
Journal of Multidisciplinary Engineering Science and Technology (JMEST)
ISSN: 2458-9403

Vol. 12 Issue 5, May - 2025

www.jmest.org
JMESTN42354559 17618

COMPARATIVE PERFORMANCE ASSESSMENT OF LINEAR SUPPORT VECTOR MACHINE AND
RANDOM FOREST MODEL FOR SOFTWARE DEFECT PREDICTION

Nwachukwu-Nwokeafor Kenneth C1

Department of Computer Engineering,

Michael Okpara University of Agric, Umudike,
Nwachukwu.nkenneth @mouau.edu.ng, nwachukwuken72@gmail.com

Simeon Ozuomba2

Department of Computer Engineering,
University of Uyo, Akwa Ibom, Nigeria

simeonoz@yahoomail.com , simeonozuomba@uniuyo.edu.ng

Philip Asuquo3

Department of Computer Engineering,
University of Uyo, Akwa Ibom, Nigeria

philipasuquo@uniuyo.edu.ng

Stephen Bliss U.4

Department of Computer Engineering,
University of Uyo, Akwa Ibom, Nigeria

blissstephen@uniuyo.edu.ng

Abstract— generally, software defect datasets
are highly imbalanced thereby affecting the bug
prediction model performance. Therefore, in this
work, comparative performance assessment of
Linear Support Vector Machine (LinearSVC) and
Random Forest (RF) model for software defect
prediction is presented. Specifically, the essence
of this study is to evaluate the two machine
learning models’ performance when trained with
imbalanced labelled software defect datasets and
also when trained with the balanced labelled
software defect datasets. Labelled software defect
datasets obtained from NASA Metrics Data
Program (MDP) repository was used for the study
and the Synthetic Minority Over-sampling
Technique (SMOTE) was used for class balancing
of the minority class. The results show that the
LinearSVC has higher accuracy of 91.45 % in the
baseline case without data balancing while the
Random Forest outperformed the LinearSVC in
the SMOTE data balanced case with accuracy of
92.86%. Although, the LinearSVC performed better
with imbalanced dataset, however, its accuracy
dropped by about 3.59% when the dataset is
balanced, whereas, the Random Forest performed
better with balanced dataset as its accuracy
increased by about 2,73% when the dataset is
balanced using SMOTE. Furthermore, precision,
recall, F1 score, AUC and training time of the
LinearSVC and the Random Forest increased
when the balanced dataset is used. Essentially,
data balancing can generally improve the model
performance while at the same time increase the
training time. Finally, the results showed that the
LinearSVC is more suitable for imbalanced
dataset while the random Forest is the best model
in the case of balanced dataset.

Keywords— Linear Support Vector Machine,
Synthetic Minority Over-Sampling Technique
(SMOTE), Random Forest Model, Data Balancing,
Software Defect Prediction

1. Introduction

 Nowadays, machine learning is increasing used to
enhance the software development process [1,2].
Particularly, in the area of software defect prediction,
researchers have gone a long way to train and evaluate
several models that can efficiently predict the presence of
defects in software artifacts [3,4]. The use of such machine
learning tools can lead to autonomous software defect
detection and correction mechanisms [5,6]. However, one
of the major challenges of the software defect prediction
models is that software defect datasets are highly
imbalanced [7,8]. This requires careful balance among the
key performance parameters such as, accuracy and training
time.

Accordingly, this study, focuses on evaluating two
machine learning models performance using the
imbalanced dataset as the baseline and the balanced dataset
as the target case. Particularly, in this study the Linear
Support Vector Machine (Linear SVC) and Random Forest
(RF) model are used for the Software Defect Prediction
(SDP) on a collection of labelled software defect datasets
[9,10]. The Synthetic Minority Over-sampling Technique
(SMOTE) was used for the class balancing of the dataset
[11,12]. The performance of the defect prediction models in
terms of accuracy, precision, recall, F1 score, AUC and
training time are evaluated for the baseline case with
imbalanced dataset and for the target case with SMOTE
balanced dataset. The essence of the study is to identify
which model is suitable for the imbalanced dataset case and
for the balanced dataset case. It is also the focus of the

Journal of Multidisciplinary Engineering Science and Technology (JMEST)
ISSN: 2458-9403

Vol. 12 Issue 5, May - 2025

www.jmest.org
JMESTN42354559 17619

study to identify how the data balancing affect each of the
key performance parameters of the prediction models.

2. Methodology

The essence of this study is to evaluate two
different machine learning models’ performance when
trained with imbalanced labelled software defect datasets
and also when trained with the balanced labelled software
defect datasets. Particularly, in this study the Linear
Support Vector Machine (Linear SVC) and Random Forest
(RF) model are used for Software Defect Prediction (SDP)
on a collection of labelled software defect datasets obtained
from NASA Metrics Data Program (MDP) repository. The
datasets have diverse range of metrics including size,
complexity (e.g., McCabe metrics), and Halstead metrics.
Also, the datasets have imbalanced class distribution, which
is common in defect prediction datasets due to the naturally
lower occurrence of defective modules compared to non-

defective ones. After the datasets are pre-processed, the
data was split into 70/30 for training and validation
respectively. Then, the Random Forest (RF) and the Linear
SVC models were trained with the imbalanced datasets.
This is referred to as the baseline case.

Furthermore, the Synthetic Minority Over-
sampling Technique (SMOTE) was used for class balancing
of the dataset. Again, the balanced datasets were split into
70/30 for training and validation respectively. Then, the
Random Forest (RF) and the Linear SVC models were
again trained with the balanced datasets. The models
performance are compared in terms of accuracy, precision,
recall, F1 score and training time.

The procedure used for the RF classification
model is presented as Algorithm 1. The procedure used for
the Linear SVC model is presented as Algorithm 2 while
the procedure for the SMOTE data balancing is presented
as Algorithm 3.

Algorithm 1: The Procedure for the Random Forest Model
Step 1: Begin
Step 2: Inputs:
Step 3: Training dataset 𝐷 ൌ ൛൫𝑥ሺ௜ሻ, 𝑦ሺ௜ሻ൯ ൟ

௜ୀଵ

௡

Step 4: Number of decision trees 𝐵
Step 5: Total number of features 𝑑
Step 6: Number of features to consider at each split 𝑚 ൌ √𝑑
Step 7: Output:
Step 8: Ensemble classifier 𝐻ሺ𝑥ሻ ൌ 𝑚𝑜𝑑𝑒൫ℎଵሺ𝑥ሻ, ℎଶሺ𝑥ሻ, … , ℎ஻ሺ𝑥ሻ൯
Step 9: Initialize Random Forest
Step 10: Set 𝐵 the number of trees to be grown
Step 11: For each tree 𝑏 ൌ 1 to 𝐵:
Step 12: Draw a bootstrap sample 𝐷௕ of size 𝑛 from 𝐷 with replacement
Step 13: Train decision tree ℎ௕
Step 14: For each node of the tree:
Step 15: Randomly set 𝑚 ൑ 𝑑 features ℱ ⊂ ሼ1, 2, … , 𝑑ሽ
Step 16: Find the best split over ℱ that maximizes the impurity (Gini
Index)
Step 17: If max_depth is attained, elfseif the minimum number of

samples per node is satisfied)
Step 18: Store the trained tree ℎ௕ሺ𝑥ሻ
Step 19: End for
Step 20: Finalize the ensemble model 𝐻ሺ𝑥ሻ ൌ 𝑚𝑜𝑑𝑒൫ℎଵሺ𝑥ሻ, ℎଶሺ𝑥ሻ, … , ℎ஻ሺ𝑥ሻ൯
Step 21: End for
Step 22: Predict Bug
Step 23: Given a test input 𝑥 ∈ 𝑅ௗ
Step 24: For each tree ℎ௕ ∈ 𝐻
Step 25: compute prediction 𝑦௕ ൌ ℎ௕ሺ𝑥ሻ
Step 26: Aggregate prediction through majority vote: 𝑦ො ൌ arg max௞∈ሼ଴,ଵሽ ∑ ሺℎ௕ሺ𝑥ሻ ൌ 𝑘ሻ஻

௕ୀଵ

Step 27: compute OOB prediction: 𝑦ොைை஻
ሺ௜ሻ ൌ 𝑚𝑜𝑑𝑒൫൛ℎ௕൫𝑥ሺ௜ሻ൯ | 𝑏 ∈ 𝐵௜ൟ൯

Step 28: return predicted values

Journal of Multidisciplinary Engineering Science and Technology (JMEST)
ISSN: 2458-9403

Vol. 12 Issue 5, May - 2025

www.jmest.org
JMESTN42354559 17620

Step 29: end for
Step 30: end

Algorithm 2: The Procedure for the Linear SVC Model
Step 1: Begin
Step 2: Input:
Step 3: Dataset 𝐷 ൌ ሼሺ𝑥௜, 𝑦௜ሻሽ௜ୀଵ

௡
Step 4: Regularization parameter 𝐶
Step 5: Tolerance 𝜖
Step 6: Maximum iteration 𝑇௠௔௫
Step 7: Output:
Step 8: weight vector 𝑤, Intercept 𝑏
Step 9: Set 𝑤ሺ଴ሻ ൌ 0, 𝑏ሺ଴ሻ ൌ 0
Step 10: Initialize dual variables 𝛼ሺ଴ሻ ൌ 0
Step 11: if 𝑑𝑢𝑎𝑙 𝑖𝑠 𝑇𝑟𝑢𝑒:
Step 12: solve the dual problem using coordinate descent:

Step 13: minఈ ቀ
ଵ

ଶ
ቁ ሺ𝛼்ሻ𝑄𝛼 െ ሺ𝑒்ሻ𝛼, subject to 0 ൑ 𝛼௜ ൑ 𝐶, 𝑖 ൌ 1,2, … , 𝑛

 Where, 𝑄௜௝ ൌ ቀሺ𝑦௜ሻ൫𝑦௝൯ሺ𝑥௜
்ሻ൫𝑥௝൯ቁ ൅ 𝛿௜௝

𝑒 ൌ 1 (that is, vector of ones)
Step 14: end if
Step 15: for training sample or coordinate 𝑖 where 𝑖 𝑖𝑠 𝑎 𝑚𝑒𝑚𝑏𝑒𝑟 𝑜𝑓 𝛼
Step 16: Compute gradient: 𝐺௜ ൌ 𝑦௜𝑤்𝑥௜ െ 1

Step 17: Compute: 𝑃𝐺௜ ൌ ቐ
minሺ0, 𝐺௜ሻ 𝑖𝑓 𝛼௜ ൌ 0
maxሺ0, 𝐺௜ሻ 𝑖𝑓 𝛼௜ ൌ 𝐶
𝐺௜ 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 where PG is the projected gradient

Step 18 if |𝑃𝐺௜| ൏ 𝜖
Step 19: Skip update for 𝑖
Step 20: else
Step 21: Update: 𝛼௜ ← 𝛼௜ െ

ீ೔

ொ೔೔
, where 𝑄௜௜ is the dual Hessian metric for the 𝑖

instance
Step 22: 𝛼௜ ← 𝑚𝑖𝑛൫𝐶, 𝑚𝑎𝑥ሺ0, 𝛼௜ሻ൯ // (project this value into box constraint)
Step 23: Update weight vector: 𝑤 ← 𝑤 ൅ ሺ𝛼௜

௧ାଵ െ 𝛼௜
௧ሻ𝑦௜𝑥௜

Step 24: end if
Step 25: if convergence is reached
Step 26: compute intercept: 𝑏 ൌ

ଵ

|ௌ|
∑ ሺ𝑦௜ െ 𝑤்𝑥௜ሻ௜∈ௌ

 Where 𝑆 ൌ ሼ𝑖 | 0 ൑ 𝛼௜ ൑ 𝐶ሽ is the set of support vectors
Step 27: end if
Step 28: end for
Step 29: For a given input 𝑥, predict the class label as: 𝑦ො ൌ 𝑠𝑖𝑔𝑛ሺ𝑤்𝑥 ൅ 𝑏ሻ
Step 30: end

JM

pre
file
Sho

MESTN423545

Algorith
Step 1

Step 2
Step 3
Step 4
Step 5
Step 6
denote

Step 8
Step 9
Step 1
Step 1
Step 1

The su
esented in Ta
es each diffe
own in Table

559

hm 3: The
1: Input:

(ii) Data
(iii) Mino
(iv) Num
(v) Num
(vi) New

2: Output:
3: For each
4: Find t
5:
6:
ed 𝑥௝.

8:
9:
10: return
11: end fo
12: end
3. Results an

ummary of t
able 1. The d
erent software
1. The screen

T

e Procedur

aset: 𝐷 ൌ ሼ𝑥
ority class s

mber of synt
mber of nea
w samples c

 Augmente
h 𝑥௜ in 𝑋௠௜௡௢௥

he 𝑘 neare
For every

 Ap
end for

n 𝑋௠௜௡௢௥௜௧௬
ᇱ a

r

nd Discussion

the NASA-M
dataset has ab
e historical d

nshots in Figur

Table 1: The s

w

re for the S

𝑥௜, 𝑦௜ሽ௜ୀଵ
௡

samples: 𝑋௠

thetic samp
rest neighb
ontrol facto

ed minority

௥௜௧௬:
st neighbou

y one of the
Rando

ppend 𝑥௡௘௪

s the new b

n

MDP datasets
bout 13 differ
data records,
re 1 and Figur

summary of t

Journal

www.jmest.or

Synthetic

௠௜௡௢௥௜௧௬ ൌ ሼ𝑥ଵ

ples to gen
bours: 𝑘
or: 𝜆
class set w

urs of 𝑥௜ wi
e synthetic
omly choos

to 𝑋௠௜௡௢௥௜௧௬
ᇱ .

balanced m

s is
rent
, as
re 2

sho
row
CM
of
con

the NASA-M

of Multidisciplin

rg

Minority O

ଵ, 𝑥ଶ, … , 𝑥௡ሽ
erate: 𝑁

with synthe

thin 𝑋௠௜௡௢௥௜௧

sample wh
se one of

.

minority dat

ow the first-f
ws (o SMOTE
M1.arff datase

the synthetic
nfidence level

MDP datasets

nary Engineerin

Over-samp

tic samples

௧௬ using Euc
ich will be
the 𝑘 nea

aset.

five rows (or
E generated s
t. The summa
c and origina
l is presented i

is presented i

ng Science and T

Vol. 12

pling (SMO

s: 𝑋௠௜௡௢௥௜௧௬
ᇱ

clidean dist
created:

arest neigh

riginal data)
synthetic) data
ary of the stati
al CM1.arff
in Table 2.

in

Technology (JME
ISSN: 2458-9

2 Issue 5, May - 2

17

OTE)

tance

hbours,

and the last-
a for each of
istical descript
dataset at 9

EST)
9403
2025

621

five
f the
tion

95%

JM

pre
mo
acc
is p
of
the
cha
par
mo

we
91.
Ho
in t

MESTN423545

Fig

Baselin
F

SMOT
F

Baselin

SMOT

The m
esented in Tab
odel performan
curacy of the
presented in F
the normalize

e LinearSVC
art for the
rameters of
odels is presen

Accord
ell as Figure
.45 % in th

owever, the Ra
the SMOTE d

559

Figure 1: T

gure 2: The sc

ne Random
Forest

E Random
Forest

ne Linear SV

TE Linear SV

model perform
ble 2 while Ta
nce. The bar c
Random Fore

Figures 3. Th
ed training tim
models is pr
percentage
the Random

nted in Figures

ding to the resu
3, the Linear

he baseline c
andom Forest

data balanced

The screensh

creenshot sho

Tab

Accuracy

0.901316

0.928571

T

Accura

VC 0.9144

VC 0.8785

mance for Ra
able 3 present
chart for the c
est and the Lin
e bar chart fo
me of the Ran
resented in Fi
change in t

Forest and
s 5.

ults in Table 2
rSVC has hig
case without
t outperformed
case with accu

w

ot showing th

owing the last

ble 2: Random

Precision

0.285714

0.894737

Table 3: Linea

acy Precis

474 0.4000

571 0.8192

andom Forest
ts the LinearS
omparison of
nearSVC mod
r the compari
ndom Forest
igures 4.The
the performa

the LinearS

2 and Table 3
gher accuracy

data balanci
d the LinearS
uracy of 92.86

Journal

www.jmest.or

he first-five r

t-five rows of

m Forest mod

Recall

0.166667

0.971429

arSVC mode

sion Reca

000 0.1666

277 0.9714

t is
SVC
f the
dels
ison
and
bar

ance
SVC

3, as
y of
ing.

SVC
6%.

Th
wit
abo
Fig
Fo
acc
bal

Fig
tra
for
im
tha
inc
bal

of Multidisciplin

rg

rows of the or

f the syntheti

del performa

F1 Score

0.210526

0.931507

el performanc

all F1 Sco

667 0.2352

429 0.8888

he results sho
th imbalance
out 3.59% w
gure 3 and F
rest perform
curacy increa
lanced, as sho

Also, th
gure 4, show
ining time th
r the balanc

mbalanced data
at data balan
creasing the n
lanced dataset

nary Engineerin

riginal CM1.a

ic c dataset ba

ance

AUC

0.849702

0.986097

ce

ore AUC

294 0.6827

889 0.9236

wed that the
d dataset wh

when the data
Figure 5. On
ed better w

ased by about
own in Figure

he results in T
w that the Ra

an the Linear
ced dataset i
aset. This can
cing introduc

number of data
t. Remarkably

ng Science and T

Vol. 12

arff dataset

ased on SMO

Training

0.347

0.699

C Tra
Tim

738 0.13

622 0.38

LinearSVC
hile its accur
aset is balanc

the other ha
with balanced
ut 2,73% whe

3 and Figure

Table 3 and T
andom Fores
rSVC. Also,
is higher th
be explained

ced extra dat
ta items to be
y, the results

Technology (JME
ISSN: 2458-9

2 Issue 5, May - 2

17

OTE

Time (s)

7974

9759

aining
me (s)

38527

83124

performed be
racy dropped
ed, as shown

and, the Rand
d dataset as
en the datase
5.

able 4, as wel
t requires lar
the training t

han that of
is due to the

ta items ther
processed in

in Figure 5 sh

EST)
9403
2025

622

etter
by

n in
dom

its
et is

ll as
rger
time

the
fact

reby
the

how

Journal of Multidisciplinary Engineering Science and Technology (JMEST)
ISSN: 2458-9403

Vol. 12 Issue 5, May - 2025

www.jmest.org
JMESTN42354559 17623

it is only accuracy of the LinearSVC that dropped while all
the other performance parameters increased in their values
for the balanced dataset: the precision, recall, F1 score,
AUC and training time of the LinearSVC and the Random
Forest increased when the balanced dataset is used.
Essentially, data balancing can generally improve the
model performance while at the same time increase the
training time. However, where the data balancing entails
downsizing of the dataset, the training time may as well
reduce with the downsizing. In any case, the results show
that the Random forest model is preferred in the case where

data balancing is applied whereas the LinearSVC is more
suitable for imbalanced dataset as it has both higher
accuracy and lower training time in such case. In general,
the result showed that data balancing has positive impact in
the performance parameters of the models and the training
time can be maintained or minimized by appropriate choice
of data balancing approach; whether to balance by adding
more data items, dropping some data items or maintaining
the total number of data items while adjusting the
proportions of each data class in the balanced dataset.

Figure 3: The bar chart for the comparison of the accuracy of the Random Forest and the LinearSVC models

Figure 4: The bar chart for the comparison of the normalized training time of the Random Forest and the LinearSVC
models

Baseline SMOTE

Accuracy for Random
Forest (%) 0.901316 0.928571

Accuracy for LinearSVC (%) 0.914474 0.878571

90.13%

92.86%

91.45%

87.86%

87%

88%

89%

90%

91%

92%

93%

94%

A
cc

ur
ac

y
 (

%
)

Baseline SMOTE

Normalized Training Time
for Random Forest (%) 49.73% 100.00%

Normalized Training Time
for LinearSVC (%) 19.80% 54.75%

49.73%

100.00%

19.80%

54.75%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

N
or

m
al

iz
ed

 T
ra

in
in

g
T

im
e

 (
%

)

Journal of Multidisciplinary Engineering Science and Technology (JMEST)
ISSN: 2458-9403

Vol. 12 Issue 5, May - 2025

www.jmest.org
JMESTN42354559 17624

Figure 5: The bar chart for the percentage change in performance parameters of the Random Forest and the
LinearSVC models

4. Conclusion

The study presents random Forest and Linear
Support Vector Machine (Linear SVC) models for the
prediction of software bugs. The software defect datasets
are generally highly imbalanced. Hence, the emphasis in
this study is on the evaluation of the impact of data
balancing on the performance of each of the two models.
The two models were trained and evaluated in the baseline
case without data balancing. Afterwards, the Synthetic
Minority Over-sampling Technique (SMOTE) was used for
the data balancing. The two models were trained and
evaluated again, in this case with data balancing using the
SMOTE method. The results showed that data balancing
has positive impact in the performance parameters of the
models except the training time and in some cases the
accuracy. The accuracy of random Forest model improved
with data balancing while that of the LinearSVC dropped
with data balancing. Also, the training time can be
maintained or minimized by appropriate choice of data
balancing approach; whether to balance by adding more
data items, dropping some data items or maintaining the
total number of data items while adjusting the proportions
of each data class in the balanced dataset. Finally, the
results showed that the LinearSVC is more suitable for
imbalanced dataset while the random Forest is the best
model in the case of balanced dataset.

References

1. Zarichuk, O. (2023). Hybrid approaches to
machine learning in software development:
Applying artificial intelligence to automate and
improve processes.

2. Taye, M. M. (2023). Understanding of machine
learning with deep learning: architectures,
workflow, applications and future
directions. Computers, 12(5), 91.

3. Yang, Y., Xia, X., Lo, D., Bi, T., Grundy, J., &
Yang, X. (2022). Predictive models in software

engineering: Challenges and opportunities. ACM
Transactions on Software Engineering and
Methodology (TOSEM), 31(3), 1-72.

4. Li, Z., Niu, J., & Jing, X. Y. (2024). Software
defect prediction: future directions and
challenges. Automated Software
Engineering, 31(1), 19.

5. Mishra, R. K., & Raj, G. (2025). Self-Healing AI:
An Autonomous Deep Learning Approach for
Software Error Correction. International Journal
of Advanced Research in Computer Science and
Engineering (IJARCSE), 1(1), 28-34.

6. Lian, B., Kartal, Y., Lewis, F. L., Mikulski, D. G.,
Hudas, G. R., Wan, Y., & Davoudi, A. (2022).
Anomaly detection and correction of optimizing
autonomous systems with inverse reinforcement
learning. IEEE Transactions on
Cybernetics, 53(7), 4555-4566.

7. Pandey, S., & Kumar, K. (2023). Software fault
prediction for imbalanced data: a survey on recent
developments. Procedia Computer Science, 218,
1815-1824.

8. Goyal, S. (2022). Handling class-imbalance with
KNN (neighbourhood) under-sampling for
software defect prediction. Artificial Intelligence
Review, 55(3), 2023-2064.

9. Goyal, S. (2022). Effective software defect
prediction using support vector machines
(SVMs). International Journal of System
Assurance Engineering and Management, 13(2),
681-696.

10. Ali, M., Mazhar, T., Arif, Y., Al-Otaibi, S., Ghadi,
Y. Y., Shahzad, T., ... & Hamam, H. (2024).
Software defect prediction using an intelligent
ensemble-based model. IEEe Access, 12, 20376-
20395.

11. Hairani, H., Widiyaningtyas, T., & Prasetya, D. D.
(2024). Addressing class imbalance of health data:
a systematic literature review on modified

%
change
in

Accura
cy

%
change
in

Precisi
on

%
change
in

Recall

%
change
in	F1
Score

%
change
in	AUC

%
change
in

Trainin
g	Time
(s)

Random	Forest 2.73% 60.90% 80.48% 72.10% 13.64% 101.10%

	Linear	SVC ‐3.59% 41.93% 80.48% 65.36% 24.09% 176.57%

‐20%
0%
20%
40%
60%
80%
100%
120%
140%
160%
180%
200%

P
er
ce
n
ta
ge
	C
h
an
ge
	in
	P
er
fo
rm

an
ce
	

P
ar
am

et
er
s	
(%

)

Journal of Multidisciplinary Engineering Science and Technology (JMEST)
ISSN: 2458-9403

Vol. 12 Issue 5, May - 2025

www.jmest.org
JMESTN42354559 17625

synthetic minority oversampling technique
(SMOTE) strategies. JOIV: International Journal
on Informatics Visualization, 8(3), 1310-1318.

12. Elreedy, D., Atiya, A. F., & Kamalov, F. (2024). A
theoretical distribution analysis of synthetic
minority oversampling technique (SMOTE) for
imbalanced learning. Machine Learning, 113(7),
4903-4923.

