
Journal of Multidisciplinary Engineering Science and Technology (JMEST) 

ISSN: 2458-9403 

Vol. 12 Issue 7, July - 2025  

www.jmest.org 

JMESTN42354557 17605 

Formal Language and Finite Automata 
 

Dr. Hieu D. Vu 
Fort Hays State University 

600 Park Street 
Hays, KS. 67601 
hdvu@fhsu.edu 

 
Abstract—The subject of computer programming 
languages has been a very important topic in 
computer science since the development of 
computing machines. The Language, human 
(natural) language or programming language in 
theory is sets of strings that understandable, 
acceptable by human or accepted and be able to 
be processed by a machine (computer). The 
accepting of a language is an important question 
such as solving a problem. From the beginning of 
computing theory, the concept of automata and 
formal languages theory contribute greatly to the 
foundation of programming language and 
compiler designs. 

Keywords—Computer Science, Finite 
Automata, Language Theory, Natural Language, 
Programming Language, Formal Language, 
Deterministic / Non-deterministic Automata, 
Language Processors, Compilers. 

I. INTRODUCTION 

 In 1979, the topic of automata and language 
theory was little known to scientific community, was 
still an area of research and study. The topic was 
taught mainly at the graduate level across the 
universities. Today, the subject of automata is 
included in undergraduate curriculum. Technology 
improved rapidly that changed many things: the way 
we learn, the way we works, and even entertaining. 
Along with the demand in computer and high 
technology, the environment related to computer 
science has been growing fast to an unimaginable 
degree, and the number of courses in computer 
science curriculum has been also expanding in the 
past three decades. 

 Today, we still believe automata theory is very 
important tools for computer scientists in various new 
disciplines under the umbrella of computer science 
(CS) such as: Management Information Systems 
(MIS), Information Technology (IT), and 
Telecommunication and Networking (TELCOM). This 
paper will review the topic “Formal Language and 
Finite Automata” and illustrate some of its 
applications. [1] 

II. LANGUAGES 

 II.1. Language Definition. 

 A language may contain an infinite number of 
strings defined on a finite set of symbols or alphabets 
∑. Let ∑* be the set of all finite strings of symbols in ∑, 
including string of length zero (ϵ). So a language is a 

subset of ∑* for some alphabet ∑. This makes natural 
languages and programming languages included in 
this formal definition. 

 The types or classes of finite will provide useful 
properties of the language defined. If we call C is the 
class of the language defined specially with certain 
type of description, so we can answer whether or not 
membership in class C is preserved under various 
operations. Other answer is if a language in class C 
could be recognized simply and quickly, so we can 
develop a compiler for that particular language in 
class C. We also want to develop algorithms to 
process a given string s, to answer the question “Is 
string s in language L?” [2] 

 II.2. Formal Language Definition. 

 A formal language is an abstraction of general 
characteristics of programming languages that are 
processed by a computer. It is consisted with a set of 
symbols and some rules of formation or combination 
into strings named entities called words or program 
variables, and these entities can be grouped together 
called sentences or programming statements. So, 
formal language is a set of acceptable strings by the 
rules of formation. Any programming languages 
developed should have the same essential features 
as formal language.  

 II.3. Regular Language and Regular Grammar 

 II.3.1. Regular Expressions 

 One way to describe regular language is using the 
notation of regular expression. This notation includes 
a combination of symbols from the alphabet ∑, 
operators +, ., and *, and parentheses for grouping. 
For example, the language L1 = {a} is denoted by the 
regular expression a. Another language L2 = {a, b, c} 
and operator + as union (ᴜ), we have another regular 
expression a + b + c. Similarly, we use operator (.) as 
concatenation, and * for star-closure then language L3 
= (a + (b.c))* means the star-closure of {a} ᴜ {bc} 
Language L3 can be expressed as: {λ, a, bc, aa, abc, 
bca, bcbc, aaa, aabc,.}. 

II.3.2. Formal Definition of a Regular Expression 

We construct regular expression by repeating 
applying certain recursive rules in a similar arithmetic 
expressions. 

Definition:Let alphabet ∑ be given, then 

1.  Ø, λ and a ϵ ∑ are regular expressions and 
called primitive regular expressions. 

http://www.jmest.org/
mailto:hdvu@fhsu.edu


Journal of Multidisciplinary Engineering Science and Technology (JMEST) 

ISSN: 2458-9403 

Vol. 12 Issue 7, July - 2025  

www.jmest.org 

JMESTN42354557 17606 

2. If r1 and r2 are regular expressions then r1+r2, 
r1.r2, r1*, and (r1) are also regular expressions. 

3. A string s is a regular expression if and only if 
it can be derived from the primitive regular 
expressions by applying a finite number of the rules in 
(number 2 above). 

Example: Let ∑ = {a, b, c}, then the string s = 
(a+b+c)*.(c+Ø) is a regular expression, because it is 
constructed by the above rules. 

Let r1 = c, r2 = Ø, we can see that c + Ø and (c + 
Ø) are also regular expressions.  

a+b+c is a regular expression  (a+b+c) is a 
regular expression  so as (a+b+c)* 

 and finally (a+b+c)*.(c+Ø).[3] 

 II.3 3. Regular Grammars 

 In the context of natural language, the grammar is 
a set of rules for constructing or validating sentences 
of the language. As an example, consider the English 
sentence (statement). 

 The Students study automata theory 

Sentence ==>Subject Verb Object (general form of 
a Sentence) 

 ==> Article Noun Verb Object(replacing Subject) 

==> The Noun Verb Object (replace Article by 
value The) 

==> The students Verb Object(replace Noun by 
value students) 

==> The students study Object(replace Verb by 
value study) 

==> The students study Noun(replace Object) 

==> The students study automata theory (replace 
Object by values) 

Figure 1. Derivation of an English Sentence 

 II.3.3.1. Context-Free Grammars 

A context free grammar should have the following 
sets. 

.A set of non-terminal symbols (S, S1, S2,.) 

. A set of terminal symbols (from the alphabet ∑) 

.A set of rules 

The function of grammar is to construct or to 
validate sentences of a language (is the sentence 
belong to the language or not?), in which many 
sentences can be generated or validated. 

 II.3.3.2. Definition 

 A grammar can be represented by a quadruple 

G = (N, ∑, P, S) 

Where: 

1. N is a finite set of non-terminals. 

2. ∑ is a finite set of terminals 

3. S ϵ N is the start symbol 

4. P is a finite subset of N x V* called the set of 
production rules. 

 V = N ᴜ ∑. 

 Example: 

Let P = {S --> ab, S --> bb, S --> aba, S --> aab}, ∑ 
= {a, b}, N ={S}, Then grammar  

 G = (N, ∑, P, S) is a context free grammar. Each 
production rule has the left hand side the start symbol 
S and on the other side is a terminal string.  

1. S ==> ab 
2. S ==> bb 
3. S ==> aba 
4. S ==> aab 

Therefore, the language generated by G.  

L(G) = {ab, bb, aba, aab}. [4] 

III. AUTOMATA 

 III.1. Automata Theory 

 In theoretical computer science, automata theory 
is the study of abstract machines and the 
computational problems that can be solved by these 
abstract machines. The word automata (plural form of 
automaton) comes from the Greek word “αὐτόματα” 
that means “Self acting”. An automaton is a self acting 
computing device that follows a predefined sequence 
of operational instructions automatically.  

Example of automaton. 

 

Figure 2 

 Figure 2 describes an automation in a finite state 
machine which consists of states (represented by 
circles) and transitions (arrows). When the automation 
reads (sees) an input symbol, it will make a change 
(transition) to another state, according to the transition 
functions which takes the previous state and the input 
symbol as arguments. 

 The automaton in figure 2 above described by its 
state diagram, starts in state S1, then changes states 
to S2 then back to S1 following arrows labeled 0, or 1, 
according to the input symbols received. The double 
circle around S1 indicates it is an accepting state. An 
automaton is an abstract self computing machine 
following a predefined sequence of instructions 
automatically. An automaton with a finite number of 
states is called a Finite Automation (FA) or Finite 

http://www.jmest.org/


Journal of Multidisciplinary Engineering Science and Technology (JMEST) 

ISSN: 2458-9403 

Vol. 12 Issue 7, July - 2025  

www.jmest.org 

JMESTN42354557 17607 

State Machine (FSM). Automata are classified by the 
class of formal languages that they can recognize, 
and are useful in many applications: theory of 
computing, compilers design, artificial intelligence, 
parsing, and formal verifying. [5] 

 III.2. Finite Automata 

 Any regular languages such as natural or human 
languages and computer programming languages are 
strictly controlled, governed by regular grammars. We 
might say grammars as devices to generate regular 
expressions, and finite automata as accepting devices 
to process the languages according to some rules of 
grammar structures.  

Figure 3 

 A Finite Automata (FA) as in figure 3 above is 
defined as: 

 Finite number of states, one state must be 
initial state, and more than one or none can be the 
final states. 

 Distinguishing rule. At each state, there must 
be an outgoing transition (to another state) for each 
input symbol in (symbols or alphabets) ∑. 

As in figure 2 above, ∑ = {a, b}, and  

states = 0, 1, 2, 3 where 0 is the initial state, 1 and 
2 are states, and 3 is the final state. 

Transitions: 

At state 0 (initial state): reading a or b, go to state 1 

At state 1: reading a or b, go to state 2 

At state 2: reading a or b, go to state 3  

At state 3: (final state – double circle)  

Given an input string from the alphabet ∑, a finite 
automaton will accept or reject the input string based 
on the following: 

 If the final state (state 3 as in the example 
above) is reached after reading the entire string, the 
finite automaton will accept the input string. 

 If the final state is not reachable after reading 
the entire string, then the finite automaton will reject 
the string. [6] 

IV. APPLICATIONS OF AUTOMATA THEORY 
AND FORMAL LANGUAGE 

 IV.1. Language Recognition / Processing 

 Automata theory is the fundamental basis for the 
formal languages. For any formal languages that 
include human languages and computer programming 
languages, there are some basic elements: 

 A symbol is a character that is an abstract 
representation, meaningless by itself. 

 An alphabet is a finite collection (a set) of 
symbols. 

 A word is a finite character string of symbols 
from a given alphabet. 

 A language is a set of words or character 
strings from a given alphabet. 

 The set of words of a language is infinite or 
normally unlimited, but it might also be finite or empty 
set ({ } or Ø). Formal language “sets” are considered 
as mathematical sets, so we can apply mathematical 
operations on sets theory such as Intersection 
(overlapping of sets) and Union (combination of sets 
but not repeating of the same elements). One 
important fact that sets operation (operation on 
languages) always produces a new language or set. 
Finally, sets or languages are defined and classified 
using techniques in automata theory. 

 Formal languages can be defined in one of three 
forms which can be described or recognized by 
automata theory: (1) regular expression. (2) standard 
automata. (3) or a formal grammar system. 

 Regular expression samples 

 Alphabet A1 = {a, b} 

 Alphabet A2 = {1, 2} 

 Language L1 = the set of all words  

 over A1 = {a, ab, aab, abb,.} 

Language L2 = the set of all words  

 over A2 = {1, 12, 112. 122,.} 

Language L3 = L1 ᴜ L2 = {a, ab,  

 aab, abb,., 1, 12, 112, 122,.} 

Language L4 = {a
n
 | n is even  

 number} = {aa, aaaa, aaaaaa,  

 aaaaaaaaa,.} 

 Language L5 = {a
n
b

n
 | n is natural  

 number} = {ab, aabb, aaabbb,.} 

 Standard automata. 

 Languages can be defined by standard automata 
(plural of automaton). Any automata or machine M 
operate on alphabet ∑ can generate a valid language 
L. Noam Chomsky, a computer scientist extended 
automata theory which led to the concept of formal 
grammar to define formal languages. The parameters 
of formal grammar are included: 

 

http://www.jmest.org/


Journal of Multidisciplinary Engineering Science and Technology (JMEST) 

ISSN: 2458-9403 

Vol. 12 Issue 7, July - 2025  

www.jmest.org 

JMESTN42354557 17608 

1. A set of non-terminal symbols N 
2. A set of terminal symbols ∑ (alphabet that 

constructs the language) 
3. A set of production rules P 
4. A start symbol S 

 G = (N, ∑, P, S) 

 Grammar samples 

 Given:  

 Start symbol = S 

 Non-terminals = {S} 

 Terminals = {a, b} 

 Production rules: S --> aSb (rule 1),  

 S --> ba (rule 2) 

S --> aSb --> abab (replace S  

 by rule 2) 

S --> aSb --> aaSbb (replace S  

 by rule 1) --> aababb  

 (replace S by rule 2) 

 From the sample above, we can see mathematical 
automata can generate wide variety of complex 
languages with only few symbols and production 
rules. [7] 

IV.2. Language Processors 

 IV.2.1. Compilers 

 Before a computer can execute (run) a program, it 
must be translated into a form that is executable by a 
computer. The program that does the translation is 
called a compiler. By definition, a compiler is a 
computer program that can read another program in 
one language (the source language or source code) 
then translate it into an equivalent program in another 
language (target language or object code or byte code 
in Java program). An important task of the compiler 
during the translation process, it will generate a list of 
errors it encountered to help the programmers in 
debugging errors in the source program (a program 
can be executed only when it is free of errors.) 

 IV.2.2. Interpreters 

 An interpreter is another type of language 
processor such as the old BASIC language created 
from Dartmouth College in the late 60s or early 70s. 
An interpreter will execute statements directly from a 
computer program, not generates target program like 
compilers. Because interpreter will take input then 
produces output immediately so it usually provide the 
feedback quickly including errors diagnosis for the 
programmer to fix. 

 IV.2.3. Hybrid Compiler 

 Java is the current most widespread and popular 
programming language. Java compiler combines 
compiling step and interpretation step to generate a 

special form called bytecodes. Then Java Virtual 
Machine (JVM) will interpret the bytecodes and 
produces the output (result). So Java programs can 
be run on any machines (multiple platforms). We 
might classify “Java types” compilers as hybrid 
compilers. 

. 

 IV.2.4. A Language Processing System 

 Beside a compiler, several other programs 
components maybe needed to generate an 
executable target program (.exe file in machine 
language – binary). A source program might be stored 
in separated files. The task to collect these files is 
done by a program component called a preprocessor, 
and it also expanded the macros instructions in the 
source program. 

 Next step, the modified source program will be 
fetched into a compiler and it might produce an 
assembly language program as input to an assembler 
to generate a relocatable machine code. Another 
program component called the linker links all pieces of 
source program together (resolve external memory 
addresses). Finally, the loader will put together all 
executable object files in the memory for execution. 

VI. CONCLUSION 

 In the theory of automata, formal languages are 
seen as a system for expression of certain ideas, 
facts, and concepts. This formalization covers 
varieties of human languages as well as computer 
programming languages. Generally, a language is a 
collection of sentences (or statements in programming 
languages), a sentence is a sequence of words, and a 
word is compounded of symbols of its alphabet. 

 The theory of each automaton will determine to 
accept a language or not, and this concept is very 
important in the designing of grammars that generate 
input strings belong to the languagein lexical, 
syntactic analysis phases of a compiler. 

 Theoretical computer science has many “big 
ideas” but it is sometime difficult to comprehend, and 
to grasp the subject matter fully can be tiresome. 
Learning a new subject such as “Automata” is a hard 
work, but when we get through, the subject matter 
becomes easier to understand and enjoyable [9]. This 
research paper is a stepping stone for students, 
readers to continue exploration into Automata and 
Theory of Computing world. 

 

 

 

 

 

 

 

http://www.jmest.org/


Journal of Multidisciplinary Engineering Science and Technology (JMEST) 

ISSN: 2458-9403 

Vol. 12 Issue 7, July - 2025  

www.jmest.org 

JMESTN42354557 17609 

References: 

[1]. Hopcroft, Motwani, Ullman. “Introduction to 
Automata Theory, Languages and  

 Computation”.2e, Addition-Wesley 2001. Pages: 
iii. 

[2]. Alfred V Aho, Jeffrey D. Ullman. “The Theory of 
Languages”. Bell telephone Laboratories,  

 Inc. Murray Hill, New Jersey. Page: 97. 

[3]. Peter Linz. “An Introduction to Formal 
Language and Automata, 5e, Jones and Bartlett  

 Publisher, Sudbury, MA 01776 (2012). Page 13. 
78. 

[4]. D. Goswami, K.V. Krishna, “Formal Language 
and Automata Theory”, Indian Institute of  

 Technology Guwahati (IIT Guwahati), November 
5

th
, 2010, Pages: 18-23. 

[5]. “Automata Theory”. 
https://en.wikipedia.org/wiki/Automata_theory.  

 Downloaded from the Internet, 06/01/2021 at 
11:38am. 

[6]. Dr. MM Alam, “Automata Theory” Electronic 
Government Research Center (EGRC),  

 COMSATS Institute of Information Technology, 
Islamabad, Pakistan. Pages 32-37 

[7]. “Applications of Automata Theory”. 
https://cs.stanford.edu/people/eroberts/courses/soco/p
rojects/2004-05/automata-theory/apps.html 

 Downloaded from the Internet 6/23/2025 at 
12:48pm. 

[8]. Aho, Lam, Sethi, Ullman, “Compilers: Principle, 
Techniques, and Tools”, 2e, Pearson  

 Addison Wesley (2007), pp. 1-4 83-87, 128-130, 
159-173. 

[9]. Michael Sipser, “Introduction to the Theory of 
Computation” 2e, 2006, Thomson Course  

 Technology, 25 Thomson Place, Boston MA. 
02210. Pages: xi 

 

http://www.jmest.org/
https://en.wikipedia.org/wiki/Automata_theory
https://cs.stanford.edu/people/eroberts/courses/soco/projects/2004-05/automata-theory/apps.html
https://cs.stanford.edu/people/eroberts/courses/soco/projects/2004-05/automata-theory/apps.html

