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Abstract—A study of cold atoms in optical lattices has 

offered a powerful platform for exploring quantum 

many-body systems, particularly through the Bose-

Hubbard Model (BHM). While the conventional BHM 

has been instrumental in describing the superfluid to 

Mott-insulator transition in systems with two-body 

interactions, it falls short in addressing the effects of 

local three-body interactions at zero temperature 

especially for polar molecules with long-range dipolar 

forces. This study aims to determine the 

thermodynamic properties of polar molecules in optical 

lattices using a modified Bose-Hubbard Model that 

includes local three-body interactions. The model 

Hamiltonian was constructed in the second 

quantization formalism and diagonalized using Fourier 

transformation. Thermodynamic quantities such as 

internal energy, specific heat capacity, and the 

Sommerfield were derived. Computational analysis 

and graphing were carried out using Mathcad 

software. The results reveal that the inclusion of three-

body interactions significantly alters the energy 

spectrum and phase boundaries of the system. A 

quantum phase transition between the Mott-insulator 

and superfluid phases was identified, with a critical 

transition temperature estimated at 5.2 K. Notably, the 

specific heat peaked near the transition, indicating a 

second-order phase transition. The Sommerfeld 

coefficient also showed fermionic contributions near 

the Fermi surface, highlighting the interplay between 

bosons and fermions in the lattice. These findings offer 

new insights into strongly correlated bosonic systems 

and have promising applications in high-temperature 

superconductivity, magnetic heterostructures, 

quantum information processing, and the development 

of nano electronic devices such as field-effect 

transistors, switches, and memory units. This work 

contributes to a deeper understanding of 

thermodynamic behavior in quantum lattice systems 

and opens new avenues for theoretical and 

experimental investigations. 

Keywords—Polar Molecules, Optical Lattices, Bose 

Hubbard Model, Superfluid-Mott Insulator Transition, 

Transition Temperature, Superfluidity. 

  

Introduction  

An optical lattice is a periodic potential which is formed 

by overlapping of two counter-propagating laser beams. 

Because of the interference of the counter-propagating 

laser beams an optical standing wave with wavelength 
𝜆

2
 is 

created therefore, neutral atoms can be trapped via the 

Stark shift (Petrucciani, T. (2023). A two-dimensional 
periodic potential can be created by overlapping two 

optical standing waves in orthogonal direction while a 

three-dimensional lattice potential is formed by 

overlapping three orthogonal standing waves with 

different wavelengths where there is no cross interference 

between laser beams waves. They provide ideal loss-free 

potential in which Ultracold atoms may move and interact 

with one another (Grimme et al.,2000, Windpassinger et 

al.,2013) making it easy to observe and study them. The 

energy of an atom's internal states during interaction with 

an electromagnetic wave depends on the intensity of the 

light. Therefore, a spatially dependent intensity generates a 

spatially dependent potential energy. When such 

modulation is achieved through the interference of several 

laser beams, the resulting optical potential experienced by 

the atoms will feature distinct potential wells separated by 

a distance approximately equal to the laser wavelength. In 

experiments, the depths of these optical potential wells can 

reach the micro-Kelvin range. Despite this, atoms can be 

trapped in these potentials when cooled to low 

temperatures using laser and evaporative cooling 

techniques. Ultracold atoms interacting with a spatially 

modulated optical potential are quite similar to electrons in 

the ion-lattice potential of solid crystals (Sachdeva, R., 

2013). However, optical lattices offer several advantages 

over solid-state systems. They can be made to be largely 

free from defects; such defects for example prevented the 

observation of Bloch oscillations in crystalline solids. 

During the transition from insulating to metallic 

properties, the relationship between potential energy (P.E) 

and kinetic energy (K.E) plays a crucial role. Electrons 

become localized when P.E exceeds K.E, and they become 

delocalized, entering a superfluid state, when K.E 

surpasses P.E.  Near zero temperature, the science 

governed by the Bose-Hubbard Hamiltonian can be 
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categorized into two distinct regimes (interaction 

dominated and kinetic energy dominated regimes). In the 

interaction-dominated regime, where the hopping 

parameter J is significantly smaller than the interaction 

energy U, the system is in the Mott insulator phase. 

Advances in quantum simulation techniques have made it 

possible to emulate complex many-body systems using 

ultracold atoms and molecules in optical lattices. These 

systems serve as quantum analog simulators, enabling the 

study of Hamiltonians that are otherwise analytically 

intractable or numerically intensive (Tarruell & Sanchez-

Palencia, 2018). Thermodynamic properties such as 

internal energy, entropy, specific heat, and the partition 

function are crucial for understanding the equilibrium and 

non-equilibrium behavior of these quantum systems. 

Studies by Horace Kibe et al. (2017) and Ayodo (2008) 

emphasized the role of these properties in characterizing 

phase transitions and energy distributions in fermion-

boson mixtures. Despite these advancements, there 

remains a lack of comprehensive studies focusing on the 

thermodynamic behavior of polar molecules under three-

body interactions at zero temperature. 

 

Methodology 

The standard Bose-Hubbard Model (BHM) for 1s 

electrons in a tight binding lattice which allows electrons 

to hop between nearest neighbors is given by. 

 𝐻 = −𝑡Ʃ₍ᵢⱼ₎𝜎 𝐶+ᵢ𝐶ⱼ + ℎ𝑐 + Ʃᵢ(𝜀ᵢ − 𝜇)𝐶+ᵢ𝐶ⱼ +

Ʃᵢⱼₖ
𝑊ᵢⱼₖ

6
𝑛ᵢ𝑛ⱼ𝑛ₖ                                                             (1.0)  

Where ‹i, j› counts nearest neighbor pairs once. In the 

following discussion the on-site energy ε₁ will be assumed 

to be the same on all sites. µ is the chemical potential 

included to fix the particle number as in Grand Canonical 

Ensemble. 

This Hamilton in (1) can be diagonalized by Fourier 

transformation from position space to momentum space by 

using creation and annihilation operators. 

The Fourier transforms for creation and annihilation 

operators. 

𝜕𝑘𝜎
+ =

1

√𝑚
 ∑ 𝑒𝑖𝑘𝑟𝑗𝑐𝑗𝜎

+
𝑗                                             (1.1) 

𝜕𝑘𝜎 =  
1

√𝑚
 ∑ 𝑒−𝑖𝑘𝑟𝑗𝑐𝑗𝜎𝑗                          (1.2) 

Where m is the number of lattice sites and for simplicity, 

we shall consider it equal to one. 

 The inverse operators will then be. 

𝑐𝑗𝜎
+ =

1

√𝑚
∑ 𝑒−𝑖𝑘𝑟𝑗𝑎𝑘𝜎

+
𝑗                        (1.3) 

𝑐𝑗𝜎 =
1

√𝑚
∑ 𝑒𝑖𝑘𝑟𝑗

𝑗 𝑎𝑘𝜎                                    (1.4) 

All bosons are maximally delocalized with probability 
1

𝑚
 to 

be found on an arbitrary lattice site. The wave function of 

every boson is spread over the whole lattice which 

indicates the superfluid state where all bosons can move 

freely over the whole lattice. 

The Hamiltonian in (1) can be decomposed into three parts 

thus. 

H=Hopping term (H₁) +Kinetic energy term(H₂) +three 

body interaction term (H₃) 

𝐻1 = −𝑡 ∑ 𝑐𝑖
+𝑐𝑗⟨𝑖,𝑗⟩𝜎 + ℎ𝑐         (1.5) 

𝐻1 =

−𝑡 ∑ ∑ (𝑒−𝑖𝑘𝑟𝑗𝜕𝑘𝜎

+ 𝑒𝑖𝑘𝑖𝑟𝑗𝑎𝑘,𝜎 + 𝑒−𝑖𝑘,𝑟𝑗𝜕𝑘,
𝜎

+ 𝑒𝑖𝑘𝑟𝑖𝑎𝑘𝜎)𝑘𝑘𝑖⟨𝑖,𝑗⟩𝜎

         

=
−𝑡

𝑚
∑ (𝑒−𝑖𝑘𝛿 + 𝑒𝑖𝑘𝛿)𝜕𝑘𝜎

+ 𝑎𝑘𝜎𝛿𝑘𝑘’𝑘𝛿                       

The summation over the lattice site gives a factor related to 

the lattice structure typically represented as 𝜕 in 

momentum space 

      = −2𝑡𝜕𝑘𝜎
+ 𝑎𝑘𝜎 = −2𝑡𝑁               (1.6) 

Where the  𝜕𝑘𝜎
+ 𝑎𝑘𝜎 = 𝑁(lattice sites) 

𝐻2 = ∑ (𝜀𝑖 −  𝜇)𝑖 𝑐𝑖
+𝑐𝑖             

= (𝜀𝑖 − 𝜇) ∑ ∑ 𝑒𝑖𝑘𝑟𝑖−𝑖𝑘𝑟𝑖𝜕𝑘𝜎
+ 𝑎𝑘𝜎𝑘𝑖 = (𝜀𝑖 − 𝜇)𝑁    (1.7) 

𝐻3 = ∑ (
𝑊𝑖,𝑗,𝑘

6
)

𝑖≠𝑗≠𝑘

𝑛𝑖𝑛𝑗𝑛𝑘ⱼ 

where; 

𝑛𝑖 is the number operator at site 𝑖. 
𝑊𝑖,𝑗,𝑘is the interaction strength between three 

different sites. 
1

6
 corrects for overcounting permutations of 𝑖, 𝑗, 𝑘 

=
𝑊

6𝑚2
{ ∑ (𝑒−𝑖(𝑘1−𝑘2)𝑟𝑖−𝑖(𝑘3−𝑘4)𝑟𝑖𝑎𝑘+𝜎

+ 𝑎𝑘𝜎𝜕𝑘’−𝜎
+ 𝑎𝑘’𝜎)

𝑘1𝑘2𝑘3𝑘4

+ ∑ (𝑒−𝑗(𝑘1−𝑘2)𝑟𝑗−𝑗(𝑘3−𝑘4)𝑟𝑗𝑎𝑘+𝜎
+ 𝑎𝑘𝜎𝜕𝑘’−𝜎

+ 𝑎𝑘’𝜎)

𝑘1𝑘2𝑘3𝑘4

+ ∑ (𝑒
−𝑘(𝑘1−𝑘2)𝑟𝑘−𝑘(𝑘3−𝑘4)𝑟

𝑘𝑎𝑘+𝜎
+ 𝑎𝑘𝜎𝜕𝑘’−𝜎

+ 𝑎𝑘’𝜎 )

𝑘1𝑘2𝑘3𝑘4

 

where we let 𝑘1 = 𝑘 + 𝜎, 𝑘2 = 𝑘, 𝑘3 = 𝑘 ’ − 𝜎 𝑎𝑛𝑑 𝑘4 =
𝑘’ 

=

𝑊

6𝑚2 (
∑ 𝑎𝑘+𝜎

+ 𝑎𝑘𝜎𝜕𝑘’−𝜎
+ 𝑎𝑘’𝜎 +𝑘𝑘’ ∑ 𝑎𝑘+𝜎

+ 𝑎𝑘𝜎𝜕𝑘’−𝜎
+ 𝑎𝑘’𝜎 +𝑘𝑘’

∑ 𝑎𝑘+𝜎
+ 𝑎𝑘𝜎𝜕𝑘’−𝜎

+ 𝑎𝑘’𝜎𝑘𝑘’

)  

  

=
6

6𝑚2 (∑ 𝑛𝑖(𝑛𝑖 − 1) + ∑ 𝑛𝑗(𝑛𝑗 − 1) +𝑖𝑖 ∑ 𝑛𝑘(𝑛𝑘 − 1)𝑖 )

  

=
𝑊

4
𝑁(𝑁 − 1)          (1.8)  

Finally, the full Hamiltonian includes a kinetic energy 

term (from hopping) −2tN, a chemical potential term −μN 

and the three-body interaction term 
𝑊

4
𝑁(𝑁 − 1). 

𝐻 = −2𝑡𝑁 − 𝜇𝑁 +
𝑊

4
𝑁(𝑁 − 1)                      (1.9) 

This is the modified Hamiltonian which has the three-body 

interaction part. 

When the interaction dominates the Hamiltonian (𝑡 =
0)then the on-site particle number states are the 

Eigenstates of the Hamiltonian, and the energy E is given 

by, 

𝐸 = −𝜇𝑁 +
𝑊

4
𝑁(𝑁 − 1) =

𝑊

4
𝑁2 − (

𝑊

4
+ 𝜇) 𝑁   (1.9) 

where N is the on-site particle number. 

The value of N that minimizes the energy E 

𝜕𝐸

𝜕𝑁
=

𝑊𝑁

2
− (

𝑊

4
+ 𝜇) = 0  
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𝑁 = 𝑁0 =
1

2
+ 2 (

𝜇

𝑊
)          (2.0) 

where 𝑁0 is the value of N for E to be minimum. 

This value of N will be rounded off to the nearest  

 whole number, say 𝑁0 for the energy E to  

be minimum say E0 and Eqn. (1.9) shows that the  

value of N0 will depend on the chosen values of 
µ

𝑤
.  

Similar values are given by (Bruder et al., 2005)  

such that 
µ

𝑤
= 1.5, 

µ

𝑤
=0.75, 

µ

𝑤
=0.5 and 

µ

𝑤
=0.25 

𝑁0 =
1

2
+ 2(1.5) = 4                (2.1) 

For N0 ˃2, however, the bosonic Hubbard model has  

no Pauli exclusion and allows each site to have higher 

 occupation. 

Now at very low temperatures when the bosons are 

trapped in an optical lattice, the number of trapped atoms 

is fixed, then μ can be taken to be zero (μ=0), and 

Equation (1.9) can be used to write the energy E as: 

𝐸 = −2𝑡𝑁 − 𝜇𝑁 +
𝑊

4
𝑁(𝑁 − 1)                      (2.2) 

Grand Canonical Partition Function 

𝜌(𝑞, 𝑝, 𝑁) =
1

ℎᶟᶰ𝑁!

1

Ƶ(𝑇, 𝑉, 𝜇)
 𝑒−𝛽(𝐻(𝑞, 𝑝, 𝑁) − 𝜇𝑁) 

      (2.3) 

While the partition function for this ensemble is given by; 

𝛧(𝑇, 𝑉, 𝜇) =  ∑ ∫
𝑑3𝑁  𝑞𝑑3𝑁𝑝

ℎ3𝑁𝑁!
∞
𝑁=0 𝑒−𝛽(𝐻(𝑞, 𝑝, 𝑁) − 𝜇𝑁)  

           (2.4) 

∑ ∫ 𝑑3ᴺ𝑞𝑑3ᴺ𝑝𝜌(𝑞, 𝑝, 𝑁) = 1∞
𝑁=0             (2.5) 

Using the normalization factor ℎ3𝑁𝑁! 

𝑍 = 𝑒−𝛽(𝐻(𝑞,𝑝,𝑁)−𝜇𝑁)         (2.6) 

Thermodynamic properties               

Internal energy 

𝑈 − 𝜇𝑁 = −
𝜕

𝜕𝛽
ln 𝑍(𝑇, 𝑉, 𝜇)  

 = −
𝜕

𝜕𝛽
𝐼𝑛(𝑒−𝛽(𝐻(𝑞,𝑝,𝑁)−𝜇𝑁)) + 𝜇𝑁  

 = −2𝑡𝑁 +
𝑊

4
𝑁(𝑁 − 1)          (2.7) 

We express the energy of the system at any temperature as 

a function of temperature by multiplying the ground state 

energy by the thermal activation factor given by: 

𝑒− 
∆𝐸

𝐾ʙ𝑇 where 𝑘𝐵 is the Boltzmann’s constant and ∆𝐸 is the 

energy gap.  

The energy of the quasi particles for superconductivity is a 

very small quantity and is generally 1% of the minimum 

energy of the system (Ayodo, 2008).  

Therefore, at any temperature T, the energy of the system 

is given by: 

𝑈(𝑇) = 𝐸𝑜𝑒
− 

∆𝐸

𝐾𝐵𝑇           (2.8) 

𝑈(𝑇) = {
𝑊

4
𝑁(𝑁 − 1)} 𝑒

−
∆𝐸

𝐾𝐵𝑇         (2.9) 

 for 𝑡 = 0 

Specific heat capacity 

𝐶𝑉 = {−2𝑡𝑁 +
𝑊

4
𝑁(𝑁 − 1)}

∆𝐸

𝐾𝐵𝑇2 𝑒
−

∆𝐸

𝐾𝐵𝑇              (3.0) 

 

Estimation of the coupling constant numerical value W 

According to Buchler H.P et al (2007), (for three-body 

interactions with cold polar molecules)  

𝑊 = (
𝑅𝑜

𝑎
)

3

𝐸𝑘𝑖𝑛 = (
𝑅𝑜

𝑎
)

3

(
ℏ2

𝑚𝑎2)                     (3.1) 

Where Ro –parameter space to the region | ri - rj | 

            a-lattice spacing 

            m- atomic mass 

𝑊 = 3.5 × 10−21𝐽 

𝐶𝑉 = 1.75 × 10−21 (
∆𝐸

𝐾𝐵𝑇2 𝑒
−

∆𝐸

𝐾𝐵𝑇)                      (3.2) 

and ∆𝐸 = 0.01𝐸𝑜 = 1.75 × 10−23𝐽 .       (3.3) 

Phase Transition 

Given   (
𝜕𝐶𝑉

𝜕𝑇
)

𝑇=𝑇𝐶

= 0 .                      (3.4) 

𝑇𝐶 =
∆𝐸

2𝐾𝐵
                          (3.5) 

Sommerfeld coefficient (𝛾) 

𝛾 =
𝑐𝑣

𝑇
             

𝛾 =
2.23×10−21

𝑇3 𝑒−
1.27

𝑇                     (3.6) 

Grand canonical potential 

To obtain the thermodynamic properties of the bosons 

trapped in the lattice we determine the grand canonical 

potential 

𝛺 = −𝑘𝐵𝑇𝐼𝑛𝑍 = −𝑘𝐵𝑇 {
𝑊

4
𝑁(𝑁 − 1)}                  (3.7) 

RESULTS AND DISCUSSION 

Internal Energy Versus Temperature 

For any given thermodynamic system, the higher the 

temperature, the higher the internal energy should be. The 

increase in internal energy tends to be exponential in the 

temperature range 0 K to 20 K but tends to flatten at a 

value approximately 0.98J as the temperature approaches 

80 K. The value of the internal energy smoothly increases 

as the temperature is increased, and then starts to plateau 

after T≅50 K. This means that a fermion-dominated 

system behaves like electron gas. The three-body system is 

a micro interaction of a boson (pair) and a fermion. Higher 

energy values correspond to states where the fermions 

dominate the system with higher angular momentum 

values. A weak coupling is still exhibited in this phase and 

the bosons are still in phase. These results are in good 

agreement with the ones observed by Ayodo et al., (2008). 

The internal energy of the system increases with 

temperature. At low temperature ~0 − 20 𝐾 there is a 

rapid increase in internal energy indicating the system is 

dominated by quantum fluctuations. The sharp rise in 

internal energy at 𝑇 = 10 − 20𝐾 suggests a crossover 

from superfluid to Mott insulator regime where thermal 

fluctuations set in as observed by Büchler et al. (2007) and 

Silva-Valencia & Souza (2011). 
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Figure 1.0: Internal energy versus Temperature 

 

Specific Heat Capacity 

The shape of the specific heat curve exhibits fluctuations. 

Specific heat values are too low in the temperature range 

from 40 K to 90 K. One feature that was found to be more 

interesting is that the highest peak of the curve occurred 

at 5.2𝐾. This happens to be very near the λ-transition 

temperature for liquid 4He, which is 2.2 K. Below this 

temperature liquid 4He becomes a superfluid. However, 

experimental observations by Chan et al. (1996) showed 

shifts in the transition temperature at which peaks in the 

value of the specific heat occurred. This can be accounted 

for since, experimentally, a highly porous material called 

aerogel was used to control the flow of liquid 3He into 

liquid 4He and changes in the thermodynamic quantities of 

the mixture were observed for different liquid 3He 

concentrations. However, our theoretical model assumes a 

bulk mixture, meaning without aerogel, of the two liquids. 

Furthermore, our calculations do not include the flow 

properties of the two liquids. The normal-superfluid phase 

transition in pure liquid 4He is a second order phase 

transition, whereas the phase change in the mixture of 

liquid 3He into liquid 4He is characterized with a lot of 

fluctuations with no discontinuity. In our three-body 

model, bosons and fermions are supposed to be interacting 

via a pair interaction, and the whole assembly is supposed 

to be in thermal equilibrium. The specific heat 𝐶𝑉 has 

maximum and minimum, and the maximum value of 𝐶𝑉 is 

around 5.2 K. This depicts that the system is unstable at 

the peak and a second order phase transition (normal metal 

to superconducting state) occurs due to absence of latent 

heat. In general, the total specific heat of any system is the 

sum of several different excitations. Specific heat needs to 

be explored in order to unravel the magnitude of different 

contributions to the total specific heat. The shape of the 𝐶𝑉 

curve is different from the shape of the curve for internal 

energy E. It should be acceptable that the specific heat 𝐶𝑉  
for a fermion dominated system will be different from a 

boson dominated system. It is the Pauli Exclusion 

Principle that restricts the flow of fermions from one level 

to another as the temperature changes from−10𝐾 𝑡𝑜 0𝐾. 

Thus, the system may refuse to absorb heat resulting in a 

negative specific heat. The actual transition temperature of 

the mixture is at 5.2 K, below which the whole mixture 

goes into the superfluid state. At a temperature above the 

𝑇𝑐 the energy of the system is so high that the energy gap 

does not exist anymore due to the increased agitation of 

the particles. The bosonic pair breaks up and the mixed 

ensemble gives out the energy exhibiting a lot of 

fluctuations. The superfluid state will no longer exist. The 

theoretical specific heat capacity and transition 

temperature were found to be 7.48 × 10−21 𝐽/𝐾𝑔 and 

𝑇𝐶  = 5.2𝐾 respectively. The heat capacity is 

exponentially small at low temperatures. The results 

compare with that of Horace E Kibe et al., (2017) on their 

study on Thermodynamics of S-Wave Pairing in Uranium 

and Cerium Based Heavy Fermion Compounds at low 

temperatures. 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

Figure 1.1: Specific heat capacity versus temperature 

 

Sommerfeld coefficient 

The Sommerfeld coefficient, representing the electronic 

specific heat, peaks at 11.1K with a value of 

0.001121J/Kg.K. This result suggests enhanced fermionic 

contributions near the Fermi surface due to hybridization 

or coexistence of fermions with bosons in the optical 

lattice. The increase in the Sommerfeld coefficient with 

temperature indicates increased density of states near the 

Fermi level, aligning with theoretical predictions for 

mixed boson-fermion systems Kibe et al., (2017). This is 

also in agreement with Peotta and Törmä (2015), who 

demonstrated superfluidity in flat-band systems where 

fermionic states contribute to bosonic behavior. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.3: Sommerfield coefficient versus temperature 
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