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Abstract— generally, software defect datasets 
are highly imbalanced thereby affecting the bug 
prediction model performance. Therefore, in this 
work, comparative performance assessment of 
Linear Support Vector Machine (LinearSVC) and 
Random Forest (RF) model for software defect 
prediction is presented. Specifically, the essence 
of this study is to evaluate the two machine 
learning models’ performance when trained with 
imbalanced labelled software defect datasets and 
also when trained with the balanced labelled 
software defect datasets. Labelled software defect 
datasets obtained from NASA Metrics Data 
Program (MDP) repository was used for the study 
and the Synthetic Minority Over-sampling 
Technique (SMOTE) was used for class balancing 
of the minority class. The results show that the 
LinearSVC has higher accuracy of 91.45 % in the 
baseline case without data balancing while the 
Random Forest outperformed the LinearSVC in 
the SMOTE data balanced case with accuracy of 
92.86%. Although, the LinearSVC performed better 
with imbalanced dataset, however, its accuracy 
dropped by about 3.59% when the dataset is 
balanced, whereas, the Random Forest performed 
better with balanced dataset as its accuracy 
increased by about 2,73% when the dataset is 
balanced using SMOTE. Furthermore, precision, 
recall, F1 score, AUC and training time of the 
LinearSVC and the Random Forest increased 
when the balanced dataset is used. Essentially, 
data balancing can generally improve the model 
performance while at the same time increase the 
training time. Finally, the results showed that the 
LinearSVC is more suitable for imbalanced 
dataset while the random Forest is the best model 
in the case of balanced dataset. 
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1. Introduction   

 Nowadays, machine learning is increasing used to 
enhance the software development process [1,2]. 
Particularly, in the area of software defect prediction, 
researchers have gone a long way to train and evaluate 
several models that can efficiently predict the presence of 
defects in software artifacts [3,4]. The use of such machine 
learning tools can lead to autonomous software defect 
detection and correction mechanisms [5,6]. However, one 
of the major challenges of the software defect prediction 
models is that software defect datasets are highly 
imbalanced [7,8].  This requires careful balance among the 
key performance parameters such as, accuracy and training 
time.  

Accordingly, this study, focuses on evaluating two 
machine learning models performance using the 
imbalanced dataset as the baseline and the balanced dataset 
as the target case. Particularly, in this study the Linear 
Support Vector Machine (Linear SVC) and Random Forest 
(RF) model are used for the Software Defect Prediction 
(SDP) on a collection of labelled software defect datasets 
[9,10]. The Synthetic Minority Over-sampling Technique 
(SMOTE) was used for the class balancing of the dataset 
[11,12]. The performance of the defect prediction models in 
terms of accuracy, precision, recall, F1 score, AUC and 
training time are evaluated for the baseline case with 
imbalanced dataset and for the target case with SMOTE 
balanced dataset.  The essence of the study is to identify 
which model is suitable for the imbalanced dataset case and 
for the balanced dataset case. It is also the focus of the 
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study to identify how the data balancing affect each of the 
key performance parameters of the prediction models. 

 

2. Methodology 

The essence of this study is to evaluate two 
different machine learning models’ performance when 
trained with imbalanced labelled software defect datasets 
and also when trained with the balanced labelled software 
defect datasets. Particularly, in this study the Linear 
Support Vector Machine (Linear SVC) and Random Forest 
(RF) model are used for Software Defect Prediction (SDP) 
on a collection of labelled software defect datasets obtained 
from NASA Metrics Data Program (MDP) repository. The 
datasets have diverse range of metrics including size, 
complexity (e.g., McCabe metrics), and Halstead metrics. 
Also, the datasets have imbalanced class distribution, which 
is common in defect prediction datasets due to the naturally 
lower occurrence of defective modules compared to non-

defective ones. After the datasets are pre-processed, the 
data was split into 70/30 for training and validation 
respectively. Then, the Random Forest (RF) and the Linear 
SVC models were trained with the imbalanced datasets.  
This is referred to as the baseline case. 

Furthermore, the Synthetic Minority Over-
sampling Technique (SMOTE) was used for class balancing 
of the dataset. Again, the balanced datasets were split into 
70/30 for training and validation respectively. Then, the 
Random Forest (RF) and the Linear SVC models were 
again trained with the balanced datasets.  The models 
performance are compared in terms of accuracy, precision, 
recall, F1 score and training time.  

The procedure used for the RF classification 
model is presented as Algorithm 1. The procedure used for 
the Linear SVC model is presented as Algorithm 2 while 
the procedure for the SMOTE data balancing is presented 
as Algorithm 3. 

 
Algorithm 1: The Procedure for the Random Forest Model 
Step 1: Begin 
Step 2: Inputs: 
Step 3: Training dataset 𝐷 ൌ ൛൫𝑥ሺ௜ሻ, 𝑦ሺ௜ሻ൯ ൟ

௜ୀଵ

௡   

Step 4: Number of decision trees 𝐵 
Step 5: Total number of features 𝑑 
Step 6: Number of features to consider at each split 𝑚 ൌ √𝑑 
Step 7: Output: 
Step 8: Ensemble classifier 𝐻ሺ𝑥ሻ ൌ 𝑚𝑜𝑑𝑒൫ℎଵሺ𝑥ሻ, ℎଶሺ𝑥ሻ, … , ℎ஻ሺ𝑥ሻ൯ 
Step 9: Initialize Random Forest 
Step 10: Set 𝐵 the number of trees to be grown 
Step 11: For each tree 𝑏 ൌ 1 to 𝐵: 
Step 12:  Draw a bootstrap sample 𝐷௕ of size 𝑛 from 𝐷 with replacement 
Step 13:  Train decision tree ℎ௕ 
Step 14:  For each node of the tree: 
Step 15:      Randomly set 𝑚 ൑ 𝑑 features ℱ ⊂ ሼ1, 2, … , 𝑑ሽ 
Step 16:      Find the best split over ℱ  that maximizes the impurity (Gini 
Index) 
Step 17: If max_depth is attained, elfseif the minimum number of 

samples per node is satisfied) 
Step 18:    Store the trained tree ℎ௕ሺ𝑥ሻ 
Step 19:  End for 
Step 20:  Finalize the ensemble model 𝐻ሺ𝑥ሻ ൌ 𝑚𝑜𝑑𝑒൫ℎଵሺ𝑥ሻ, ℎଶሺ𝑥ሻ, … , ℎ஻ሺ𝑥ሻ൯ 
Step 21: End for 
Step 22: Predict Bug 
Step 23: Given a test input 𝑥 ∈ 𝑅ௗ 
Step 24: For each tree ℎ௕ ∈ 𝐻 
Step 25:  compute prediction 𝑦௕ ൌ ℎ௕ሺ𝑥ሻ 
Step 26:  Aggregate prediction through majority vote: 𝑦ො ൌ arg max௞∈ሼ଴,ଵሽ ∑ ሺℎ௕ሺ𝑥ሻ ൌ 𝑘ሻ஻

௕ୀଵ  

Step 27:  compute OOB prediction: 𝑦ොைை஻
ሺ௜ሻ ൌ 𝑚𝑜𝑑𝑒൫൛ℎ௕൫𝑥ሺ௜ሻ൯ | 𝑏 ∈ 𝐵௜ൟ൯ 

Step 28:  return predicted values 
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Step 29: end for 
Step 30: end       
                                              

Algorithm 2: The Procedure for the Linear SVC Model 
Step 1: Begin 
Step 2: Input: 
Step 3: Dataset 𝐷 ൌ ሼሺ𝑥௜, 𝑦௜ሻሽ௜ୀଵ

௡  
Step 4:  Regularization parameter 𝐶 
Step 5:  Tolerance 𝜖 
Step 6:  Maximum iteration 𝑇௠௔௫ 
Step 7: Output: 
Step 8:  weight vector 𝑤, Intercept 𝑏 
Step 9: Set 𝑤ሺ଴ሻ ൌ 0, 𝑏ሺ଴ሻ ൌ 0 
Step 10: Initialize dual variables 𝛼ሺ଴ሻ ൌ 0 
Step 11: if 𝑑𝑢𝑎𝑙 𝑖𝑠 𝑇𝑟𝑢𝑒: 
Step 12:  solve the dual problem using coordinate descent: 

Step 13: minఈ ቀ
ଵ

ଶ
ቁ ሺ𝛼்ሻ𝑄𝛼 െ ሺ𝑒்ሻ𝛼, subject to 0 ൑ 𝛼௜ ൑ 𝐶, 𝑖 ൌ 1,2, … , 𝑛 

 Where, 𝑄௜௝ ൌ ቀሺ𝑦௜ሻ൫𝑦௝൯ሺ𝑥௜
்ሻ൫𝑥௝൯ቁ ൅ 𝛿௜௝  

𝑒 ൌ 1 (that is, vector of ones) 
Step 14: end if 
Step 15: for training sample or coordinate 𝑖 where  𝑖 𝑖𝑠 𝑎 𝑚𝑒𝑚𝑏𝑒𝑟 𝑜𝑓 𝛼   
Step 16:  Compute gradient: 𝐺௜ ൌ 𝑦௜𝑤்𝑥௜ െ 1 

Step 17: Compute: 𝑃𝐺௜ ൌ ቐ
minሺ0, 𝐺௜ሻ    𝑖𝑓 𝛼௜ ൌ 0
maxሺ0, 𝐺௜ሻ    𝑖𝑓 𝛼௜ ൌ 𝐶
𝐺௜                 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

   where PG is the projected gradient 

Step 18 if |𝑃𝐺௜| ൏ 𝜖 
Step 19:   Skip update for 𝑖 
Step 20:  else 
Step 21:   Update: 𝛼௜ ← 𝛼௜ െ

ீ೔

ொ೔೔
, where 𝑄௜௜  is the dual Hessian metric for the 𝑖 

instance 
Step 22:   𝛼௜ ← 𝑚𝑖𝑛൫𝐶, 𝑚𝑎𝑥ሺ0, 𝛼௜ሻ൯ // (project this value into box constraint) 
Step 23:   Update weight vector: 𝑤 ← 𝑤 ൅ ሺ𝛼௜

௧ାଵ െ 𝛼௜
௧ሻ𝑦௜𝑥௜ 

Step 24:  end if 
Step 25:  if convergence is reached 
Step 26:   compute intercept: 𝑏 ൌ

ଵ

|ௌ|
∑ ሺ𝑦௜ െ 𝑤்𝑥௜ሻ௜∈ௌ  

  Where 𝑆 ൌ ሼ𝑖 | 0 ൑ 𝛼௜ ൑ 𝐶ሽ is the set of support vectors 
Step 27:  end if 
Step 28: end for 
Step 29: For a given input 𝑥, predict the class label as: 𝑦ො ൌ 𝑠𝑖𝑔𝑛ሺ𝑤்𝑥 ൅ 𝑏ሻ 
Step 30: end 
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it is only accuracy of the LinearSVC that dropped while all 
the other performance parameters increased in their values 
for the balanced dataset: the precision, recall, F1 score, 
AUC and training time of the LinearSVC and the Random 
Forest increased when the balanced dataset is used. 
Essentially, data balancing can generally improve the 
model performance while at the same time increase the 
training time. However, where the data balancing entails 
downsizing of the dataset, the training time may as well 
reduce with the downsizing. In any case, the results show 
that the Random forest model is preferred in the case where 

data balancing is applied whereas the LinearSVC is more 
suitable for imbalanced dataset as it has both higher 
accuracy and lower training time in such case. In general, 
the result showed that data balancing has positive impact in 
the performance parameters of the models and the training 
time can be maintained or minimized by appropriate choice 
of data balancing approach; whether to balance by adding 
more data items, dropping some data items or maintaining 
the total number of data items while adjusting the 
proportions of each data class in the balanced dataset. 

 

 

Figure 3: The bar chart for the comparison of the accuracy of the Random Forest and the LinearSVC models 

 

 

Figure 4: The bar chart for the comparison of the normalized training time of the Random Forest and the LinearSVC 
models 
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Figure 5: The bar chart for the percentage change in performance parameters of the Random Forest and the 
LinearSVC models   

4. Conclusion 

The study presents random Forest and Linear 
Support Vector Machine (Linear SVC) models for the 
prediction of software bugs. The software defect datasets 
are generally highly imbalanced. Hence, the emphasis in 
this study is on the evaluation of the impact of data 
balancing on the performance of each of the two models. 
The two models were trained and evaluated in the baseline 
case without data balancing. Afterwards, the Synthetic 
Minority Over-sampling Technique (SMOTE) was used for 
the data balancing. The two models were trained and 
evaluated again, in this case with data balancing using the 
SMOTE method. The results showed that data balancing 
has positive impact in the performance parameters of the 
models except the training time and in some cases the 
accuracy. The accuracy of random Forest model improved 
with data balancing while that of the LinearSVC dropped 
with data balancing. Also, the training time can be 
maintained or minimized by appropriate choice of data 
balancing approach; whether to balance by adding more 
data items, dropping some data items or maintaining the 
total number of data items while adjusting the proportions 
of each data class in the balanced dataset. Finally, the 
results showed that the LinearSVC is more suitable for 
imbalanced dataset while the random Forest is the best 
model in the case of balanced dataset. 
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