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Abstract— The focus in this work is to provide 
efficient machine learning models that can be 
used to minimize or entirely eliminate bugs from 
software solution before they are deployed to the 
end users. Specifically, the Random Forest model 
(RFM) and the Logistic Regression Model (LRM) 
were considered in the study. The study used 
historical software metrics dataset obtained from 
the NASA Metrics Data Program (MDP) repository. 
The models were trained and evaluated for the 
baseline case without data balancing and also for 
the case were data balancing was implemented 
using Adaptive Synthetic Sampling (ADASYN). 
The results show that the RFM has higher 
prediction accuracy than the LRM.  The prediction 
accuracies for the baseline were 73.68 % and 
90.01% for the LRM and the RFM respectively. 
Equally, the prediction accuracies for the case 
with ADASYN-based data balancing were 85.05 % 
and 92.53% for the LRM and the RFM respectively. 
Hence, in respect of the prediction accuracy, the 
RFM with data balancing is recommended for the 
software bug detection in the case study dataset. 
However, the LRM has lower training time than the 
RFM in both cases.  The training time of the RFM 
is about 18 times the training time of the LRM in 
the baseline case and about 31 times the training 
time of the LRM in the case with data balancing. In 
this wise, hybrid model that can take advantage of 
the low training time of the LRM and the high 
prediction accuracy of the RFM is recommended 
as topic for further studies. 

Keywords— Software Bug Detection, Random 
Forest Model, Logistic Regression Classifier, 
Adaptive Synthetic Sampling (ADASYN), Data 
balancing 

1. INTRODUCTION 

Over the years, software development processes 
and tools have improved with much focus on meeting the 
growing demand for high quality software solutions that are 
devoid of bugs [1,2]. Software bugs are such errors or flaws 
which can cause a software to deviate from it intended 
output or operation [3,4]. In some cases, software bug can 
cause minor damages but in some other cases the 
consequences of software bugs are so high resulting in life 
threatening situation, very high financial losses, and costly 
law suits [5,6]. In practice, software developers try as much 
as possible to detect and eliminate all possible bugs in a 
software solution before deployment [7,8]. However, it is 
always very difficult to achieve that by relying on manual 
checking of the software artifacts [9,10,11]. 

Consequently, over the years, several approaches 
and tools have been developed to facilitate efficient 
software bug detection [12]. One of such approaches in the 
present day is the use of machine and deep learning models 
for the detection or prediction of software bug [13,14]. The 
approach relies on the availability of historical dataset of 
the software artifacts. In addition, the performance of the 
models depends on a number of factors one of which is the 
highly imbalance nature of the software bug dataset. 
Accordingly, experts are relying on effective data balancing 
methods for the enhancement of the software prediction 
models [15,16]. Consequently, in this study, the Random 
Forest Model (RFM) and the Logistic Regression Model 
(LRM) are considered for software bug detection while the 
Adaptive Synthetic Sampling (ADASYN) is used for the 
data balancing [17,18,19]. The performance of the models 
in the baseline case without data balancing and in the case 
where the ADASYN-based data balancing are performed. 
In both cases, the training time is also considered to assess 
both prediction performance and the latency of the model. 
In all, the study use the key performance parameters to 
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recommend the most suitable model for the software bug 
detection.  

 

2. METHODOLOGY 

The focus in this work is to use the Random Forest 
model (RFM) and then, the Logistic Regression Model 
(LRM) for detecting software bug based on the features 
present in a software bug dataset. The details of the dataset, 
the pre-processing and model training are presented in this 
section while section 3 presents the results of the model 
software bug predictions as well as the performance 
evaluation. The key components in this study are listed as 
follows: 

(i) Data acquisition and description 
(ii) Description of the software bug detection machine 

learning models: the Random Forest model (RFM) 
and  the Logistic Regression Model (LRM)  

(iii) Description of the data balancing approach: the 
Adaptive Synthetic Sampling (ADASYN)  

(iv) Comparison of the performance of the two selected 
software bug detection models in the case of 
imbalanced data and in the case of balanced dataset  

 

2.1   DATA ACQUISITION AND DESCRIPTION  

The study used historical software metrics dataset 
obtained from the NASA Metrics Data Program (MDP) 
repository which is commonly used for predicting whether 
a software has defect or not. The target variable in the 
dataset is binary in nature, denoting whether a software 
module is fault-prone or non-fault-prone. The dataset is 
divided into various .arff files (example, CM1.arff, 
JM1.arff, KC1.arff, among others). The dataset is 
imbalanced and it also has so many features. Data 
balancing was done using the Adaptive Synthetic Sampling 
(ADASYN) method presented in section 2.3. 

 

2.2   DEVELOPMENT OF THE MACHINE 
LEARNING MODELS FOR SOFTWARE BUG 
PREDICTION 

 

2.2.1 Development of the Random Forest Model 
(RFM) for Software Bug Prediction 

Random Forest Model (RFM) is an ensemble-
based machine learning algorithm which combines the 
predictions of multiple decision trees to deliver robust and 
accurate results. In classification tasks such as imbalanced 
class problems, it is known for its resistance to overfitting 
and its ability to model complex decision boundaries. The 
decision tree in the RFM works by recursively partitioning 
the feature space using axis-aligned splits to minimize an 
impurity metric (Gini index in this research). Each split 
aims to improve class homogeneity. Given a dataset: 

𝐷 ൌ ቄ൫𝑥ሺ௜ሻ, 𝑦ሺ௜ሻ൯ | 𝑥ሺ௜ሻ ∈ 𝑅ௗ, 𝑦ሺ௜ሻ ∈ ሼ0, 1ሽቅ, 𝑖 ൌ 1, 2, 3, … , 𝑛, 

where 𝑥ሺ௜ሻ ൌ ൣ𝑥ଵ
ሺ௜ሻ, 𝑥ଶ

ሺ௜ሻ, 𝑥ଷ
ሺ௜ሻ, … , 𝑥ௗ

ሺ௜ሻ൧ is a feature vector and 
𝑦ሺ௜ሻ  is the class label. To build a Decision Tree, at each 

internal node 𝑁, we seek the feature 𝑗 and threshold 𝑡 that 
minimizes an impurity criterion 𝐼, such as the Gini Index 
where: 

𝐺𝑖𝑛𝑖ሺ𝑆ሻ ൌ 1 െ ሺ∑ 𝑝௞
ଶ௄

௞ୀଵ ሻ (1) 

Where, 𝑝௞ is the proportion of sample in class 𝑘 in subset 𝑆. 
Given the high variance of individual decision trees, RF 
introduces Bootstrap Aggregating (Bagging), where 
multiple trees are trained on bootstrap samples. Bootstrap 
sample 𝐷௕ ⊆ 𝐷  is performed using sample with 
replacement for every bootstrap tree 𝑇௕ and a decision tree 
is fitted on 𝐷௕  with some randomization. The RF model 
prediction,  𝑦ොሺ𝑥ሻ is based on voting by majority as follows: 

𝑦ොሺ𝑥ሻ ൌ 𝑚𝑜𝑑𝑒ሺሼℎ௕ሺ𝑥ሻሽ௕ୀଵ
஻ ሻ (2) 

Where, ℎ௕ሺ𝑥ሻ is the prediction of the 𝑏௧௛ tree and 𝐵 is the 
number of trees. Variance in the model output is minimised 
by using bagging approach. The analytical expression for 
bagging is given as; 

𝑉௔௩௚ ൌ 𝜌𝑉௜௡ௗ௜௩ ൅
ଵିఘ

஻
𝑉௜௡ௗ௜௩ (3) 

Where, 𝑉௔௩௚ is the average variance, 𝑉௜௡ௗ௜௩ is the individual 
variance, 𝜌 is the average pairwise correlation between the 
base learners. 

The strength of RFM lies in reducing ρ through 
feature randomization. At each split within a decision tree 
in RFM, only a random subset of features is considered. 
This further de-correlate the trees and avoids overfitting. 
For a node 𝑁, a subset of random features is selected as 
ℱ ⊂ ሼ1, 2, … , 𝑑ሽ . Among this subset, the best split is 
selected based on impurity. This randomness contributes to 
model diversity which is necessary in ensemble learning. 
Any 𝑥ሺ௜ሻ that was not used in the bootstrap sample for tree 
𝑇௕  has its prediction included in the out-of-bag (OOB) 
estimate. It should be noted that OOB is used in this context 
to refer to the test set. Supposed 𝐵௜ denotes a set of trees not 
trained on 𝑥ሺ௜ሻ, is given as: 

𝑦ොைை஻
ሺ௜ሻ ൌ 𝑚𝑜𝑑𝑒൫൛ℎ௕൫𝑥ሺ௜ሻ൯ | 𝑇௕∄𝑥ሺ௜ሻൟ൯ 

 (4) 

Where, 𝑦ොைை஻
ሺ௜ሻ  is the OOB prediction output. This OOB error 

gives a reliable estimate of the model generalization 
without a separate validation set. RF by default tends to 
favour majority classes in imbalanced datasets. However, in 
this work, the Adaptive Synthetic Sampling (ADASYN) is 
used to increase the minority instances. Class weights are 
introduced to penalize misclassification of the minority 
class, while Gini index implicitly adjust when data 
distribution is balanced via oversampling. Consider a class 
imbalance expressed as: 

𝐺𝑖𝑛𝑖௔ௗ௝ ൌ 1 െ ∑ ቀ
௪ೖ௡ೖ

∑ ௪ೖ௡ೖೖ
ቁ

ଶ
௄
௞ୀଵ  (5) 

Where, 𝑤௞ is the weight of class 𝑘,  and 𝑛௞ is the number 

of samples in class 𝑘. If ∆𝑥௝
ሺ௕ሻ is used to  describe the total 

decrease in impurity form feature 𝑗 in tree 𝑇௕, then, feature 
importance scoring according to the Gini approach for 
RFM model is given as follows: 
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𝐼𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒ሺ𝑗ሻ ൌ
ଵ

஻
∑ ∆𝑥௝

ሺ௕ሻ஻
௕ୀଵ  (6) 

In the use-case of this work, RFM attempts to identify 
which features are most decisive.  The training time 
complexity analytical model for each tree is given as; 

𝜏௖ ൌ 𝑂ሺ𝑛 ∙ 𝑑 ∙ log 𝑛ሻ  (7) 

The time complexity for training 𝐵 trees with 𝑚 features is 
given as: 

𝜏௖
஻ ൌ 𝑂ሺ𝐵 ∙ 𝑛 ∙ 𝑚 ∙ 𝑑 ∙ log 𝑛ሻ  (8) 

Where, 𝑛  is the number of samples, 𝑑  total number of 
features, and 𝑚 is a subset of features in 𝐵 trees. 

 

2.2.2 Development of Logistic Regression Model 
(LRM) for Software Bug Prediction 

Logistic Regression Model (LRM) is a binary 
classifier model. Unlike Linear Regression which predicts 
continuous outcomes, Logistic Regression predicts discrete 
outcomes by estimating the probability of class 
membership, constrained within the range [0,1]. In the 
context of this work, LRM is used to detect rare class 
instances, where the minority class is underrepresented. 
Hence, data resampling techniques like ADASYN  is also 
explored to balance the data and identify relevant features. 
Let the dataset 𝐷 be described as: 

𝐷 ൌ ൛൫𝑥ሺ௜ሻ, 𝑦ሺ௜ሻ൯ൟ
௜ୀଵ

௠
   (9) 

Where, 𝑥ሺ௜ሻ ∈ 𝑅௡  is the input vector for the 𝑖௧௛  instance, 
𝑦ሺ௜ሻ ∈ ሼ0,1ሽ  is the class label, and 𝑚  is the number of 
training samples. The LRM adopts the response variable 
log-odds which is expressed in respect of the inputs as 
follows: 

log ቀ
௉ሺ௬ୀଵ | ௫ሻ

ଵି௉ሺ௬ୀଵ | ௫ሻ
ቁ ൌ ሺ𝜃்ሻሺ𝑥ሻ    (10) 

Where, 𝜃 ∈ 𝑅௡  is the parameter vector to be learned, and 
𝑃ሺ∙ሻ is the probability function. To solve for 𝑃ሺ𝑦 ൌ 1 | 𝑥ሻ, 
a sigmoid function ℎఏሺ𝑥ሻ can be obtained as: 

ℎఏሺ𝑥ሻ ൌ
ଵ

ଵା௘షഇ೅ೣ
 (11) 

Equation 11 maps real valued output to the range ሾ0, 1ሿ 
which is interpreted as the probability that the output 𝑦 ൌ
1.The model is trained to minimize the cost function which 
the log-loss is given as: 

𝐽ሺ𝜃ሻ ൌ െ ቀ
ଵ

௠
ቁ ቈ∑ ቆ൫𝑦ሺ௜ሻ൯ log ቀሺℎఏሻ൫𝑥ሺ௜ሻ൯ቁ ൅௠

௜ୀଵ

൫1 െ 𝑦ሺ௜ሻ൯ log ൬1 െ ቀሺℎఏሻ൫𝑥ሺ௜ሻ൯ቁ൰ቇ቉ (12) 

This penalizes incorrect confident predictions harshly 
(example, predicting 0.99 when true class is 0). The cost 
function utilised in the model is convex and the convexity 
of the cost function must satisfy expression shown as 
follows: 

∀𝜃ଵ, 𝜃ଶ ∈ 𝑅௡, ∀𝜆 ∈ ሾ0, 1ሿ:   𝐽൫𝜆𝜃ଵ ൅ ሺ1 െ 𝜆ሻ𝜃ଶ ൑
𝜆𝐽ሺ𝜃ଵሻ ൅ ሺ1 െ 𝜆ሻ𝐽ሺ𝜃ଶሻ൯ (13) 

Where, 𝜆 is used to denote the eigen values for the Hessian 
matrix, and 𝐽 is used to denote the Hessian matrix. In case 
of functions that can be differentiated two times, a function 
is considered to be convex if and only if the Hessian matrix 
of that function is positive semi-definite. The hypothesis 
function is defined as: 

ℎఏሺ𝑥ሻ ൌ 𝜎ሺ𝑧ሻ  (14) 

Where 𝑧 ൌ 𝜃்𝑥 . Then the cost function is the negative 
likelihood for 𝑚 training samples as shown in Equation 12, 
which is an average of individual loss term given as: 

ℓ൫𝜃; 𝑥ሺ௜ሻ, 𝑦ሺ௜ሻ൯ ൌ െ ቂ𝑦ሺ௜ሻ log ቀℎఏ൫𝑥ሺ௜ሻ൯ቁ ൅ ൫1 െ

𝑦ሺ௜ሻ൯ log ቀ1 െ ℎఏ൫𝑥ሺ௜ሻ൯ቁቃ (15) 

This implies that if each term ℓሺ𝜃; 𝑥, 𝑦ሻ is convex in 𝜃, then 
the whole function is convex as a non-negative weighted 
sum of convex functions is convex. For a given data point 
ሺ𝑥, 𝑦ሻ, the sigmoid function can be defined as: 

𝑧 ൌ ሺ𝜃்ሻሺ𝑥ሻ ⟹ ሺℎఏሻሺ𝑥ሻ ൌ 𝜎ሺ𝑧ሻ (16) 

Then the loss function becomes as shown as: 

ℓሺ𝜃ሻ ൌ െൣ𝑦 log൫𝜎ሺ𝑧ሻ൯ ൅ ሺ1 െ 𝑦ሻ log൫1 െ 𝜎ሺ𝑧ሻ൯൧
 (17) 

Hessian rule can be used to compute the convexity. First, it 
must be established that the complement of the sigmoid 
function 𝜎ᇱሺ𝑧ሻ is given as: 

𝜎ᇱሺ𝑧ሻ ൌ 𝜎ሺ𝑧ሻ൫1 െ 𝜎ሺ𝑧ሻ൯ (18) 

Hence, the derivative of the loss can be written as a 
standard gradient of logistic loss is given as: 

∇ఏℓሺ𝜃ሻ ൌ ሺ𝜎ሺ𝑧ሻ െ 𝑦ሻ𝑥 (19) 

Where, ∇ఏሺ∙ሻ  is the gradient function. Furthermore, the 
function , ∇ఏ

ଶ ℓሺ𝜃ሻ  has second derivative H given as as 
presented as: 

𝐻 ൌ ∇ఏ
ଶ ℓሺ𝜃ሻ ൌ 𝜎ሺ𝑧ሻ൫1 െ 𝜎ሺ𝑧ሻ൯ ∙ 𝑥𝑥் (20) 

Notably, ሺ𝜎ሻሺ𝑧ሻ൫1 െ 𝜎ሺ𝑧ሻ൯ is the derivative of 𝜎ሺ𝑧ሻ. Since 
𝑧 ൌ ሺ𝜃்ሻሺ𝑥ሻ, and ∇𝑧 ൌ 𝑥, then is given as; 

∇ఏ
ଶ ℓሺ𝜃ሻ ൌ ቀ

ௗఙሺ௭ሻ

ௗఏ
ቁ

்
∙ ቀ

ௗఙሺ௭ሻ

ௗఏ
ቁ ൅

ௗమఙሺ௭ሻ

ௗఏమ  (21) 

The expansion of Equation 21 results in Equation 20. From 
Equation 13, the gradient descent optimization technique is 
used to minimize 𝐽ሺ𝜃ሻ by computing the partial derivative 
with respect to 𝜃௝ is given in Equation 22: 

డ௃ሺఏሻ

డఏೕ
ൌ

ଵ

௠
∑ ൫ℎఏ൫𝑥ሺ௜ሻ൯ െ 𝑦ሺ௜ሻ൯𝑥௝

ሺ௜ሻ௠
௜ୀଵ   (22) 

The update rule for the parameter vector is given as: 

𝜃: 𝜃 െ 𝛼∇ఏ𝐽ሺ𝜃ሻ (23) 

Where, 𝛼 is the learning rate. In this research, the function 
solver is set to ‘bilinear’. This solver employs Newton-
Raphson method (a second order optimization algorithm) 
which enhances convergence properties in logistic models 
compared to traditional algorithms. The parameter 𝜃   is 
updated using Newton Raphson method with the rule given 
as: 
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𝜃ሺ௧ାଵሻ ൌ 𝜃௧ െ ൫𝐻ିଵ∇𝐽ሺ𝜃௧ሻ൯  (24) 

Where, ∇𝐽ሺ𝜃ሻ is the gradient vector (first derivative), and 𝐻 
is the Hessian matrix (second derivative). Suppose 𝑋 ∈
𝑅௠ൈ௡ is the design matrix, where each row is denoted as 
𝑥ሺ௜ሻ, 𝑦 ∈ 𝑅௠ൈଵ is the label vector, and ℎ ൌ 𝜎ሺ𝑋𝜃ሻ ∈ 𝑅௠ൈଵ 
is the vector of predictions; then the gradient of the cost 
function 𝐽ሺ𝜃ሻ is given as: 

∇𝐽ሺ𝜃ሻ ൌ 𝑋்ሺℎ െ 𝑦ሻ (25) 

Where, ℎ ൌ ൣℎఏ൫𝑥ሺଵሻ൯, ℎఏ൫𝑥ሺଶሻ൯, … , ℎఏ൫𝑥ሺ௠ሻ൯൧
்

. The 
Hessian matrix is given as: 

𝐻 ൌ ∇ଶ𝐽ሺ𝜃ሻ ൌ 𝑋்𝑹𝑋  (26) 

Where 𝑹 ∈ 𝑅௠ൈ௠ is a diagonal matrix, then for the second 
derivative of the sigmoid function  is given as Equation 27 
and Equation 28: 

𝑹௜௜ ൌ ℎሺ௜ሻ൫1 െ ℎሺ௜ሻ൯  (27) 

ௗమఙሺ௭ሻ

ௗ௭మ ൌ 𝜎ሺ𝑧ሻ൫1 െ 𝜎ሺ𝑧ሻ൯൫1 െ 2𝜎ሺ𝑧ሻ൯ (28) 

But since the matrix form is used in Newton Raphson 
method, Hessian matrix is sufficient as given in Equation 
29: 

𝐻 ൌ ∑ ℎሺ௜ሻ൫1 െ ℎሺ௜ሻ൯𝑥ሺ௜ሻ𝑥ሺ௜ሻ೅௠
௜ୀଵ ൌ 𝑋்𝑅𝑋 (29) 

Then the final Newton Raphson update rule is given as: 

𝜃ሺ௧ାଵሻ ൌ 𝜃ሺ௧ሻ െ ሺ𝑋்𝑹𝑋ሻିଵ𝑋்ሺℎ െ 𝑦ሻ (30) 

Notably, Equation 30 is the core update formula 
used in Newton Raphson for logistic regression model and 
simulation in this work. The selected solver (liblinear) uses 
an optimized quasi-Newton method, particularly coordinate 
descent. It performs regularization, and often includes 
penalty, modifying the cost function to Equation 31: 

𝐽௥௘௚ሺ𝜃ሻ ൌ 𝐽ሺ𝜃ሻ ൅
ఒ

ଶ
‖𝜃‖ଶ (31) 

Where 𝐽௥௘௚ሺ𝜃ሻ is the regularized cost function, and 𝜆 is the 
regularization strength.Equation 31 adds 𝜆𝐼 to the Hessian. 
This regularized Hessian (shown in Equation 32) is also 
positive definite, improving numerical stability and 
convergence, is given in Equation 32: 

𝐻௥௘௚ ൌ 𝑋்𝑹𝑋 ൅ 𝜆𝐼  (32) 

After training the dataset, for any input 𝑥 , the binary 
classification prediction is made as given in Equation 33; 

𝑦ො ൌ ቄ1     𝑖𝑓 ℎఏሺ𝑥ሻ ൒ 0.5
0     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒        

 (33) 

 

2.3   Description of the Adaptive Synthetic Sampling 
(ADASYN) Used for the Data Balancing  

The data balancing is implemented using the 
Adaptive Synthetic Sampling (ADASYN) Method which 
builds upon the Synthetic Minority Over-sampling 
Technique (SMOTE) method by introducing an adaptive 
component. Instead of treating all minority samples equally, 

ADASYN focuses more on those harder to learn samples 
that lie in areas of high majority-class density. Given a 
minority sample 𝑥௜, the number of synthetic samples 𝑔௜ to 
be generated is given as: 

𝑔௜ ൌ
௥೔

∑ ௥ೕ
೙೘
ೕసభ

∙ 𝐺   (34) 

Where, 𝑟௜ ൌ
ఋ೔

௞
, is the difficulty ratio with 𝛿௜  being the 

number of majority class samples among the 𝑘  nearest 
neighbours of 𝑥௜ , 𝑛௠  is the number of minority class 
samples, and 𝐺 is the total number of samples to generate. 
Also, in ADASYN, new points are generated using 
Equation 35.  

𝑥௡௘௪ ൌ 𝑥௜ ൅ 𝜆 ∙ ൫𝑥௜
ሺ௞ሻ െ 𝑥௜൯  (35) 

Particularly, ADASYN prioritizes minority samples near 
the decision boundary, assuming that these are more 
"difficult" and thus more informative. This introduces a 
bias toward "difficult" samples, which can potentially 
improve classification performance but also may increase 
the risk of adding noise.  By the application of the ADSYN 
on the dataset, the number of samples of the minority class 
is increased to match the majority class sample size. 

 

3. Results and discussion 

 

3.1 The results of the data acquisition and pre-
processing 

The case study NASA MDP dataset has about 13 different 
data files containing different aspects of the software 
historical files.  The list of all the features contained in the 
12 dataset files available in the case study NASA Metrics 
Data Program (MDP) dataset are presented in Table 1. For 
each dataset (from CM1 to PC 5) in Table 1, the available 
feature is marked ‘Y’, while the unavailable is marked ‘N’.  

In this work, the PC1.arff file which is one of the 
13 files in the NASA MDP dataset is used for the 
description of the results obtained. Specifically, the 
PC1.arff file has a total of 759 labelled data records with 61 
defective instances and 698 non defective instances. Data 
balancing was conducted using ADASYN method and the 
statistical profile of the original data and the synthetic data 
generated using the ADASYN method for the PC1.arff file 
is presented in Table 2. According to the results in Table 2, 
the original dataset has mean of 15.12 and standard 
deviation of 21.61 while the synthetic data has mean of 
14.97 and standard deviation of 23.34. The confidence 
interval at 95 % confidence level shows that there is no 
significant difference between the mean of the original and 
the synthetic datasets. Hence, the dataset obtain after the 
data balancing using ADASYN method is a good 
representation of the original data record. 
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Table 1: The Binary Representation of Feature Availability in NASA MDP Datasets 

Feature CM
1 

JM
1 

KC
1 

KC
3 

MC
1 

MC
2 

MW
1 

PC
1 

PC
2 

PC
3 

PC
4 

PC
5 

LOC_BLANK Y Y Y Y Y Y Y Y N Y Y Y 

BRANCH_COUNT Y Y Y Y Y Y Y Y Y Y Y Y 

CALL_PAIRS Y N N Y Y Y Y Y Y Y Y Y 

LOC_CODE_AND_COMMENT Y Y Y Y Y Y Y Y Y Y Y Y 

LOC_COMMENTS Y Y Y Y Y Y Y Y Y Y Y Y 

CONDITION_COUNT Y N N Y Y Y Y Y Y Y Y Y 

CYCLOMATIC_COMPLEXITY Y Y Y Y Y Y Y Y Y Y Y Y 

CYCLOMATIC_DENSITY Y N N Y Y Y Y Y Y Y Y Y 

DECISION_COUNT Y N N Y Y Y Y Y Y Y Y Y 

DECISION_DENSITY Y N N Y N Y Y Y Y Y Y N 

DESIGN_COMPLEXITY Y Y Y Y Y Y Y Y Y Y Y Y 

DESIGN_DENSITY Y N N Y Y Y Y Y Y Y Y Y 

EDGE_COUNT Y N N Y Y Y Y Y Y Y Y Y 

ESSENTIAL_COMPLEXITY Y Y Y Y Y Y Y Y Y Y Y Y 

ESSENTIAL_DENSITY Y N N Y Y Y Y Y Y Y Y Y 

LOC_EXECUTABLE Y Y Y Y Y Y Y Y Y Y Y Y 

PARAMETER_COUNT Y N N Y Y Y Y Y Y Y Y Y 

GLOBAL_DATA_COMPLEXITY N N N Y Y Y N N N N N Y 

GLOBAL_DATA_DENSITY N N N Y Y Y N N N N N Y 

HALSTEAD_CONTENT Y Y Y Y Y Y Y Y Y Y Y Y 

HALSTEAD_DIFFICULTY Y Y Y Y Y Y Y Y Y Y Y Y 

HALSTEAD_EFFORT Y Y Y Y Y Y Y Y Y Y Y Y 

HALSTEAD_ERROR_EST Y Y Y Y Y Y Y Y Y Y Y Y 

HALSTEAD_LENGTH Y Y Y Y Y Y Y Y Y Y Y Y 

HALSTEAD_LEVEL Y Y Y Y Y Y Y Y Y Y Y Y 

HALSTEAD_PROG_TIME Y Y Y Y Y Y Y Y Y Y Y Y 

HALSTEAD_VOLUME Y Y Y Y Y Y Y Y Y Y Y Y 

MAINTENANCE_SEVERITY Y N N Y Y Y Y Y Y Y Y Y 

MODIFIED_CONDITION_COUNT Y N N Y Y Y Y Y Y Y Y Y 

MULTIPLE_CONDITION_COUNT Y N N Y Y Y Y Y Y Y Y Y 

NODE_COUNT Y N N Y Y Y Y Y Y Y Y Y 

NORMALIZED_CYLOMATIC_COMPL
EXITY 

Y N N Y Y Y Y Y Y Y Y Y 

NUM_OPERANDS Y Y Y Y Y Y Y Y Y Y Y Y 

NUM_OPERATORS Y Y Y Y Y Y Y Y Y Y Y Y 

NUM_UNIQUE_OPERANDS Y Y Y Y Y Y Y Y Y Y Y Y 
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3.4 Comparison of the performance of the software 
Logistic Regression Model and the Random 

Forest Model 

Comparison of the performance of the Logistic 
Regression model and the Random Forest model is 
presented in Table 3 for both the baseline case without data 
balancing and the case when data balancing was 
implemented using the ADASYN method. The results in 
Table 3 show that the data balancing improved the 
prediction accuracy of the two models. 

Also, the results show that in both cases, the RFM 
has higher prediction accuracy than the LRM.  The 
prediction accuracies for the baseline were 73.68 % and 

90.01% for the LRM and the RFM respectively. Equally, 
the prediction accuracies for the case with ADASYN-based 
data balancing were 85.05 % and 92.53% for the LRM and 
the RFM respectively. Hence, in respect of the prediction 
accuracy, the RFM with data balancing is recommended for 
the software bug detection in the case study dataset. 

However, the LRM has lower training time than 
the RFM in both cases.  The training time of the RFM is 
about 18 times the training time of the LRM in the baseline 
case and about 31 times the training time of the LRM in the 
case with data balancing. In this wise, hybrid model that 
can take advantage of the low training time of the LRM and 
the high prediction accuracy of the RFM is recommended. 

 

Table 3: Comparison of the performance of the Logistic Regression and the Random Forest 

Evaluation Step Accuracy Precision Recall F1 AUC Training Time 

Baseline LRM 0.736842 0.195652 0.750000 0.310345 0.879762 0.019069 

Baseline  RFM 0.901316 0.285714 0.166667 0.210526 0.849702 0.347974 

       

ADASYN with  LRM 0.850534 0.807453 0.921986 0.860927 0.904306 0.023132 

ADASYN with RFM 0.925267 0.894737 0.964539 0.928328 0.987133 0.725151 

 

 3.5 Comparison of the performance of the Random 
Forest Model with Some Published Related Works 

The comparison of the performance of the 
Random Forest model with some published related works is 
presented in Table 4. The results showed that the RFM 
performed better than the published related works cited 

which were published between 2019 and 2024. The results 
indicate that with 92.53% prediction accuracy, the RFM 
with data balancing outperformed the previously published 
software detection models. However, the training time is an 
issue that will require further studies to minimize the 
training time while maintaining high prediction accuracy. 

 

Table 4 Comparison of the performance of the Random Forest Model with Some Published Related Works 

Source Year Method used Accuracy (%) 

Our preferred model (using 
ADASYN data balancing 

with RFM) 

2025 Random Forest Model with ADASYN-based 
data balancing 

   92.527% 

Our model (using RFM 
without data balancing) 

2025 Random Forest Model without data balancing    90.13% 

[20]    2019 Support vector machine and Radial Basis 
Function (RBF) model 

90.8163 % 

[21] 2019 Mean Weighted Least Squares Twin Support 
Vector Machine (MW-LSTSVM) 

89.85%   

[22] 2024 Random Forest Model    85.5% 

4. Conclusion 

Two machine learning models are presented for 
the prediction of software bug. The two models are the 
Logistic Regression Model (LRM) and the Random Forest 
Model (RFM). The focus in the study is to study the 
performance of the models with imbalanced dataset and 
with balanced dataset. The data balancing was implemented 
using Adaptive Synthetic Sampling (ADASYN). The 
results show that data balancing significantly improved on 

the software bug prediction accuracy of the two models. 
Also, the RFM outperformed the LRM in all the cases 
considered. Also, the RFM outperformed the cited related 
works published within 2018 and 2024.  In any case, the 
training time of the RFM is several times higher than that of 
the LRM. Hence, while recommending the RFM for the 
software bug prediction, it is further suggested that 
hybridization of the LRM and the RFM can minimize the 
training time while maintain high prediction accuracy.  
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