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Abstract— The Extreme Gradient Boosting
(XGBoost) model-based optimal configuration of
loT network using LoRa transceiver is presented.
The work is focused on addressing the challenges
of selecting the parameters values combination
that will minimize the energy needed to
successfully transmit each data packet. The case
study 3000 records dataset with 10 features was
generated by simulating an loT network based on
Semtech SX1276 transceiver operating at 868
MHz. The data was preprocessed and the energy
efficiency computed as PDR/energy is normalized
with the MinMax approach with minimum value of
0% and maximum value of 100%. The XGBoost
was then trained and validated using 75% by 25 %
data splitting ratio. The results showed a trend of
increased energy consumption with increasing
distance giving 0.8193 mJ of energy consumption
521.13 m distance and 3.3220 mJ of energy
consumption at 886.98 m; aligning with
expectations in low-power wide-area networks.
Also, 95% packet delivery ratio (PDR) is achieved
at TD = 10.85 m, which is consistent with strong
signal conditions and minimal path loss. The time
on air (ToA) is minimal (0.020 ms) at TD = 210.30
m, due to the low payload size and moderate
bandwidth, while longer distances and larger
payloads predictably result in higher ToA values
(such as 0.215 ms at TD = 886.98 m). In all, the
study observed the strength and weakness of the
XGBoost model in this application and
recommends that further analysis is required to
address the weakness to make the XGBoost
model more accurate in the prediction of the
optimal configuration values for the loT network.
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1. Introduction

In recent years, LoRa-based Internet of Things
(IoT) networks have gained wide application [1,2,3]. The
long range and low power demand feature of the LoRa
transceiver has made it possible to access long distance,
even enabling direct earth to satellite communication [4,5].
These capabilities are due to the different parameter
configurations afforded by the Lora technologies.

LoRa transceivers have different spreading
factors, bandwidth, payload size and transmission power
which affect the energy efficiency and transmission range
[6,7]. Also, parameters like the duty cycle and coding rate
also affect the packet delivery ratio and energy efficiency
[8]. In operation, careful selection of the different parameter
settings is required to ensure energy efficiency. This is
particularly important in IoT sensor nodes which are in
many cases battery-powered with finite battery lifespan that
is dependent on the energy consumption of the sensor node
[9,10,11]. Accordingly, this work major aim is the
application of XGBoost model to predict the parameter
settings that will afford the lowest energy consumption for
each packet that is successfully delivered over a given
distance within the IoT network coverage area [12,13]. The
study is based on simulated dataset of an IoT based on
LoRaWAN.
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2. Methodology: development of the Extreme Gradient
Boosting Model for LoRa Optimal Parameter
Configuration

In this work Extreme Gradient Boosting
(XGBoost) is employed to select appropriate combinations
of LoRa transceiver parameters values for optimal energy
consumption. The XGBoost model is well-suited for
structured data problems involving non-linear, high-
dimensional, and sparse input features making it a strong
candidate for predicting energy efficiency metrics in
LoRaWAN systems. XGBoost can model complex
relationships between parameters like Spreading Factor
(SF), Transmission Power (P_Tx), Bandwidth (BW), Time
on Air (ToA), and Transmission Distance (TD), all of
which directly or indirectly affect energy consumption in
IoT communication. Given a dataset D = {(x;, v;)},
where, x; € R% are the transmission parameters and y; € R
is the target variable (Efficiency), XBGoost learns a
function:

A(t) =Y fix), fk€F (D

Where, F is a space of regression trees, f; is a individual
regression tree in the ensemble, and K is the number of
boosting iterations. The learning objective in iteration ¢ is:

£O =3 1y, 970 + £u0)) + 0(f)
2

Where, [ is used to denote the convex loss function, while
the () is used to denote the penalizing complexity for the
regularization term.

Q(f) =T +3 /12, wi0)

The summary of the case study dataset generated
by simulating an IoT network based on Semtech SX1276
transceiver operating at 868 MHz is show Table 1 while
Table 2 shows the correlation matrix of the parameters.
Notably, there are 10 features in the dataset consisting of
3000 records, as shown in Table 1. According to the
correlation matrix, the transmission distance, TD is highly
correlated with the transmitter power (P_Tx) and the packet
delivery ratio (PDR). Td is also correlated fairly high with
the energy consumption. In essence, while, higher TD give
rise to high P Tx and lower PDR due to the negative
correlation, the energy «consumption may increase
depending on the contributions of some other parameters.
This is why the correlation between TD and energy is not as
high as the value between TD and P_Tx.

Table 1 The parameters in the case study dataset

Column Name Non-Null Data Description
Count Type

Node ID 3000 int64 Unique identifier for each simulated sensor node in the
network.

D 3000 float64 Transmission distance from node to gateway, measured in
meters.

SF 3000 int64 Spreading factor, ranging from 7 to 12, influencing time-on-air
and range.

BW 3000 float64 Transmission bandwidth, typically 125 kHz, 250 kHz, or 500
kHz.

CR 3000 int64 Coding rate index; represents LoRa error correction capability.

DC 3000 float64 Duty cyecle; fraction of active time over a transmission cycle.

Payload Size 3000 int64 Size of transmitted data packet in bytes.

PDR 3000 float64 Packet Delivery Ratio; probability of successful delivery (0 to
1).

P_Tx (mW) 3000 float64 Transmission power in milliwatts, based on distance and signal
parameters.

ToA (s) 3000 float64 Time-on-air; duration required to transmit a full packet.

Energy (mJ) 3000 float64 Total energy consumed per transmission event, computed in
millijoules.

Table 2 The correlation matrix for the features in the dataset
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D SF BW CR DC PayloadSize | PDR P Tx(mW) | ToA(s) | Energy (mJ)
D 1.000 -0.014 | -0.009 0.023 0.005 -0.024 -0.980 | 0.972 -0.005 | 0.637
SF -0.014 1.000 | -0.040 0.017 0.000 | -0.008 -0.186 | -0.004 -0.223 | -0.140
BW -0.009 | -0.040 | 1.000 -0.008 -0.001 | 0.006 0.017 | -0.013 -0.647 | -0.373
CR 0.023 0.017 -0.008 1.000 0.024 | 0.013 -0.026 | 0.024 0.220 | 0.144
DC 0.005 0.000 | -0.001 0.024 1.000 | -0.013 -0.005 | 0.005 -0.001 | -0.001
PayloadSize | -0.024 -0.008 | 0.006 0.013 -0.013 | 1.000 0.026 | -0.022 0.521 0.277
PDR -0.980 | -0.186 | 0.017 -0.026 -0.005 | 0.026 000 | -0.954 0.050 | -0.597
P Tx(mW) | 0.972 -0.004 | -0.013 0.024 0.005 -0.022 -0.954 | 1.000 -0.002 | 0.656
ToA (s) -0.005 -0.223 | -0.647 0.220 -0.001 | 0.521 0.050 | -0.002 1.000 | 0.566
Energy (mJ) | 0.637 -0.140 | -0.373 0.144 -0.001 | 0.277 -0.597 | 0.656 0.566 1.000

3. Results and discussion

The data was preprocessed and the energy
efficiency computed as PDR/energy is normalized with the
MinMax approach with minimum value of 0% and
maximum value of 100%. The XGBoost was then trained
and validated using 75% by 25 % data splitting ratio. The
XGBoost was trained select the parameter value
combinations that give the highest energy efficiency for any
given transmission distance, TD. The graph in Figure 1
presents the energy predictions from the baseline XGBoost
model across different transmission distances (TD). While
the model performs reasonably in predicting energy
consumption trends, some predictions such as negative
energy values at TD = 10.85 m (-0.1507 mJ) and TD =
210.30 m (-1.1359 mlJ) are physically unrealistic. These
values likely reflect model over fitting or extrapolation
errors. For valid positive predictions, a trend of increased
energy consumption with increasing distance is evident
(e.g., 3.3220 mJ at 886.98 m), aligning with expectations in
low-power wide-area networks (LPWANS).

Again, as seen in Figure 2, the XGBoost model
associates higher packet delivery ratio (PDR) with shorter
transmission  distances and  optimal  parameter
configurations. For instance, '95% PDR is achieved at TD =
10.85 m, consistent with strong signal conditions and
minimal path loss. However, the model fails to maintain
robust delivery as distance increases, with PDR dropping to
7% at 88698 m, despite a relatively high SF and
bandwidth.

The results in Table 3 and Figure 4.28 outline the
time required to transmit a packet under optimal settings.
The time on air (ToA) values are mostly consistent with the
theoretical relationships between SF, payload, and
bandwidth. For example, ToA is minimal (0.020 ms) at TD
= 210.30 m, due to the low payload size and moderate
bandwidth, despite the use of SF = 11. In contrast, longer
distances and larger payloads predictably result in higher
ToA values (e.g., 0.215 ms at TD = 886.98 m). This aligns
well with expectations and suggests that XGBoost does
capture the structural dependencies that define ToA.
However, since ToA does not directly incorporate network
congestion or real-world delays, the model’s performance
on this metric is informative but not comprehensive.

Short Range: Energy vs TD
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Figure 1: Optimal parameter configuration energy optimization
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Short Range: PDR vs TD
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Figure 2: Packet delivery ratio for optimal configuration
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Figure 3: Time-on-air for optimal configuration

The SNR values in the graph plot of Figure 4
show a well-structured decline as transmission distance
increases, starting from 97.59 dB at TD = 10.85 m to 52.57
dB at TD = 886.98 m. This decline mirrors theoretical
expectations derived from the logarithmic decay in received
power as defined by the Friis transmission equation and

path loss models. The values further suggest that while the
XGBoost model may not optimize reliability directly, it
indirectly aligns with physical-layer dynamics, capturing
distance-related signal attenuation accurately. Such
consistent SNR behavior provides a stable foundation for
subsequent optimization frameworks.
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Short Range: SNR vs TD
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Figure 4: SNR for optimal configuration

In all, the XGBoost model exhibits strong
representational capability for patterns such as ToA and
SNR. However, its tendency to produce negative or non-
physical energy values renders it unfit for direct
deployment without correction mechanisms. Its limitations
in optimizing energy-PDR trade-offs and lifetime
projections further stress the need for enhanced meta-
optimization techniques to guide XGBoost-based
predictions toward feasible, efficient, and reliable
transmission configurations in LoRa networks.

4. Conclusion

The approach for selecting the best parameter
configurations at any given transmission distance for
maximum energy efficiency is presented. The approach rely
on the Extreme Gradient Boosting (XGBoost) model which
is trained with simulated dataset of the case study IoT
network. The IoT network studied used the LoRa
technology for its communication link. In this case, the best
combination of the LoRa transceiver parameters and the
IoT network that will yield the smallest energy per
delivered packet is predicted by the XGBoost model. In all,
the study observed the strength and weakness of the
XGBoost model in this application and recommends that
further analysis is required to address the weakness to make
the XGBoost model more accurate in the prediction of the
optimal configuration values for the IoT network.
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