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Abstract— In this work, the development of
Random Forest (RF) model for optimal
configuration of LoRa transceiver parameters in
loT network is presented. The dataset for the LoRa
transceiver and the loT network along with the
energy consumption and the battery life span are
generated via simulation over period of operation
of the loT network and based on the dataset, the
RF model is trained and then used to predict the
values of each of the parameters that will give
optimal energy consumption in the loT network.
The energy consumption, the signal to noise ratio
(SNR), the number of retransmission and packet
delivery ratio (PDR) at optimal configuration are
the key performance metrics used. At short
transmission distances (TD = 10.85 m), the
network achieved extremely Ilow energy
consumption (0.0037 mJ), with spreading factor
(SF = 11). However, energy demand scales rapidly
with both TD and suboptimal configuration
choices; at TD = 886.98 m, energy roses
significantly to 3.4736 mJ, influenced by high
payload size and compounded by an SF of 11 and
Coding Rate (CR) of 4. Also, a strong PDR of 95%
is observed at TD = 10.85 m, but this sharply
declines to just 7% at 886.98 m. In all, the results
showed that while the optimal energy increases
with transmission distance (TD), the SNR, the
packet delivery ration and number of
retransmissions decreases with increase in TD.
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1. Introduction

Nowadays, internet of Thing (IoT) technologies
have find wide applications in diverse disciplines [1,2,3].

Their applications has become the major driver for smart
systems that are already being deployed across the globe
such as smart agriculture, smart grid, smart transport , smart
city , among many other examples [4,5,6]. The IoT
networks rely heavily on resource constrained sensors most
of which are powered using battery [7,8]. In view of the
limited battery energy lifespan, effort is always made to
optimize the energy consumption of the IoT sensor nodes
thereby extending the battery lifespan [9,10].

Basically, IoT networks consists of sensor nodes
with transceiver along with gateways or base stations and
internet connections [11,12]. The transceiver considered in
this work is based on LoRa technology. The sensor nodes
are distributed across the network coverage area and each
of the sensor nodes communicates with other sensor nodes
or base station. In practice, the energy consumption of the
LoRa based IoT sensor network is dependent on a number
of parameters with the transmission distance as a key
parameter; the higher the transmission distance, the higher
the energy consumption [13,14]. In order to accommodate
high transmission distance, LoRa transceiver provides
different parameters that can be tuned for long range
communications and also for short range communication
[15,16]. Each configuration has its energy consumption
which can be optimally tuned based on the selected
parameters.

Accordingly, in this work, the Random Forest
(RF) model used to predict the parameter configuration
settings for the LoRa transceiver and the [oT network such
that optimal energy utilization is realized [17]. Such data
driven approach is particularly useful for automated
adaptive configuration for efficient energy utilization in the
LoRa-based IoT network.

2. Methodology

The Random Forest (RF) model is used in this
work to predict values of each of the various LoRa
parameters which will yield optimal energy utilization. The
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dataset for the LoRa transceiver and the IoT network along
with the energy consumption and the battery life span are
generated via simulation over period of operation of the IoT
network and based on the dataset, the RF model is trained
and then used to predict the values of each of the
parameters that will give optimal energy consumption in
the IoT network.

Notably, the Random Forest (RF) model is a
robust, ensemble-based learning algorithm that integrates
multiple decision trees to improve predictive accuracy and
generalization. In the context of this work, RF serves as
non-parametric regression model that learns from key
transmission parameters  like spreading factor (SF),
bandwidth (BW), transmitter power (P_Tx), transmission
distance (TD), and time on air (ToA)) to predict energy-
related metrics such as Energy Consumption and Efficiency
(PDR/Energy) which are vital for optimizing LoRa network
performance. In LoRa systems, efficiency in energy
utilization is typically influenced by:

1. Spreading Factor (SF): Affects Time on Air (ToA)
il. Bandwidth (BW): Higher BW results in lower

ToA but higher power

1. Payload Size, Transmission path length or
Distance (TD), P_Tx: Core determinants of energy
cost

iv. PDR: Affected by signal attenuation and SF
The target variable in this study is energy efficiency

expressed as;
PDR

Energy (1)
Let D ={(x;y;,)}, be the dataset where, x; € R%
denotes the feature vector for LoRa configuration, y; € R
denotes the variable that is the target which is Efficiency;

Efficiency =

Random forest builds T decision trees {h,(x)}F-,, using
D; € D for training the T trees where D, is used to denote
the training set. The averaged prediction becomes the
output and is given as:

Per () ==X b () ()
Each decision tree is created by randomly selecting a
feature within the feature space. The nodes are split using

feature and threshold that minimizes the mean squared error
(MSE):

MSE =—3¥,(y; = 9% (3)
Where Nthe total number of nodes is, y; denotes the actual
output and ¥; denotes the predicted output. The RF model
learns the mappings expressed as:
:(SF,BW,CR,TD,DC, Payload) — Ef ficiency , where
CR is the coding rate, DC is duty cycle and payload is the
payload size. In this case, the mapping is used to predict the
efficiency in a situation where the transmission
configurations is unseen and as such it serves as the
objective function which can then be used in an
optimization algorithm. Hence, RF provides a surrogate
model f(x) which helps the optimization algorithm to
select the specific configurations that maximizes the
efficiency predicted by the model.
Maxyey frr(X) = Predicted Ef ficiency e
Where X denotes the feasible space of transmission
parameters constrained by the hardware and protocol limits.

The parameters used in the simulation are presented in
Table 1. The TD are categorized into short range, medium
range and long range as follows: [short range: TD < 200 m;
medium range: 200 m < TD < 600 m and long range: TD >
600 m].

Table 1 The parameters used for the simulation

S/N Parameter description Parameter value or category selected
and acronym used
1 Transceiver technology LoRa
2 Physical layer Technology | LoRaWAN based on Semtech SX1276 transceiver specifications
3 Frequency (f) 868 MHz
4 Transmission range (TD) 10 m to 1000 m
5 Coding rate (CR) Range 4/5 to 4/8
6 Spreading Factor (SF) 7to 12
range
7 Duty cycle range (DC) 1 % to 10 %
8 Bandwidth range (BW) 125 KHs, 250 KHz and 500 KHz
9 Transmitter energy range 2 dBmto 14 dBm
(P tx)
10 | Payload size (payload) 10 to 150 bytes
11 | Battery capacity (Bcap) 1000 mAh

Other parameters are calculated and they include time on
air (ToA), packet delivery ration (PDR) and energy
consumed (Energy). The efficiencies obtained of the data
entire dataset is normalized and expressed in percentage
using the minmax approach with the value multiplied by
100 to appear in %. The RF model is trained with 75% of
the dataset and then validated using 25 5 of the dataset.

3. Results and Discussion

The results of the optimal configurations predicted
by the RF model are presented, focusing on some key
parameters of interest. The results in Figure 1 outline the
predicted energy consumption across different transmission
distances (TDs) under the baseline Random Forest model.
At short distances (e.g., TD = 10.85 m), the model achieves
extremely low energy consumption (0.0037 mJ]), reflecting
ideal conditions where the link budget is minimal, and high
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spreading factor (SF = 11) allows successful decoding with
minimal retries. However, energy demand scales rapidly
with both TD and suboptimal configuration choices. For
instance, at TD = 886.98 m, energy rises significantly to
34736 mJ, influenced by high payload size and
compounded by an SF of 11 and Coding Rate (CR) of 4.
This trend reinforces the need for adaptive parameter
tuning, particularly as network nodes operate over varying
distances.

The Packet delivery ratio (PDR) results in Figure 2
indicate that signal integrity degrades with increasing
distance and poorer configuration selection. A strong PDR
of 95% is observed at TD = 10.85 m, but this sharply
declines to just 7% at 886.98 m, suggesting severe link
reliability degradation despite using a high SF and
bandwidth.

The SNR generally declines as TD increases as
shown in Figure 3. The SNR gradually deteriorated from
96.88 dB at path distance of 10.85 m, to 53.68 dB at path
distance of 886.98 m; this confirms the expected impact of
increase in the path distance on the path loss and

attenuation. The trend is consistent with standard radio
propagation models, affirming that longer-range links
require more energy or adaptive modulation techniques to
maintain link quality. The result also suggest that higher
SFs at long ranges (e.g., SF = 12) do not always
compensate for degradation, especially when bandwidth
and CR are not tuned synergistically.

This metric in Figure 4.25 evaluates the node’s
energy endurance under repeated transmissions. As
expected, short-range configurations (TD = 10.85 m) allow
for millions of rounds (2.7 million) before depletion.
Conversely, long-distance setups with high energy draw
drastically reduce lifespan (e.g., 2,878 rounds at TD =
886.98 m). Interestingly, intermediate distances like 210.30
m offer balanced longevity (413,152 rounds) due to optimal
ToA and low payload demands. The drastic drop in rounds
for certain configurations (e.g., TD = 707.54 m) shows how
poor configuration tuning, particularly in terms of SF and
CR, accelerates node death, even when energy per packet
remains manageable.
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Figure 1: Optimal parameter configuration energy optimization
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Figure 4: Number of transmission rounds before the node dies for optimal configuration
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