
e of
lass

This
s in

of
rove

use

gen
lea
fro
sen
and
stro
0.9
tim
com
siz
Ra
mi

Fi

of Multidisciplin

rg

Figure 3: Co

The res
e of ADASYN

i. Subs
136).

ii. False
more
ident

iii. Incre
trade

iv. Sligh
not a
recal

ADASY
nerating synt
arn minority c
om 0.167 to 0
nsitivity. Sim
d the F1-scor
ong balance b

987, showing
me increased
mplexity of th

ze but remains
andom Forest
nority class.

igure 4: Conf

nary Engineerin

onfusion matr
RF

sults presente
N leads to:

tantial improv
.
e negatives de
e defective m
tified.
ease in false p
-off for impro

ht drop in true
a major concer
l.

YN improves
hetic sample
lass areas. Th
0.965, demon

multaneously, p
re rose drama
between preci
excellent clas
to 0.725s, w

he synthetic s
s within accep
significantly m

fusion Matrix
ADASYN da

ng Science and T

Vol. 12

rix for baseli
FM

ed in Figure 4

vement in true

ecreased from
modules are

positives (fro
oved recall.
e negatives to
rn given the m

 classification
es adaptively
his improved t
nstrating a su
precision inc
atically to 0.9
ision and reca
ss discriminat
which reflect
sampling and
ptable limits.
more effectiv

x for the RFM
ata balancing

Technology (JME
ISSN: 2458-9

Issue 4, April - 2

17

ne case of the

4 reveals that

e positives (T

10 to 5, mean
e now corre

om 5 to 16) a

o 124, but thi
model’s impro

n performance
around hard

the model’s re
ubstantial gain
creased to 0.8
928, indicatin
all. AUC reac
tion. The train
ts the additio
increased dat
ADASYN m
e at detecting

M after apply
g

EST)
9403
2025

615

e

the

TP =

ning
ectly

as a

is is
oved

e by
d-to-
ecall
n in
895,
ng a
ched
ning
onal
aset

made
g the

ying

Journal of Multidisciplinary Engineering Science and Technology (JMEST)
ISSN: 2458-9403

Vol. 12 Issue 4, April - 2025

www.jmest.org
JMESTN42354560 17616

3.4 Comparison of the performance of the software
Logistic Regression Model and the Random

Forest Model

Comparison of the performance of the Logistic
Regression model and the Random Forest model is
presented in Table 3 for both the baseline case without data
balancing and the case when data balancing was
implemented using the ADASYN method. The results in
Table 3 show that the data balancing improved the
prediction accuracy of the two models.

Also, the results show that in both cases, the RFM
has higher prediction accuracy than the LRM. The
prediction accuracies for the baseline were 73.68 % and

90.01% for the LRM and the RFM respectively. Equally,
the prediction accuracies for the case with ADASYN-based
data balancing were 85.05 % and 92.53% for the LRM and
the RFM respectively. Hence, in respect of the prediction
accuracy, the RFM with data balancing is recommended for
the software bug detection in the case study dataset.

However, the LRM has lower training time than
the RFM in both cases. The training time of the RFM is
about 18 times the training time of the LRM in the baseline
case and about 31 times the training time of the LRM in the
case with data balancing. In this wise, hybrid model that
can take advantage of the low training time of the LRM and
the high prediction accuracy of the RFM is recommended.

Table 3: Comparison of the performance of the Logistic Regression and the Random Forest

Evaluation Step Accuracy Precision Recall F1 AUC Training Time

Baseline LRM 0.736842 0.195652 0.750000 0.310345 0.879762 0.019069

Baseline RFM 0.901316 0.285714 0.166667 0.210526 0.849702 0.347974

ADASYN with LRM 0.850534 0.807453 0.921986 0.860927 0.904306 0.023132

ADASYN with RFM 0.925267 0.894737 0.964539 0.928328 0.987133 0.725151

 3.5 Comparison of the performance of the Random
Forest Model with Some Published Related Works

The comparison of the performance of the
Random Forest model with some published related works is
presented in Table 4. The results showed that the RFM
performed better than the published related works cited

which were published between 2019 and 2024. The results
indicate that with 92.53% prediction accuracy, the RFM
with data balancing outperformed the previously published
software detection models. However, the training time is an
issue that will require further studies to minimize the
training time while maintaining high prediction accuracy.

Table 4 Comparison of the performance of the Random Forest Model with Some Published Related Works

Source Year Method used Accuracy (%)

Our preferred model (using
ADASYN data balancing

with RFM)

2025 Random Forest Model with ADASYN-based
data balancing

 92.527%

Our model (using RFM
without data balancing)

2025 Random Forest Model without data balancing 90.13%

[20] 2019 Support vector machine and Radial Basis
Function (RBF) model

90.8163 %

[21] 2019 Mean Weighted Least Squares Twin Support
Vector Machine (MW-LSTSVM)

89.85%

[22] 2024 Random Forest Model 85.5%

4. Conclusion

Two machine learning models are presented for
the prediction of software bug. The two models are the
Logistic Regression Model (LRM) and the Random Forest
Model (RFM). The focus in the study is to study the
performance of the models with imbalanced dataset and
with balanced dataset. The data balancing was implemented
using Adaptive Synthetic Sampling (ADASYN). The
results show that data balancing significantly improved on

the software bug prediction accuracy of the two models.
Also, the RFM outperformed the LRM in all the cases
considered. Also, the RFM outperformed the cited related
works published within 2018 and 2024. In any case, the
training time of the RFM is several times higher than that of
the LRM. Hence, while recommending the RFM for the
software bug prediction, it is further suggested that
hybridization of the LRM and the RFM can minimize the
training time while maintain high prediction accuracy.

Journal of Multidisciplinary Engineering Science and Technology (JMEST)
ISSN: 2458-9403

Vol. 12 Issue 4, April - 2025

www.jmest.org
JMESTN42354560 17617

References

1. Tsybulka, K. (2024). Enhancing code quality
through automated refactoring
techniques (Doctoral dissertation,
ETSI_Informatica).

2. Bhanushali, A. (2023). Ensuring Software Quality
Through Effective Quality Assurance Testing:
Best Practices and Case Studies. International
Journal of Advances in Scientific Research and
Engineering, 26(1), 1-18.

3. Corradini, D., Zampieri, A., Pasqua, M.,
Viglianisi, E., Dallago, M., & Ceccato, M. (2022).
Automated black‐box testing of nominal and error
scenarios in RESTful APIs. Software Testing,
Verification and Reliability, 32(5), e1808.

4. Wu, Y., Tao, B., Lan, K., Shen, Y., Huang, W., &
Wang, F. (2022). Reliability and accuracy of
dynamic navigation for zygomatic implant
placement. Clinical oral implants research, 33(4),
362-376.

5. Long, G., Gong, J., Fang, H., & Chen, T. (2025).
Learning Software Bug Reports: A Systematic
Literature Review. ACM Transactions on Software
Engineering and Methodology.

6. Ge, H., & Wu, Y. (2023). An empirical study of
adoption of ChatGPT for bug fixing among
professional developers. Innovation & Technology
Advances, 1(1), 21-29.

7. Jin, M., Shahriar, S., Tufano, M., Shi, X., Lu, S.,
Sundaresan, N., & Svyatkovskiy, A. (2023,
November). Inferfix: End-to-end program repair
with llms. In Proceedings of the 31st ACM joint
european software engineering conference and
symposium on the foundations of software
engineering (pp. 1646-1656).

8. Khan, R. A., Khan, S. U., Khan, H. U., & Ilyas, M.
(2022). Systematic literature review on security
risks and its practices in secure software
development. ieee Access, 10, 5456-5481.

9. Bello, R. W., & Tobi, S. J. (2023). Software bugs:
detection, analysis and fixing. Analysis and Fixing
(December 12, 2023).

10. Singh, V. B., & Chaturvedi, K. K. (2011). Bug
tracking and reliability assessment system
(btras). International Journal of Software
Engineering and Its Applications, 5(4), 1-14.

11. Osman, H. (2017). Empirically-Grounded
Construction of Bug Prediction and Detection
Tools (Doctoral dissertation, Universität Bern).

12. Saini, S., Bhagwan, J., Rani, S., Kumar, S.,
Godara, S., & Chaba, Y. (2024). Early Software
Bug Prediction: A Literature Review and Current
Trends. Grenze International Journal of
Engineering & Technology (GIJET), 10.

13. Johnson, F., Oluwatobi, O., Folorunso, O., Ojumu,
A. V., & Quadri, A. (2023). Optimized ensemble
machine learning model for software bugs
prediction. Innovations in Systems and Software
Engineering, 19(1), 91-101.

14. Khalid, A., Badshah, G., Ayub, N., Shiraz, M., &
Ghouse, M. (2023). Software defect prediction

analysis using machine learning
techniques. Sustainability, 15(6), 5517.

15. Sánchez-García, Á. J., Limon, X., Dominguez-
Isidro, S., Olvera-Villeda, D. J., & Perez-Arriaga,
J. C. (2024). Class Balancing Approaches to
Improve for Software Defect Prediction
Estimations: A Comparative Study. Programming
and Computer Software, 50(8), 621-647.

16. Pandey, S., & Kumar, K. (2023). Software fault
prediction for imbalanced data: a survey on recent
developments. Procedia Computer Science, 218,
1815-1824.

17. Mahajan, P., Choudhary, K., Rana, N., Kumar, R.,
& Deshmukh, S. (2024, July). Software Bugs
Classification Using SVM, RF, DT Algorithms.
In International Conference on Data Science and
Applications (pp. 51-62). Singapore: Springer
Nature Singapore.

18. Chen, Z., Ju, X., Lu, G., & Chen, X. (2022,
August). Blocking bugs identification via binary
relevance and logistic regression analysis. In 2022
9th international conference on dependable
systems and their applications (DSA) (pp. 335-
345). IEEE.

19. Balaram, A., & Vasundra, S. (2022). Prediction of
software fault-prone classes using ensemble
random forest with adaptive synthetic sampling
algorithm. Automated Software
Engineering, 29(1), 6.

20. Iqbal, A., Aftab, S., Ali, U., Nawaz, Z., Sana, L.,
Ahmad, M., & Husen, A. (2019). Performance
analysis of machine learning techniques on
software defect prediction using NASA
datasets. International Journal of Advanced
Computer Science and Applications, 10(5).

21. Banga, M., Bansal, A., & Singh, A. (2019).
Proposed Intelligent Software System for Early
Fault Detection. International Journal of
Performability Engineering, 15(10), 2578.

22. ul Haq, Q. M., Arif, F., Aurangzeb, K., ul Ain, N.,
Khan, J. A., Rubab, S., & Anwar, M. S. (2024).
Identification of software bugs by analyzing
natural language-based requirements using
optimized deep learning features. Computers,
Materials & Continua, 78(3), 4379-4397.

