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Abstract— The focus in this work is to provide
efficient machine learning models that can be
used to minimize or entirely eliminate bugs from
software solution before they are deployed to the
end users. Specifically, the Random Forest model
(RFM) and the Logistic Regression Model (LRM)
were considered in the study. The study used
historical software metrics dataset obtained from
the NASA Metrics Data Program (MDP) repository.
The models were trained and evaluated for the
baseline case without data balancing and also for
the case were data balancing was implemented
using Adaptive Synthetic Sampling (ADASYN).
The results show that the RFM has higher
prediction accuracy than the LRM. The prediction
accuracies for the baseline were 73.68 % and
90.01% for the LRM and the RFM respectively.
Equally, the prediction accuracies for the case
with ADASYN-based data balancing were 85.05 %
and 92.53% for the LRM and the RFM respectively.
Hence, in respect of the prediction accuracy, the
RFM with data balancing is recommended for the
software bug detection in the case study dataset.
However, the LRM has lower training time than the
RFM in both cases. The training time of the RFM
is about 18 times the training time of the LRM in
the baseline case and about 31 times the training
time of the LRM in the case with data balancing. In
this wise, hybrid model that can take advantage of
the low training time of the LRM and the high
prediction accuracy of the RFM is recommended
as topic for further studies.

Keywords— Software Bug Detection, Random
Forest Model, Logistic Regression Classifier,
Adaptive Synthetic Sampling (ADASYN), Data
balancing

1. INTRODUCTION

Over the years, software development processes
and tools have improved with much focus on meeting the
growing demand for high quality software solutions that are
devoid of bugs [1,2]. Software bugs are such errors or flaws
which can cause a software to deviate from it intended
output or operation [3,4]. In some cases, software bug can
cause minor damages but in some other cases the
consequences of software bugs are so high resulting in life
threatening situation, very high financial losses, and costly
law suits [5,6]. In practice, software developers try as much
as possible to detect and eliminate all possible bugs in a
software solution before deployment [7,8]. However, it is
always very difficult to achieve that by relying on manual
checking of the software artifacts [9,10,11].

Consequently, over the years, several approaches
and tools have been developed to facilitate efficient
software bug detection [12]. One of such approaches in the
present day is the use of machine and deep learning models
for the detection or prediction of software bug [13,14]. The
approach relies on the availability of historical dataset of
the software artifacts. In addition, the performance of the
models depends on a number of factors one of which is the
highly imbalance nature of the software bug dataset.
Accordingly, experts are relying on effective data balancing
methods for the enhancement of the software prediction
models [15,16]. Consequently, in this study, the Random
Forest Model (RFM) and the Logistic Regression Model
(LRM) are considered for software bug detection while the
Adaptive Synthetic Sampling (ADASYN) is used for the
data balancing [17,18,19]. The performance of the models
in the baseline case without data balancing and in the case
where the ADASYN-based data balancing are performed.
In both cases, the training time is also considered to assess
both prediction performance and the latency of the model.
In all, the study use the key performance parameters to
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recommend the most suitable model for the software bug
detection.

2. METHODOLOGY

The focus in this work is to use the Random Forest
model (RFM) and then, the Logistic Regression Model
(LRM) for detecting software bug based on the features
present in a software bug dataset. The details of the dataset,
the pre-processing and model training are presented in this
section while section 3 presents the results of the model
software bug predictions as well as the performance
evaluation. The key components in this study are listed as
follows:

(i) Data acquisition and description

(ii)) Description of the software bug detection machine
learning models: the Random Forest model (RFM)
and the Logistic Regression Model (LRM)

(i) Description of the data balancing approach: the
Adaptive Synthetic Sampling (ADASYN)

(iv) Comparison of the performance of the two selected
software bug detection models in the case of
imbalanced data and in the case of balanced dataset

2.1 DATA ACQUISITION AND DESCRIPTION

The study used historical software metrics dataset
obtained from the NASA Metrics Data Program (MDP)
repository which is commonly used for predicting whether
a software has defect or not. The target variable in the
dataset is binary in nature, denoting whether a software
module is fault-prone or non-fault-prone. The dataset is
divided into various .arff files (example, CMI.arff,
JMl.arff, KCl.arff, among others). The dataset is
imbalanced and it also has so many features. Data
balancing was done using the Adaptive Synthetic Sampling
(ADASYN) method presented in section 2.3.

2.2 DEVELOPMENT OF THE MACHINE
LEARNING MODELS FOR SOFTWARE BUG
PREDICTION

2.2.1 Development of the Random Forest Model
(RFM) for Software Bug Prediction

Random Forest Model (RFM) is an ensemble-
based machine learning algorithm which combines the
predictions of multiple decision trees to deliver robust and
accurate results. In classification tasks such as imbalanced
class problems, it is known for its resistance to overfitting
and its ability to model complex decision boundaries. The
decision tree in the RFM works by recursively partitioning
the feature space using axis-aligned splits to minimize an
impurity metric (Gini index in this research). Each split
aims to improve class homogeneity. Given a dataset:
D= {(x(i),y(i)) | x® e R, y® € {0, 1}}, i=1,23,..,n,
where x® = [xil) ,xél) ,xél), ...,xg) ] is a feature vector and
y® is the class label. To build a Decision Tree, at each

internal node N, we seek the feature j and threshold t that
minimizes an impurity criterion I, such as the Gini Index
where:

Gini(S) =1 - (ZX_,pd) (1)

Where, py, is the proportion of sample in class k in subset S.
Given the high variance of individual decision trees, RF
introduces Bootstrap Aggregating (Bagging), where
multiple trees are trained on bootstrap samples. Bootstrap
sample Dy, €D is performed using sample with
replacement for every bootstrap tree T, and a decision tree
is fitted on D, with some randomization. The RF model
prediction, $(x) is based on voting by majority as follows:

§(x) = mode({hy,(x)};-1) 2)

Where, h;,(x) is the prediction of the b tree and B is the
number of trees. Variance in the model output is minimised
by using bagging approach. The analytical expression for
bagging is given as;

1_
Vavg = pVinaiv + ?pVindiv 3)

Where, V,,,4 is the average variance, Vinq;y is the individual

variance, p is the average pairwise correlation between the
base learners.

The strength of RFM lies in reducing p through
feature randomization. At each split within a decision tree
in RFM, only a random subset of features is considered.
This further de-correlate the trees and avoids overfitting.
For a node N, a subset of random features is selected as
Fc{l2..,d}. Among this subset, the best split is
selected based on impurity. This randomness contributes to
model diversity which is necessary in ensemble learning.
Any x® that was not used in the bootstrap sample for tree
T, has its prediction included in the out-of-bag (OOB)
estimate. It should be noted that OOB is used in this context
to refer to the test set. Supposed B; denotes a set of trees not
trained on x (9 is given as:

37(523 = mode({h,(x®) | T,2x®})
4

Where, )733  is the OOB prediction output. This OOB error
gives a reliable estimate of the model generalization
without a separate validation set. RF by default tends to
favour majority classes in imbalanced datasets. However, in
this work, the Adaptive Synthetic Sampling (ADASYN) is
used to increase the minority instances. Class weights are
introduced to penalize misclassification of the minority
class, while Gini index implicitly adjust when data
distribution is balanced via oversampling. Consider a class
imbalance expressed as:

2
.. _ 1 _ VK Wik

Giniggj =1 —Yk=1 (E—kank) ©)

Where, wy, is the weight of class k, and n; is the number

of samples in class k. If ij(b) is used to describe the total

decrease in impurity form feature j in tree Tj, then, feature
importance scoring according to the Gini approach for
RFM model is given as follows:
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Importance(j) = %Zgﬂ ij(b) (6)
In the use-case of this work, RFM attempts to identify
which features are most decisive. The training time
complexity analytical model for each tree is given as;

7. =0(n-d-logn) @)

The time complexity for training B trees with m features is
given as:

2 =0(B n-m-d-logn) 8)

Where, n is the number of samples, d total number of
features, and m is a subset of features in B trees.

2.2.2 Development of Logistic Regression Model
(LRM) for Software Bug Prediction

Logistic Regression Model (LRM) is a binary
classifier model. Unlike Linear Regression which predicts
continuous outcomes, Logistic Regression predicts discrete
outcomes by estimating the probability of class
membership, constrained within the range [0,1]. In the
context of this work, LRM is used to detect rare class
instances, where the minority class is underrepresented.
Hence, data resampling techniques like ADASYN is also
explored to balance the data and identify relevant features.
Let the dataset D be described as:

D= {(x(")’y("))}?; ©)

Where, x© € R™ is the input vector for the i instance,
y® €{0,1} is the class label, and m is the number of
training samples. The LRM adopts the response variable
log-odds which is expressed in respect of the inputs as
follows:
Ply=1|x) \ _ /nT

log (2=t = (61 () (10)
Where, 6 € R™ is the parameter vector to be learned, and
P(-) is the probability function. To solve for P(y = 1| x),
a sigmoid function hg(x) can be obtained as:

1

ho(x) = —S5r (1)

+e=0Tx

Equation 11 maps real valued output to the range [0, 1]
which is interpreted as the probability that the output y =
1.The model is trained to minimize the cost function which
the log-loss is given as:

J©) =-() [2?;1 ((;v@) log ((he)(x®)) +
(1-y9) 10g(1 - ((hg)(x(i))D)] (12)

This penalizes incorrect confident predictions harshly
(example, predicting 0.99 when true class is 0). The cost
function utilised in the model is convex and the convexity
of the cost function must satisfy expression shown as
follows:

V0,0, € R\, VA€ [0,1]: J(26, + (1 —1)6, <
M)+ (1 -DJ6)) (13)

Where, A is used to denote the eigen values for the Hessian
matrix, and J is used to denote the Hessian matrix. In case
of functions that can be differentiated two times, a function
is considered to be convex if and only if the Hessian matrix
of that function is positive semi-definite. The hypothesis
function is defined as:

he(x) = 0(2) (14)

Where z = 0Tx. Then the cost function is the negative
likelihood for m training samples as shown in Equation 12,
which is an average of individual loss term given as:

2(0;x0,y®) = — [y(i) log (hg(x(i))) +(1-

y©)1og (1 - he(x®))] (15)

This implies that if each term £(6; x, y) is convex in 8, then
the whole function is convex as a non-negative weighted

sum of convex functions is convex. For a given data point
(x,y), the sigmoid function can be defined as:

z=(0")(x) = (hg)(x) = a(2) (16)

Then the loss function becomes as shown as:
2(0) = —[ylog(a(2)) + (1 — y) log(1 — a(2))]
(17)

Hessian rule can be used to compute the convexity. First, it
must be established that the complement of the sigmoid
function ¢’(z) is given as:

o'(z) = a(z)(l — a(z)) (18)

Hence, the derivative of the loss can be written as a
standard gradient of logistic loss is given as:

Vot(8) = (0(2) —y)x  (19)

Where, Vg () is the gradient function. Furthermore, the
function , V53£(6) has second derivative H given as as
presented as:

H=V3¢0)=0(2)(1-0(2)) xx" (20)

Notably, (o) (z)(l — O'(Z)) is the derivative of o(z). Since
z = (87)(x), and Vz = x, then is given as;

2 _ (da(2) T_ do(2) d?o(z)
Vo () _( do ) ( do )+ do? @D

The expansion of Equation 21 results in Equation 20. From
Equation 13, the gradient descent optimization technique is
used to minimize /() by computing the partial derivative
with respect to 6; is given in Equation 22:

aa]—((:;) - % ™ (he(x®@) — y®@)x® 22)

The update rule for the parameter vector is given as:
0:0 —aVyj(0) (23)

Where, a is the learning rate. In this research, the function
solver is set to ‘bilinear’. This solver employs Newton-
Raphson method (a second order optimization algorithm)
which enhances convergence properties in logistic models
compared to traditional algorithms. The parameter 6 is
updated using Newton Raphson method with the rule given
as:
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0+ = gt — (H~1Vj(6Y)) (24)

Where, V] (0) is the gradient vector (first derivative), and H
is the Hessian matrix (second derivative). Suppose X €
R™*™ is the design matrix, where each row is denoted as
x®, y € R™*1 s the label vector, and h = o(X6) € R™*!
is the vector of predictions; then the gradient of the cost
function J(8) is given as:

vj(©) =X"(h—y) (25)

Where, h = [hg(x®),hg(x@), ..., hg(x™)]" . The
Hessian matrix is given as:

H=V?J(0) = X"RX (26)

Where R € R™ ™ is a diagonal matrix, then for the second
derivative of the sigmoid function is given as Equation 27
and Equation 28:

Ry = hO(1 — h©) 27)

dZ
%(ZZ) = a(z)(l — a(z))(l — 20(2)) (28)
But since the matrix form is used in Newton Raphson

method, Hessian matrix is sufficient as given in Equation
29:

H =37 hO(1 - h®)xOx®" = XTRX (29)
Then the final Newton Raphson update rule is given as:
6 = 9™ — (XTRX)'XT(h—y) 30)

Notably, Equation 30 is the core update formula
used in Newton Raphson for logistic regression model and
simulation in this work. The selected solver (liblinear) uses
an optimized quasi-Newton method, particularly coordinate
descent. It performs regularization, and often includes
penalty, modifying the cost function to Equation 31:

Jreg(8) =J(6) + 211617 (31)

Where J,..4(6) is the regularized cost function, and 1 is the
regularization strength.Equation 31 adds Al to the Hessian.
This regularized Hessian (shown in Equation 32) is also
positive definite, improving numerical stability and
convergence, is given in Equation 32:

Hyeg = X"RX + I (32)

After training the dataset, for any input x, the binary
classification prediction is made as given in Equation 33;

p= {1 Uha() 208

33
0 otherwise (33)

2.3 Description of the Adaptive Synthetic Sampling
(ADASYN) Used for the Data Balancing

The data balancing is implemented using the
Adaptive Synthetic Sampling (ADASYN) Method which
builds upon the Synthetic Minority Over-sampling
Technique (SMOTE) method by introducing an adaptive
component. Instead of treating all minority samples equally,

ADASYN focuses more on those harder to learn samples
that lie in areas of high majority-class density. Given a
minority sample x;, the number of synthetic samples g; to
be generated is given as:

T

9i = sm
0T

-G (34)

Where, 1; = %, is the difficulty ratio with §; being the

number of majority class samples among the k nearest
neighbours of x;, n,, is the number of minority class
samples, and G is the total number of samples to generate.
Also, in ADASYN, new points are generated using
Equation 35.

k
Xpew = X; + A+ (xl( ) _ xl-) (35)

Particularly, ADASYN prioritizes minority samples near
the decision boundary, assuming that these are more
"difficult" and thus more informative. This introduces a
bias toward "difficult" samples, which can potentially
improve classification performance but also may increase
the risk of adding noise. By the application of the ADSYN
on the dataset, the number of samples of the minority class
is increased to match the majority class sample size.

3. Results and discussion

3.1 The results of the data acquisition and pre-
processing

The case study NASA MDP dataset has about 13 different
data files containing different aspects of the software
historical files. The list of all the features contained in the
12 dataset files available in the case study NASA Metrics
Data Program (MDP) dataset are presented in Table 1. For
each dataset (from CM1 to PC 5) in Table 1, the available
feature is marked ‘Y, while the unavailable is marked ‘N’.

In this work, the PCl.arff file which is one of the
13 files in the NASA MDP dataset is used for the
description of the results obtained. Specifically, the
PCl.arff file has a total of 759 labelled data records with 61
defective instances and 698 non defective instances. Data
balancing was conducted using ADASYN method and the
statistical profile of the original data and the synthetic data
generated using the ADASYN method for the PC1.arff file
is presented in Table 2. According to the results in Table 2,
the original dataset has mean of 15.12 and standard
deviation of 21.61 while the synthetic data has mean of
14.97 and standard deviation of 23.34. The confidence
interval at 95 % confidence level shows that there is no
significant difference between the mean of the original and
the synthetic datasets. Hence, the dataset obtain after the
data balancing using ADASYN method is a good
representation of the original data record.
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Table 1: The Binary Representation of Feature Availability in NASA MDP Datasets

Feature CM | IM KC | MC | MC | MW | PC | PC
1 3 2 1 2
LOC _BLANK
BRANCH_COUNT
CALL_PAIRS

LOC_CODE_AND_COMMENT

LOC_COMMENTS

CONDITION_COUNT

CYCLOMATIC COMPLEXITY

CYCLOMATIC DENSITY

DECISION COUNT

DECISION DENSITY

DESIGN_COMPLEXITY

DESIGN_DENSITY

EDGE_COUNT

ESSENTIAL COMPLEXITY

ESSENTIAL DENSITY

LOC EXECUTABLE

PARAMETER COUNT

GLOBAL DATA COMPLEXITY

GLOBAL DATA DENSITY

HALSTEAD CONTENT

HALSTEAD DIFFICULTY

HALSTEAD_ EFFORT

HALSTEAD ERROR EST

HALSTEAD LENGTH

HALSTEAD LEVEL

HALSTEAD PROG TIME

HALSTEAD VOLUME

MAINTENANCE SEVERITY

MODIFIED CONDITION COUNT

MULTIPLE CONDITION COUNT

NODE_COUNT

o] I B <l Bl I of ol I I Bl Bl Bl [ of o] I/ B/ Bl Bl Il I e I B Bl B <t e of o I B B e e ol I
z| z| Z| Z| Z| <| <| K| K| K| <R ZZ2 Z < Z < ZZ <z Z Z) <z )<z <

zZ| Z| Z| Z| Z| <| <| K| K| K| =K R Zz Z <z < Z Z <z Z Z <z <}z < *—‘;)
o] B Bl Bl e ol e ol B S I B Bl Bl e ol ol el I B B ol B ol e ol el IS B B Bl Bl e el e IS ST I B e

o I el B Bl el el B ISl el Il B ] Bl el el B Bl el el B Bl I -t B Bl I B B IS I R N
o] Bl Bl Bl Bl e of IS o) B Bl B <l e ol ol Il o B B ot Bl e ol e of I B B B ol B ol e ol R of I B S B o e

o] ] Bl Bl e ol ol I B Bl Bl e el e ol e o] I/ /) Bl Bl Il I e BT BT ] ol Bl e ol o] IS B B e e ol I
o] I Bl B e f e of IS I B ] Bl Bl I ol [ of I /8 B B ol Bl e ol el IS B S B S B o el e of I B B e e
<R R K] ] ] ] K R K R ] K] Z Z R K R ] K] R R R K R ] K] R << Z
<R R R ] ] R R K R ] <] Z Z R R R ] ] R R R R ] ] R Wg
o] B Bl B e f e of IS I B <] Bl B <l I ol o] I /8 B B ol Bl e ol e ol IS B S B S B ol Bl e ol e o IS I ST e B e -hg
o] Bl Il B <l e e of IS I B Bl B ol e ol I ol el I B B ol Bl el e ol Il B It B ol B el e o I T ] e B e Ulg

NORMALIZED CYLOMATIC COMPL
EXITY

NUM_OPERANDS

=
=~
=
=~
=~
=~
=
=~
=
=
=~
=

=~
=
=~
=~
=
=~
=
=~
=~
=
=
=~

NUM_OPERATORS

NUM_UNIQUE OPERANDS Y Y Y Y Y Y Y Y Y Y Y Y
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NUM_UNIQUE_OPERATORS Y Y Y Y Y Y Y Y Y Y Y Y
NUMBER OF LINES Y N N Y Y Y Y Y Y Y Y Y
PERCENT _COMMENTS Y N N Y Y Y Y Y Y Y Y Y
LOC TOTAL Y Y Y Y Y Y Y Y Y Y Y Y
Defective Y N Y Y Y Y Y Y Y Y Y Y
label N Y N N N N N N N N N N

Table 2: Statistical profile of the synthetic and original data for PCl.arff in the NASA MDP Datasets

Metric Original ADASYN
Mean 15.12+2.61 1497 =2.69
Median 7.00 9.00

Std. Dev. 21.61 23.34
Variance 466.84 544.70

95% CI (Mean) [10.90, 19.34] [10.27, 19.67]

3.2 The results of the software bug detection using the
Logistic Regression Model

The confusion matrix presented in Figure 1
represents the model's performance on the imbalanced
dataset without any resampling or balancing technique. It
can be observed that: True Negatives (TN): 103 instances
of the negative class were correctly classified. False
Positives (FP): 37 instances of the negative class were
incorrectly classified as positive. False Negatives (FN): 3
instances of the positive class were incorrectly classified as
negative. True Positives (TP): Only 9 instances of the
positive class were correctly classified. The model exhibits
a high tendency to predict the negative class correctly,

which is a common issue in imbalanced datasets. While the
accuracy appears moderately high, this is misleading due to
the severe under-representation of the positive class. The
recall score of 0.75 indicates that 75% of actual positive
cases were correctly detected.

However, the precision is very low (0.196),
implying a large proportion of false positives, and the F1
score (0.310) reflects poor harmonic mean between
precision and recall. This performance strongly indicates
the need for resampling techniques to mitigate class
imbalance and improve sensitivity toward the minority
class.

Confusion Matrix - Baseline

True label

100
0 103 90
60
40
1
20
0 1

Predicted label

Figure 1: Confusion matrix for the baseline model case for the LRM
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With ADASYN applied, the model’s performance
on both classes has improved as shown in Figure 2. The
number of correctly classified positive instances (TP)
increased significantly to 130. The false negatives increased
to 11 compared to 3 in the baseline, but this is a trade-off
due to the increase in sensitivity. False positives (FP)
slightly decreased to 31, and true negatives (TN) increased
to 109. ADASYN creates synthetic minority class samples
based on the difficulty of classification. It appears to have
led to a much better detection of minority instances, as seen
in the sharp increase in TP. Precision improved
substantially to 0.807, and recall rose to 0.922, which
together boosted the F1-score to 0.861. The AUC of 0.904
suggests the model has learned to better discriminate
between classes. The minor increase in training time (from
about 0.019s to about 0.023s) is negligible and justifiable
given the performance gains. Overall, ADASYN
significantly enhanced model robustness and sensitivity
toward the minority class.

Confusion Matrix - After ADASYN

True label

Predicted libel

Figure 2: Confusion matrix after applying ADASYN to
the LRM

3.3 The results of the software bug detection using the
Random Forest Regression Model

The confusion matrix for the baseline Random
Forest model as shown in Figure 3 reveals True Negatives
(TN): 135 majority class instances correctly identified.
False Positives (FP): 5 majority instances misclassified as
minority. False Negatives (FN): 10 minority class instances
misclassified as majority. True Positives (TP): Only 2
minority instances correctly classified. Despite Random
Forest being an ensemble-based, relatively robust classifier,
the baseline performance is heavily biased toward the
majority class. While overall accuracy is high (90.13%), the
metrics related to minority class detection are
unsatisfactory. The recall of 0.167 implies that only
about17% of defective modules were detected. The
precision is also poor (0.286), resulting in a low F1-score of
0.211. The AUC of 0.850 highlights limited -class
separability under the class imbalance condition. This
underperformance reflects Random Forest’s innate bias in
skewed distributions and justifies the application of
resampling techniques such as ADASYN  to improve
sensitivity.

Figure 3: Confusion matrix for baseline case of the
RFM

The results presented in Figure 4 reveals that the
use of ADASYN leads to:

. Substantial improwvement in true positives (TP =
136).

ii.  False negatives decreased from 10 to 5, meaning
more defective modules are now correctly
identified.

1. Increase in false positives (from 5 to 16) as a

trade-off for improved recall.

iv. Slight drop in true negatives to 124, but this is
not a major concern given the model’s improved
recall.

ADASYN improves classification performance by
generating synthetic samples adaptively around hard-to-
learn minority class areas. This improved the model’s recall
from 0.167 to 0.965, demonstrating a substantial gain in
sensitivity. Simultaneously, precision increased to 0.895,
and the Fl-score rose dramatically to 0.928, indicating a
strong balance between precision and recall. AUC reached
0.987, showing excellent class discrimination. The training
time increased to 0.725s, which reflects the additional
complexity of the synthetic sampling and increased dataset
size but remains within acceptable limits. ADASYN made
Random Forest significantly more effective at detecting the
minority class.

Confusion Matrix - After ADASYN

120

100

True label

Predicted label

Figure 4: Confusion Matrix for the RFM after applying
ADASYN data balancing
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3.4 Comparison of the performance of the software
Logistic Regression Model and the Random
Forest Model

Comparison of the performance of the Logistic
Regression model and the Random Forest model is
presented in Table 3 for both the baseline case without data
balancing and the case when data balancing was
implemented using the ADASYN method. The results in
Table 3 show that the data balancing improved the
prediction accuracy of the two models.

Also, the results show that in both cases, the RFM
has higher prediction accuracy than the LRM. The
prediction accuracies for the baseline were 73.68 % and

90.01% for the LRM and the RFM respectively. Equally,
the prediction accuracies for the case with ADASYN-based
data balancing were 85.05 % and 92.53% for the LRM and
the RFM respectively. Hence, in respect of the prediction
accuracy, the RFM with data balancing is recommended for
the software bug detection in the case study dataset.

However, the LRM has lower training time than
the RFM in both cases. The training time of the RFM is
about 18 times the training time of the LRM in the baseline
case and about 31 times the training time of the LRM in the
case with data balancing. In this wise, hybrid model that
can take advantage of the low training time of the LRM and
the high prediction accuracy of the RFM is recommended.

Table 3: Comparison of the performance of the Logistic Regression and the Random Forest

Evaluation Step Accuracy Precision Recall F1 AUC Training Time
Baseline LRM 0.736842 0.195652 0.750000 | 0.310345 | 0.879762 0.019069
Baseline RFM 0.901316 0.285714 0.166667 | 0.210526 | 0.849702 0.347974

ADASYN with LRM | 0.850534 0.807453 0.921986 | 0.860927 | 0.904306 0.023132
ADASYN with RFM | 0.925267 0.894737 0.964539 | 0.928328 | 0.987133 0.725151

3.5 Comparison of the performance of the Random
Forest Model with Some Published Related Works

The comparison of the performance of the
Random Forest model with some published related works is
presented in Table 4. The results showed that the RFM
performed better than the published related works cited

which were published between 2019 and 2024. The results
indicate that with 92.53% prediction accuracy, the RFM
with data balancing outperformed the previously published
software detection models. However, the training time is an
issue that will require further studies to minimize the
training time while maintaining high prediction accuracy.

Table 4 Comparison of the performance of the Random Forest Model with Some Published Related Works

Source Year Method used Accuracy (%)
Our preferred model (using 2025 Random Forest Model with ADASYN-based 92.527%
ADASYN data balancing data balancing
with RFM)
Our model (using RFM 2025 Random Forest Model without data balancing 90.13%
without data balancing)
[20] 2019 Support vector machine and Radial Basis 90.8163 %
Function (RBF) model
[21] 2019 Mean Weighted Least Squares Twin Support 89.85%
Vector Machine (MW-LSTSVM)
[22] 2024 Random Forest Model 85.5%

4. Conclusion

Two machine learning models are presented for
the prediction of software bug. The two models are the
Logistic Regression Model (LRM) and the Random Forest
Model (RFM). The focus in the study is to study the
performance of the models with imbalanced dataset and
with balanced dataset. The data balancing was implemented
using Adaptive Synthetic Sampling (ADASYN). The
results show that data balancing significantly improved on

the software bug prediction accuracy of the two models.
Also, the RFM outperformed the LRM in all the cases
considered. Also, the RFM outperformed the cited related
works published within 2018 and 2024. In any case, the
training time of the RFM is several times higher than that of
the LRM. Hence, while recommending the RFM for the
software bug prediction, it is further suggested that
hybridization of the LRM and the RFM can minimize the
training time while maintain high prediction accuracy.
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