Journal of Multidisciplinary Engineering Science and Technology (JMEST)

ISSN: 2458-9403
Vol. 12 Issue 5, May - 2025

COMPARATIVE PERFORMANCE ASSESSMENT OF LINEAR SUPPORT VECTOR MACHINE AND
RANDOM FOREST MODEL FOR SOFTWARE DEFECT PREDICTION

Nwachukwu-Nwokeafor Kenneth C'
Department of Computer Engineering,

Michael Okpara University of Agric, Umudike,
Nwachukwu.nkenneth @mouau.edu.ng, nwachukwuken72@gmail.com

Simeon Ozuomba’®
Department of Computer Engineering,
University of Uyo, Akwa Ibom, Nigeria
simeonoz@yahoomail.com , simeonozuomba@uniuyo.edu.ng

Philip Asuquo®

Department of Computer Engineering,
University of Uyo, Akwa Ibom, Nigeria
philipasuquo@uniuyo.edu.ng

Stephen Bliss U.*

Department of Computer Engineering,
University of Uyo, Akwa Ibom, Nigeria
blissstephen@uniuyo.edu.ng

Abstract— generally, software defect datasets
are highly imbalanced thereby affecting the bug
prediction model performance. Therefore, in this
work, comparative performance assessment of
Linear Support Vector Machine (LinearSVC) and
Random Forest (RF) model for software defect
prediction is presented. Specifically, the essence
of this study is to evaluate the two machine
learning models’ performance when trained with
imbalanced labelled software defect datasets and
also when trained with the balanced labelled
software defect datasets. Labelled software defect
datasets obtained from NASA Metrics Data
Program (MDP) repository was used for the study
and the Synthetic Minority Over-sampling
Technique (SMOTE) was used for class balancing
of the minority class. The results show that the
LinearSVC has higher accuracy of 91.45 % in the
baseline case without data balancing while the
Random Forest outperformed the LinearSVC in
the SMOTE data balanced case with accuracy of
92.86%. Although, the LinearSVC performed better
with imbalanced dataset, however, its accuracy
dropped by about 3.59% when the dataset is
balanced, whereas, the Random Forest performed
better with balanced dataset as its accuracy
increased by about 2,73% when the dataset is
balanced using SMOTE. Furthermore, precision,
recall, F1 score, AUC and training time of the
LinearSVC and the Random Forest increased
when the balanced dataset is used. Essentially,
data balancing can generally improve the model
performance while at the same time increase the
training time. Finally, the results showed that the
LinearSVC is more suitable for imbalanced
dataset while the random Forest is the best model
in the case of balanced dataset.

Keywords— Linear Support Vector Machine,
Synthetic Minority Over-Sampling Technique
(SMOTE), Random Forest Model, Data Balancing,
Software Defect Prediction

1. Introduction

Nowadays, machine learning is increasing used to
enhance the software development process [1,2].
Particularly, in the area of software defect prediction,
researchers have gone a long way to train and evaluate
several models that can efficiently predict the presence of
defects in software artifacts [3,4]. The use of such machine
learning tools can lead to autonomous software defect
detection and correction mechanisms [5,6]. However, one
of the major challenges of the software defect prediction
models is that software defect datasets are highly
imbalanced [7,8]. This requires careful balance among the
key performance parameters such as, accuracy and training
time.

Accordingly, this study, focuses on evaluating two
machine learning models performance using the
imbalanced dataset as the baseline and the balanced dataset
as the target case. Particularly, in this study the Linear
Support Vector Machine (Linear SVC) and Random Forest
(RF) model are used for the Software Defect Prediction
(SDP) on a collection of labelled software defect datasets
[9,10]. The Synthetic Minority Over-sampling Technique
(SMOTE) was used for the class balancing of the dataset
[11,12]. The performance of the defect prediction models in
terms of accuracy, precision, recall, F1 score, AUC and
training time are evaluated for the baseline case with
imbalanced dataset and for the target case with SMOTE
balanced dataset. The essence of the study is to identify
which model is suitable for the imbalanced dataset case and
for the balanced dataset case. It is also the focus of the

Www.jmest.org

JMESTN42354559

17618

Journal of Multidisciplinary Engineering Science and Technology (JMEST)

ISSN: 2458-9403
Vol. 12 Issue 5, May - 2025

study to identify how the data balancing affect each of the
key performance parameters of the prediction models.

2. Methodology

The essence of this study is to evaluate two
different machine learning models’ performance when
trained with imbalanced labelled software defect datasets
and also when trained with the balanced labelled software
defect datasets. Particularly, in this study the Linear
Support Vector Machine (Linear SVC) and Random Forest
(RF) model are used for Software Defect Prediction (SDP)
on a collection of labelled software defect datasets obtained
from NASA Metrics Data Program (MDP) repository. The
datasets have diverse range of metrics including size,
complexity (e.g., McCabe metrics), and Halstead metrics.
Also, the datasets have imbalanced class distribution, which
is common in defect prediction datasets due to the naturally
lower occurrence of defective modules compared to non-

defective ones. After the datasets are pre-processed, the
data was split into 70/30 for training and validation
respectively. Then, the Random Forest (RF) and the Linear
SVC models were trained with the imbalanced datasets.
This is referred to as the baseline case.

Furthermore, the Synthetic Minority Over-
sampling Technique (SMOTE) was used for class balancing
of the dataset. Again, the balanced datasets were split into
70/30 for training and validation respectively. Then, the
Random Forest (RF) and the Linear SVC models were
again trained with the balanced datasets. The models
performance are compared in terms of accuracy, precision,
recall, F1 score and training time.

The procedure used for the RF classification
model is presented as Algorithm 1. The procedure used for
the Linear SVC model is presented as Algorithm 2 while
the procedure for the SMOTE data balancing is presented
as Algorithm 3.

Algorithm 1: The Procedure for the Random Forest Model

Find the best split over F that maximizes the impurity (Gini

If max_depth is attained, elfseif the minimum number of

Step 1: Begin
Step 2: Inputs:
Step 3: Training dataset D = {(x®,y®) }"
Step 4: Number of decision trees B
Step 5: Total number of features d
Step 6: Number of features to consider at each split m = d
Step 7: Output:
Step 8: Ensemble classifier H(x) = mode(hy(x), hy(x), ..., hz(x))
Step 9: Initialize Random Forest
Step 10: Set B the number of trees to be grown
Step 11: For each tree b =1 to B:
Step 12: Draw a bootstrap sample D, of size n from D with replacement
Step 13: Train decision tree h,,
Step 14: For each node of the tree:
Step 15: Randomly set m < d features F c {1,2, ...,d}
Step 16:
Index)
Step 17:
samples per node is satisfied)
Step 18: Store the trained tree h;(x)
Step 19: End for
Step 20: Finalize the ensemble model H(x) = mode(hl(x),hz(x), ...,hB(x))
Step 21: End for

Step 22: Predict Bug
Step 23: Given a test input x € R¢
Step 24: For each tree hy, € H

Step 25: compute prediction y, = hy(x)

Step 26: Aggregate prediction through majority vote: § = argmaxye(o 1} Xp=1 (hp(x) = k)
Step 27: compute OOB prediction: 932, = mode({h,(x®) | b € B;})

Step 28: return predicted values

WWWw.jmest.org

JMESTN42354559

17619

Journal of Multidisciplinary Engineering Science and Technology (JMEST)
ISSN: 2458-9403
Vol. 12 Issue 5, May - 2025

Step 29: end for

Step 30: end
Algorithm 2: The Procedure for the Linear SVC Model
Step 1: Begin
Step 2: Input:
Step 3: Dataset D = {(x;, y;)}i=1
Step 4: Regularization parameter C
Step 5: Tolerance €
Step 6: Maximum iteration T,
Step 7: Output:
Step 8: weight vector w, Intercept b

Step 9: Set w©® =0, p©@ =0

Step 10: Initialize dual variables a(® =0

Step 11: if dual is True:

Step 12: solve the dual problem using coordinate descent:

Step 13: min, (%) (@M)Qa — (eNa, subjectto 0 < a; <C,i=12,..,n
Where, Q;; = ((yi)(yj)(xiT)(xj)) +6;;
e =1 (that is, vector of ones)

Step 14: end if
Step 15: for training sample or coordinate i where iisa member of a

Step 16: Compute gradient: G; = y;wTx; — 1
min(0,G;) if ;=0

Step 17: Compute: PG; ={max(0,G;,) if a; =C where PG is the projected gradient
G; Otherwise

Step 18 if |PG;| <€

Step 19: Skip update for i

Step 20: else

Step 21: Update: «; < a; —QG—;, where Q;; is the dual Hessian metric for the i

instance

Step 22: a; < min(C,max(0,a;)) // (project this value into box constraint)

Step 23: Update weight vector: w « w + (af** — af)y;x;

Step 24: end if

Step 25: if convergence is reached

Step 26: compute intercept: b = ﬁZies(yi —wTx;)

Where S ={i |0 < a; < C} is the set of support vectors
Step 27: end if
Step 28: end for
Step 29: For a given input x, predict the class label as: j = sign(wTx + b)
Step 30: end

WWWw.jmest.org
JMESTN42354559 17620

Journal of Multidisciplinary Engineerimg Science and Technology (JMEST)

ISSN: 2458-9403

Vol. 12 Issue 5, May - 2025

Algorithm 3: The Procedure for the Synthetic Minority Over-sampling (SMOTE)

Step 1: Input:

(i) Dataset: D = {x;,y;}\-,
(iif) Minority class samples: X;inority = {X1, X2, o, X5}
(iv) Number of synthetic samples to generate: N
(v) Number of nearest neighbours: k
(vi) New samples control factor: A

Step 2: Output: Augmented minority class set with synthetic samples: X;,inority

Step 3: For each x; in Xpinority -

Step 4: Find the k nearest neighbours of x; within X,,;,,,+, using Euclidean distance

Step 5:

Step 6:
denoted x;.

Step 7:
Step 8:
Step 9:

Step 12: end

For every one of the synthetic sample which will be created:
Randomly choose one of the k nearest neighbours,

Create x,,,,, using

Append x,.,,

end for
Step 10: return X;;,,.ity as the new balanced minority dataset.

Step 11: end for

3. Results and Discussion

The summary of the NASA-MDP datasets is
presented in Table 1. The dataset has about 13 different
files each different software historical data records, as
Shown in Table 1. The screenshots in Figure 1 and Figure 2

xnew

to X/

=x,-+z1-(x

i

minority*

(k)

%)

show the first-five rows (original data) and the last-five
rows (o SMOTE generated synthetic) data for each of the
CM 1.arff dataset. The summary of the statistical description
of the synthetic and original CM1.arff dataset at 95%
confidence level is presented in Table 2.

Table 1: The summary of the NASA-MDP datasets is presented in

JMESTN42354559

File Name | Attribute | Total Instances | Defected (1) | Non-Defected (0) | Programming Language

CMl.arff | Defective | 344 42 302 C

IM1 arff label 9593 1759 7834 C

KCl1. arff Defective | 2096 325 1771 C++

KC3.arff Defective | 200 36 164 C

KC4 arff Defective | 0 0 0 Not Specified

MC1 arff Defective | 9277 68 9209 C++

MC2 arff Defective | 127 14 83

MW1.arff | Defective | 264 27 237

PCl.arff Defective | 759 61 698

PC2.arff Defective | 1585 16 1569 C++

PC3.arff Defective | 1125 140 985 Java

PC4 arff Defective | 1399 178 1221 C++

PC5.arff Defective | 17001 503 16498 C#
WWWw.jmest.org

17621

Journal of Multidisciplinary Engineerimg Science and Technology (JMEST)
ISSN: 2458-9403
Vol. 12 Issue 5, May - 2025

Figure 2: The screenshot showing the last-five rows of the synthetic ¢ dataset based on SMOTE

Table 2: Random Forest model performance

Accuracy | Precision Recall F1 Score AUC Training Time (s)
Baseline Random 0.901316 0.285714 0.166667 | 0.210526 | 0.849702 0.347974
Forest
SMOTE Random 0.928571 0.894737 0.971429 | 0.931507 | 0.986097 0.699759
Forest
Table 3: LinearSVC model performance
Accuracy | Precision Recall F1 Score AUC Training
Time (s)
Baseline Linear SVC 0.914474 | 0.400000 | 0.166667 | 0.235294 | 0.682738 0.138527
SMOTE Linear SVC 0.878571 0.819277 | 0.971429 | 0.888889 | 0.923622 0.383124

The model performance for Random Forest is
presented in Table 2 while Table 3 presents the LinearSVC
model performance. The bar chart for the comparison of the
accuracy of the Random Forest and the LinearSVC models
is presented in Figures 3. The bar chart for the comparison
of the normalized training time of the Random Forest and
the LinearSVC models is presented in Figures 4.The bar
chart for the percentage change in the performance
parameters of the Random Forest and the LinearSVC
models is presented in Figures 5.

According to the results in Table 2 and Table 3, as
well as Figure 3, the LinearSVC has higher accuracy of
91.45 % in the baseline case without data balancing.
However, the Random Forest outperformed the LinearSVC
in the SMOTE data balanced case with accuracy of 92.86%.

The results showed that the LinearSVC performed better
with imbalanced dataset while its accuracy dropped by
about 3.59% when the dataset is balanced, as shown in
Figure 3 and Figure 5. On the other hand, the Random
Forest performed better with balanced dataset as its
accuracy increased by about 2,73% when the dataset is
balanced, as shown in Figure 3 and Figure 5.

Also, the results in Table 3 and Table 4, as well as
Figure 4, show that the Random Forest requires larger
training time than the LinearSVC. Also, the training time
for the balanced dataset is higher than that of the
imbalanced dataset. This can be explained is due to the fact
that data balancing introduced extra data items thereby
increasing the number of data items to be processed in the
balanced dataset. Remarkably, the results in Figure 5 show

WWWw.jmest.org

JMESTN42354559

17622

Journal of Multidisciplinary Engineering Science and Technology (JMEST)

ISSN: 2458-9403
Vol. 12 Issue 5, May - 2025

it is only accuracy of the LinearSVC that dropped while all
the other performance parameters increased in their values
for the balanced dataset: the precision, recall, F1 score,
AUC and training time of the LinearSVC and the Random
Forest increased when the balanced dataset is used.
Essentially, data balancing can generally improve the
model performance while at the same time increase the
training time. However, where the data balancing entails
downsizing of the dataset, the training time may as well
reduce with the downsizing. In any case, the results show
that the Random forest model is preferred in the case where

data balancing is applied whereas the LinearSVC is more
suitable for imbalanced dataset as it has both higher
accuracy and lower training time in such case. In general,
the result showed that data balancing has positive impact in
the performance parameters of the models and the training
time can be maintained or minimized by appropriate choice
of data balancing approach; whether to balance by adding
more data items, dropping some data items or maintaining
the total number of data items while adjusting the
proportions of each data class in the balanced dataset.

94% T
: 92.86%
93% ’
92% 91.45%
< 91% +
= o 90.13%
1y 90%
IS C
5 r
8 89%
< C
C 87.86%
88% T ’
87% - :
Baseline SMOTE
B Accuracy for Random
Forest (%) 0.901316 0.928571
B Accuracy for LinearSVC (%) 0.914474 0.878571

Figure 3: The bar chart for the comparison of the accuracy of the Random Forest and the LinearSVC models

100%
90%
80%
70%
60%
50%
40%
30%
20%
10%

Normalized Training Time (%)

® Normalized Training Time
for Random Forest (%)

B Normalized Training Time
for LinearSVC (%)

100.00%

54.75%
49.73%
I19.80%
Baseline SMOTE
49.73% 100.00%
19.80% 54.75%

Figure 4: The bar chart for the comparison of the normalized training time of the Random Forest and the LinearSVC

models

JMESTN42354559

www.jmest.org

17623

Journal of Multidisciplinary Engineering Science and Technology (JMEST)

ISSN: 2458-9403
Vol. 12 Issue 5, May - 2025

© 200%

2 180%

g 160%

= 140%

S - 120%

e 100%

N/

£ » 80%

& g 60%

£ g 40%

5 s 20%

o &‘ 0%

& -20%

Lo

g % %

bt change change

& in in
Accura Precisi

cy on
® Random Forest 2.73% 60.90%
B Linear SVC -3.59% 41.93%

%
change
in
Recall

80.48%
80.48%

%
% change
change Ch:l/;)l e in
inF1 $'"8® Trainin
in AUC .
Score g Time
(s)
72.10% 13.64% 101.10%
65.36% 24.09% 176.57%

Figure 5: The bar chart for the percentage change in performance parameters of the Random Forest and the
LinearSVC models

4. Conclusion

The study presents random Forest and Linear
Support Vector Machine (Linear SVC) models for the

engineering: Challenges and opportunities. ACM
Transactions on Software Engineering and
Methodology (TOSEM), 31(3), 1-72.

prediction of software bugs. The software defect datasets 4 ﬁé’fei’ Nu;,ec{i.(’:ti‘(g:n-hng’fui(u.rev (c%i(r)gjt)ilonss()ftwsrfg
are generally highly imbalanced. Hence, the emphasis in challen e;) Automafe d Software
this study is on the evaluation of the impact of data En ineegrin. 31(1), 19
balancing on the performance of each of the two models. 9 g > .)

. . . 5. Mishra, R. K., & Raj, G. (2025). Self-Healing Al:
The two models were trained and evaluated in the baseline An Autonomous Deep Learning Approach for
case without data balancing. Afterwards, the Synthetic Software Error Correction. International Journal
Minority Over-sampling Technique (SMOTE) was used for of Advanced Research in Computer Science and
the data balancing. The two models were trained and Engineering (IJARCSE), 1(1), 28-34
evaluated again, in this case with data balancing using the nd g VD " .

. 6. Lian, B., Kartal, Y., Lewis, F. L., Mikulski, D. G.,

SMOTE method. The results showed that data balancing Hudas, G. R., Wan, Y., & Davoudi, A. (2022)
has positive impact in.t}.le pe.rformance. parameters of the Anoma’lly .det.e,ction ’and.,correction 0% ol;timizing;
models except the training time and in some cases the autonomous systems with inverse reinforcement
accuracy. The accuracy of random Forest model improved learnine. |EEE Transactions on
with data balancing while that of the LinearSVC dropped C bern%.tics 53(7), 4555-4566
with data balancing. Also, the training time can be Y ’ ’ '

S S . . 7. Pandey, S., & Kumar, K. (2023). Software fault
malnta'l ned or minimized by appropriate ch01c§ of data prediction for imbalanced data: a survey on recent
balancing approach; whether to balance by adding more developments. Procedia Computer Science, 218
data items, dropping some data items or maintaining the 1815-1824 ' >
total number of data.ltems while adjusting the proportions 8. Goyal, S. (2022). Handling class-imbalance with
of each data class in the balanced dataset. Finally, the KNN (neighbourhood) under-samplin for
results showed that the LinearSVC is more suitable for software det%a ot prediction. Artificial Ipnteﬁi ence
imbalanced dataset while the random Forest is the best Review, 55(3) 2033_20 64 ‘ g
model in the case of balanced dataset. 9. Goyal, S. (2022). Effective software defect

References prediction using support vector machines

. . (SVMs). International ~ Journal of System

1. Zarichuk, - O." (2023). Hybrid approaches to Assurance Engineering and Management, 13(2),

machine learning in software development: 681-696

Applying artificial intelligence to automate and 10. AL M .Mazhar T Arif. Y.. Al-Otaibi. S.. Ghadi

improve processes. . . Y. Y., Shahzad, T, .. & Hamam, H. (2024).

2. Tayez M. M.’ (2023). Underst.andmg of ‘machme Software defect prediction using an intelligent

learning with deep learning: architectures, ensemble-based model. IEEe Access, 12, 20376-
workflow, applications and future 20395 T

3 lereCtlo;lS' g:(qmeUteIE’ 1?)(5) ’}39'1.T Grundy. J.. & 11. Hairani, H., Widiyaningtyas, T., & Prasetya, D. D.

) ang, 1., Aa, &, L0, 10, Bl, 1., JIundy, J., (2024). Addressing class imbalance of health data:

Yang, X. (2022). Predictive models in software a systematic literature review on modified

www.jmest.org

JMESTN42354559

17624

Journal of Multidisciplinary Engineering Science and Technology (JMEST)
ISSN: 2458-9403
Vol. 12 Issue 5, May - 2025

synthetic ~ minority oversampling technique
(SMOTE) strategies. JOIV: International Journal
on Informatics Visualization, 8(3), 1310-1318.

12. Elreedy, D., Atiya, A. F., & Kamalov, F. (2024). A
theoretical distribution analysis of synthetic
minority oversampling technique (SMOTE) for
imbalanced learning. Machine Learning, 113(7),
4903-4923.

www.jmest.org
JMESTN42354559 17625

