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Abstract— The Extreme Gradient Boosting 
(XGBoost) model-based optimal configuration of 
IoT network using LoRa transceiver is presented. 
The work is focused on addressing the challenges 
of selecting the parameters values combination 
that will minimize the energy needed to 
successfully transmit each data packet. The case 
study 3000 records dataset with 10 features was 
generated by simulating an IoT network based on 
Semtech SX1276 transceiver operating at 868 
MHz. The data was preprocessed and the energy 
efficiency computed as PDR/energy is normalized 
with the MinMax approach with minimum value of 
0% and maximum value of 100%.   The XGBoost 
was then trained and validated using 75% by 25 % 
data splitting ratio. The results showed a trend of 
increased energy consumption with increasing 
distance giving 0.8193 mJ of energy consumption 
521.13 m distance and 3.3220 mJ of energy 
consumption at 886.98 m; aligning with 
expectations in low-power wide-area networks. 
Also, 95% packet delivery ratio (PDR)  is achieved 
at TD = 10.85 m, which is consistent with strong 
signal conditions and minimal path loss. The time 
on air (ToA) is minimal (0.020 ms) at TD = 210.30 
m, due to the low payload size and moderate 
bandwidth, while longer distances and larger 
payloads predictably result in higher ToA values 
(such as 0.215 ms at TD = 886.98 m). In all, the 
study observed the strength and weakness of the 
XGBoost model in this application and 
recommends that further analysis is required to 
address the weakness to make the XGBoost 
model more accurate in the prediction of the 
optimal configuration values for the IoT network.  
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1. Introduction 

 In recent years, LoRa-based Internet of Things 
(IoT) networks have gained wide application [1,2,3]. The 
long range and low power demand feature of the LoRa 
transceiver has made it possible to access long distance, 
even enabling direct earth to satellite communication [4,5]. 
These capabilities are due to the different parameter 
configurations afforded by the Lora technologies.  

  LoRa transceivers have different spreading 
factors, bandwidth, payload size and transmission power 
which affect the energy efficiency and transmission range 
[6,7]. Also, parameters like the duty cycle and coding rate 
also affect the packet delivery ratio and energy efficiency 
[8]. In operation, careful selection of the different parameter 
settings is required to ensure energy efficiency. This is 
particularly important in IoT sensor nodes which are in 
many cases battery-powered with finite battery lifespan that 
is dependent on the energy consumption of the sensor node 
[9,10,11]. Accordingly, this work major aim is the 
application of XGBoost model to predict the parameter 
settings that will afford the lowest energy consumption for 
each packet that is successfully delivered over a given 
distance within the IoT network coverage area [12,13]. The 
study is based on simulated dataset of an IoT based on 
LoRaWAN.  
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