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Abstract— It is well known that the Discontinuous-
Galerkin method (DGM) is an effective numerical 
method for space discretization, and the approach 
has advanced rapidly in recent years. This work 
aims to investigate the shape functions for an 
interval other than the standard or traditional [0 1] 
or [-1 1], where this paper is part of a series of 
papers. The shape function for the non-standard 
interval [0 π] is investigated for both the space 
and time discretizations. The numerical results 
demonstrated that the order of accuracy of the 
shape functions constructed from polynomials 
within the interval [0 π] is satisfied. The 
comparison between the shape function of this 
work and one for the conventional [0 1] interval 
shows that the equivalence in the numerical 
results is achieved at time t = π. The findings 
clearly illustrate the adaptability and efficiency of 
the TVI-DG method in tackling the numerical 
solution for non-conventional intervals.  

Keywords—Space and Time Discretizations; 
Discontinuous-Galerkin Method (DGM); Totally 
Volume Integrals (TVI); Non-conventional Interval.   

I. INTRODUCTION AND BACKGROUND

It is well recognized that the Discontinuous-Galerkin 
method (DGM) is a potent numerical method for 
space discretization. The method has experienced 
swift development in recent years. It has rapidly been 
applied in a wide range of applications, including 
unsteady turbulent flows, continuum mechanics, 
turbomachinery, chemically reacting flows, and 
combustion [1], [2], and [3]. 

As an example of numerical development 
methods, a discontinuous Galerkin volume integral 
equation approach was introduced for the analysis of 
scattering phenomena involving inhomogeneous 
objects in [4]. It was demonstrated that the developed 
approach has various advantages over conventional 
volume integral techniques, and the findings 
confirmed the correctness and efficiency of the 
suggested method. 

A novel approach called the totally volume integral 
discontinuous Galerkin method (TVI-DG) was 
introduced in [5]. This developed technique is based 
on transforming the boundary integrals into the 
volume integrals. The method was tested for accuracy 
using the one-dimensional unsteady linear convection 
equation, inviscid Burger's equation, and Buckley-
Leverett equation. The numerical results showed that 
the approach is highly efficient for the considered 
hyperbolic conservation equations. 

A totally volume integral of the local discontinuous 
Galerkin (TV-LDG) method was developed for solving 
the time-dependent linear convection diffusion 
equation in [6]. In space, the equation was numerically 
discretized using the local discontinuous Galerkin 
method, with boundary integrals transformed into 
volume integrals. The time discretization was 
achieved using the third-order explicit strong stability 
preserving Runge-Kutta (3,3) method. The numerical 
results demonstrated that the developed scheme is 
very efficient to solve the unsteady linear advection-
diffusion equation in one- and two-dimensional 
domains. 

Recently, Elhadi et al. [7] extended a procedure for 
solving 2D Euler equations on Cartesian coordinates. 
The method was based on a high-order precise totally 
volume Galerkin discontinuous finite element method 
(TVI-DG). The divergence theorem was used to 
translate the boundary integral of the Riemann fluxes 
into volume integrals, where the accuracy is not 
affected by the border integral fluxes at the element 
boundaries. The precision was achieved by using 
high-order polynomial approximations within elements 
via the tensor product of Lagrange polynomials. The 
strong stability-preserving Runge-Kutta method 
SSPRK (3, 3) is used for temporal integration, and the 
technique was stabilized via the Streamline Upwind 
Petrov Galerkin (SUPG) stabilization scheme. The 
results showed that the scheme clearly describes the 
solution's behavior with all details. Furthermore, the 
developed TVI-DG was computationally faster than 
the standard nodal discontinuous Galerkin method. 
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While all previous research works were applied on 
the conventional intervals [0 1] or [-1 1], this 
contribution aims to investigate the shape function for 
the non-conventional interval [0 π] for both the space 
and time discretizations. We organize the remainder 
of the paper as follows: The methodology is presented 
in the next section, where the second- and third-order 
spatial discretization of the TVI-DG methods for π 
intervals are introduced. Also, the second- and third-
order strong stability-preserving time discretization 
methods (SSP) for π intervals are presented in the 
same section. The numerical results are presented in 
section (III), and the concluding remarks are 
presented in section (IV). 

II. METHODOLOGY 

A. The Mathematical Formulation and Numerical 
Discretization  

In order to obtain the numerical solution of 
hyperbolic conservation laws 

ut + F(u)x = 0                                                           (1) 

where u(x, t) is the conservative variable and F(u) is 
the conservative flux. The numerical solution is 
complicated by the fact that the solution may develop 
discontinuities. For this reason, significant effort has 
been expended on finding spatial discretizations that 
can handle discontinuities [8]. So, the target is to find a 
numerical approximation that discretizes the spatial 
derivative term. Once the spatial derivative is 
discretized, the obtained is a system of ordinary 
differential equations (ODEs) in time variable [9]. Thus, 
the semi-discrete scheme in time can be written as 

ut = −Lu                                                                    (2) 

where Lu is the spatial discretization of the function u. 
Note that, however, the function u is a function of both 
space and time, u(x, t), so the semi-discretization is 

permissible to separate it into u(x)  alone and u(t) . 
Most researchers discretized the functions u(x)  and 

u(t)  by using Legendre or Chebyshev polynomials 
within intervals [-1 1] or [0 1]. However, these 
polynomials are special cases of the Jacobi 
polynomial. There are many polynomials like the 
Laguerre polynomial for the interval [0 ∞], the Hermite 
polynomial for the interval [-∞  ∞], and the simple 
harmonic oscillator [0 2π]. Therefore, this work can be 
divided into a series of papers. Each paper is 
concerned with a certain interval. In this paper, we are 
concerned with a polynomial that is useful for the 
interval [0 π]. Where the general Fourier series theory 
is allowed to write a function u(x) or u(t) as a linear 
combination of an orthogonal system of functions as 
follows [10], [11]: 

𝑢(𝑥) = ∑ 𝑐𝑛𝜙𝑛
∞
0                                                           (3) 

This set of real-valued functions is orthogonal with 

respect to a weight function w(x) on an interval [a, b]. If 
the set is orthogonal, then 

∫ 𝑤
𝑏

𝑎
(𝑥)𝜙𝑚(𝑥)𝜙𝑛(𝑥)𝑑𝑥 = 0        𝑖𝑓  𝑚 ≠ 𝑛                 (4a) 

and 

∫ 𝑤
𝑏

𝑎
(𝑥)𝜙𝑚(𝑥)𝜙𝑛(𝑥)𝑑𝑥 = 1       𝑖𝑓  𝑚 = 𝑛                  (4b) 

The coefficients of the set can be determined by: 
 

𝑐𝑛 =
∫ 𝑤(𝑥)𝑢(𝑥)𝜙𝑛(𝑥)

𝑏
𝑎

‖𝜙𝑛‖2                                                      (5) 

Let us name w(x)  and w(t)  as polynomial 
weighting functions to distinguish them from the 
governing equation weighting functions W(x)  and 

W(t). 

B. TVI-DG Spatial Discretization In Interval [0 π] 

For a clear explanation, a review of discontinuous 
Galerkin semi-discretized for solving partial differential 
equations (PDE) is presented in this section.  

Consider the one-dimensional conservation law 

equation: 

𝜕𝑢

𝜕𝑡
+

𝜕𝐹(𝑢)

𝜕𝑥
= 0                                                              

(6) 
 

The numerical solution of (6) is sought in the 
computational domain Ω, subject to proper initial and 
boundary conditions. The weighted residual 
formulation can be accomplished by multiplying (6) by 

the weighting or test function of the xvariable 𝑊(x) and 
integrating by parts over the domain: 
 

∫ [𝑊(𝑥)𝑢𝑡 − 𝑊𝑥𝐹(𝑢)]
𝛺

𝑑𝛺 + ∫ [𝐹(𝑢). 𝑊(𝑥)]
𝛤

. 𝑛𝑑𝛤 = 0 (7) 

where Γ is the boundary                         
 

Subdivided the computational domain Ω into N non-
overlapping elements: 

𝛺 = ∑ 𝛺ℎ
𝑁
1                                                              (8) 

∫ [𝑊ℎ(𝑥)𝑢𝑡 − 𝑊𝑥𝐹(𝑢ℎ)]
𝛺ℎ

𝑑𝛺ℎ +

                              ∫ [𝐹𝑏(𝑢ℎ). 𝑊ℎ(𝑥)]
𝛤ℎ

. 𝑛𝑑𝛤ℎ = 0              (9) 

where 𝑊ℎ(𝑥) and 𝐹(𝑢ℎ) are the weighting and flux 

functions over the element domain and 𝐹𝑏(𝑢)  is the 

flux over the element boundaries. For the sake of 

simplicity, let us eliminate the element subscript (h) 

and, by applying the divergence theory to the last term 

of (9), get 

∫ 𝑊𝑢𝑡 −
𝜕𝑊

𝜕𝑥
𝐹(𝑢) + (𝑊

( )

𝜕𝑥
+ ( )

𝜕𝑊

𝜕𝑥
)𝐹𝑏

𝛺

𝑑𝛺 = 0        

(10) 

This is the totally volume discontinuous Glerken 
method (TVI-DG) method [5].              

where in this work, the element domain Ω = [0 π] or 

(a = 0 and b = π), w(x) = 1, with u(x) = W(x) for the 
standard Galerkin method; otherwise, it is the petrov-

Galerkin method. On the other hand, we have ϕ0 = 1 
and ϕ1 = x  for the second-order shape and weight 

functions and ϕ2 = x2  for the third-order functions, 

http://www.jmest.org/
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then substitution into equations (3) to (5) gives the 
complete spatial discretization. 

C. Strong Stability Preserving (SSP)-Time 
Discretization in Interval [0 π]  

Once the spatial discretization is completed, let the 
spatial part of (10) into the right. Then multiplying the 

equation by W(t).and integrating over the time domain 
Ω = [0 π] yields: 

 

∫ 𝑊(𝑡)𝑄𝑡 = 𝑊(𝑡)𝐿𝑢
𝛺

                                           (11) 

 

where Qt = W(x)
∂u

∂t
, Lu  represents the spatial 

discretization of the u function, which remains constant 
over time. where in this paper the time function u(t) 

and weight function W(t) over the domain Ω = [0 π] 
with ϕ0 = 1  and ϕ1 = t  for the second-order shape 

function and ϕ2 = t2  for the third-order function, and 
then substitution into equations (3) to (5). 

After manipulations, the second-order SSP 
time discretizations for the [0 π] interval are given as: 

For completeness, let un = Qn 
 

𝑢0 = 𝑢𝑛 
 
Step (1) 
 

𝑢1 = 𝑢0 + 3.1415926535924141305 𝐿𝑢0∆𝑡   
 
Step (2) 
 

 𝑢2 = 𝑢0 + 1.57079632679850655 𝐿𝑢0∆𝑡 +
                             1.57079632679850655 𝐿𝑢1∆𝑡           
(12) 

 
where  Lu

n
  is the spatial discretization at step n and 

Δt is the time step, n = 0, 1, 2, 
 

The third order SSP-time discretizations for 
the [0 π] interval are given as: 
 

u0 = un 
 
Step (1) 
 

u2 = u0 + 3.14159265358979323846 Lu0∆t    
 
where u

2
 as a guess value 

 
u1 = 0.75 u0 + 0.25 u2 + 0.785398163398 Lu0  

 
Step (2) 
 

u2 = u0 + 3.141592653592 Lu1∆t       
Step (3) 
 

u3 = u0 + 0.523598775599 Lu0 + 

2.094395102398 Lu1 + 0.523598775595 Lu2           
(13) 

 
The Courant number is equal to unity for both the 
second and third SSP-time methods. 
 
For the purpose of comparison, the standard SSP-time 
method is given as 
 

u0 = un 
Step (1) 

u1 = u0 + Lu0∆t 
 
Step (2) 
 

u2 = u0 + (0.5Lu0 + 0.5Lu1)∆t                                (14) 
 

III. TEST CASES AND NUMERICAL RESULTS 

In this manuscript, we examine the same test 
examples utilized in the first paper [12] of our series for 
the purpose of comparison, where the totally volume-
discontinuous Galerkin is employed. The code was 
developed in C++ and compiled using g++. All 
computations were conducted on an HP laptop 
featuring an Intel® Core™ i7-10510U processor, 
operating at 1.80 GHz and 2.30 GHz, with 8 GB of 
memory. The system ran on the Ubuntu 24.04 LTS 
Linux operating system.  

The global error is calculated as the difference 
between the exact solutions and the numerical 
solutions. The discretized L1 norm error is given as 

       

L1 = ∑(u∑ exedof
1

− ui)

N

1

tdof⁄  

 

where N is the total degree of freedom, 𝑒𝑑𝑜𝑓 is the 
element degree of freedom, and 𝑡𝑑𝑜𝑓 is the total 

degree of freedom (N × edof). 

A. Test Example (1) 

The first test example is the linear advection 
equation, considered in many references such as [13] 
and [ 14]. 

(
∂u

∂t
) +

∂F(u)

∂x
= 0 

where F(u) = u, the initial condition is given as sin(x) 
with periodical boundary conditions. 

The problem domain [-π π] is divided into N 
equally spaced elements. The approximate solutions 
are constructed from polynomials of order 2 and 3, 
with an interval of [0 π]. In addition to that, SSP-time 
discretizations of order 2 and 3 are given in (12) and 
(13), which are used for time evaluation. The exact 
solution is given as u(x,t) = sin(x)-t. 

Fig.1 displays the numerical and the exact solutions 
at time t = 1, and Fig. 2 shows the L1 error of 

http://www.jmest.org/
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polynomials of orders K = 2 and K = 3 for the 1D linear 
advection equation test. The order of accuracy and L1 
error are demonstrated in Tables (I) and (II) for 
polynomials of order k = 2 and 3, respectively. 

 

 

 

 

 

 

 

. 

Fig. 1. The numerical and exact solutions of the linear 
advection equation at time t = 1. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. L1 error of polynomials of orders K=2 and K=3 for the 
1D linear advection equation test. 

TABLE I.  THE ORDER OF ACCURACY AND L1 ERROR OF LINEAR 

ADVECTION EQUATION AT TIME T =1 FOR POLYNOMIAL OF ORDER K = 2. 

Number of 
elements 

(N) 
L1 error 

L1 
order of 
accuracy 

10 2.05955750001081e-02 - 

20 5.18448555568298e-03 1.990062 

40 1.30542589281415e-03 1.989680 

80 3.27096281698599e-04 1.996733 

160 8.17976632966066e-05 1.999584 

 

 

 

 

TABLE II.  THE ORDER OF ACCURACY AND L1 ERROR OF LINEAR 

ADVECTION EQUATION AT TIME T =1 FOR POLYNOMIAL OF ORDER K = 3. 

Number of 
elements 

(N) 
L1 error 

L1 
order of 
accuracy 

10 1.11286305377036e-03 - 

20 1.40721184981305e-04 2.983365 

40 1.78297525500223e-05 2.980481 

80 2.31489072452643e-06 2.945271 

160 3.10900278812813e-07 2.896420 

 

B. Test Example (2) 

The second test example is a one-dimensional heat 
equation (1D diffusion equation), which was utilized 
widely in literature as a benchmark test, for example in 
[6] and [15]. 

The governing equation is given as 

∂u

∂t
=

∂2u

∂x2
 

 

The equation is subjected to initial and boundary 
conditions and is given as: 

u(0, x) = sin(x),       u(0, t) = u(π, t) = 0 

The computational domain [-π   π] is divided into 
N=40 equally spaced elements. The numerical solution 
starts by reducing the second-order partial differential 
equation into two first-order differential equations (local 
discontinuous Galerkin method) as follows: 

 

Let Q =
∂u

∂x
  and  

∂u

∂t
=

∂Q

∂x
 . These two equations can be 

solved numerically. 

Fig. 3 presents the comparison between the numerical 
solutions of shape functions by polynomials at intervals 
[0 π] and [0 1] of order K = 2, at times t = 0.5 and 1. 
The figure shows that as time increases, the top points 
decrease, whereas for the standard polynomial [0 1], 
the numerical data and figure show that the top values 
are 0.605531 and 0.367076 for the standard interval, 
respectively. While for [0 π], the top values at time t = 
0.5 and 1 are 0.852037 and 0.726688, respectively. 
Finally, at time t = π, the maximum value is 0.369835, 
which is equivalent to the value of the standard 
polynomial at time t = 1. 
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Fig. 3. The comparison between numerical solutions of 

the sin(x) 1D heat equation at intervals [0 π] and [0 1].  

IV. CONCLUSIONS 

 In this work, two space shape functions of order 
K = 2 and 3 are introduced in addition to those two 
SSP-time dependent methods, also of order K = 2 and 
K = 3, all of them at the non-conventional interval [0 π]. 
The linear advection equation test example is used to 
investigate the order of accuracy of both space and 
time shape functions for [0 π] interval. The numerical 
results indicate that the shape functions developed 
from polynomials in the interval [0, π] reach the 
anticipated level of accuracy. The numerical solution of 
the heat equation test showed that as time increases, 
the top values of the numerical solutions decay. The 
comparison with the standard interval [0 1] showed 
that the numerical values at time t = π are equivalent 
to time t = 1 for the standard polynomial. To advance 
this research, additional studies will explore the 
discretization of the polynomial in both space and time 
across various non-conventional intervals, utilizing the 
same test examples for comparison. 
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