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Abstract—This paper explores the inversion of
Dirichlet series associated with elementary
arithmetic functions and their deep connections to
the non-trivial zeros of the Riemann zeta function.
By analyzing key functions such as the prime
characteristic function, the Von Mangoldt
function, the Mo6bius function, and Euler's totient
function, we develop a framework that highlights
their spectral decomposition in terms of zeta
zeros. Through rigorous contour integration
techniques and Dirichlet series manipulations, we
derive new insights into the analytic structure of
these functions. Our findings contribute to the
broader understanding of prime number
distributions and their link to the critical strip of
the Riemann zeta function. Our findings
contribute to the broader understanding of prime
number distributions and their link to the critical
strip of the Riemann zeta function.
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| Introduction

The study of Dirichlet series and their inversions
plays a fundamental role in analytic nhumber theory,
particularly in understanding the distribution of prime
numbers and related arithmetic functions. Among the
most significant connections in this field is the
interplay between elementary arithmetic functions and
the non-trivial zeros of the Riemann zeta function.
This relationship has far-reaching implications for key
problems in number theory, including the Riemann
Hypothesis and prime number theorems.

In this work, we focus on the Dirichlet series
representations of several elementary arithmetic
functions, including the Von Mangoldt function, the
Méobius function, Euler's totient function, and the prime
characteristic  function. By employing contour
integration techniques and leveraging properties of
the zeta function, we derive explicit expressions that
highlight the role of zeta zeros in shaping these
functions' behavior.

A key objective of this paper is to demonstrate how
these functions can be expressed in terms of the non-
trivial zeros of the Riemann zeta function. This

spectral decomposition provides insight into the
analytic structure of fundamental arithmetic functions
and their asymptotic properties. Furthermore, our
results align with classical findings in number theory,
such as Landau's results on prime number
distributions.

The paper is structured as follows: In Section 2, we
review the Dirichlet series of the Von Mangoldt
function and its connection to prime numbers. Section
3 examines the prime characteristic function, while
Section 4 focuses on the M®dbius function and its
spectral decomposition. Section 5 discusses Euler's
totient function in the context of Dirichlet series.
Finally, we summarize our findings and discuss
potential extensions of this approach to broader
problems in number theory.

Il The Technique for Inverting the Dirichlet
Series

In this section, we present a method for inverting
Dirichlet series, which are central to analytic number
theory. The inversion of these series allows us to
recover the underlying arithmetic function f(n) from
its associated Dirichlet series D(f, s), defined as:

D(f,s) = Z % where s € C#(2.0.1)

The inversion problem plays a crucial role in
deriving properties of arithmetic functions, particularly
those connected to the distribution of prime numbers.
We begin by introducing a conformal mapping, which
provide a direct approach to inversion.

2.1 The Classical Inversion of the Dirichlet
Series

The classical inversion of the Dirichlet series is a
cornerstone result in analytic number theory. Given a
Dirichlet series of the form

D(f,s) = Z f(Z),SR(s) > 0, #(2.1.1)

n

where f(n) is an arithmetic function and g, is the
abscissa of convergence (see [5]), the goal of the
inversion is to recover f (k) for any natural number k.
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The classical inversion formula, derived using the
Mellin transform, is given by the limit:

1 (T
f(k) = lim —f ketED(f, 0 + it)dt#(2.1.2)
T-o0 2T )_;

This is actually, a special case of Mellin inversion,
or more generally, a special case of Fourier inversion.
For a proof, the reader might see [2].

In order for the limit to exist, it must obey the
following convergence condition:
1 T
: _ o+it :
TlI_)II.}O ZTJ-_Tk D(f,o + it)dt
< k°D(|f|, 0)#(2.1.3)
thus, the integral has the asymptotic behavior:
T
lim [ k°FED(f,0 +it)dt = O(T)#(2.1.4)
T

T-ooo | _

for k?D(|f],0) convergent. using the exponential
conformal mapping z = exp(itr/T) we deduce to the
integral below:
1 T
£ = Jim =—§ s k7 5D (f, 0 +
dz
(T/n)logz)? (2.1.5)

which it can be extended, using analytic
continuation to any closed curve C :

1 T ogz
flk) = lim —¢ ko @oezp f 5 4
dz
(T/m)logz)— (2.1.6)

The curve C, that it will be used in all the length of
this paper is as follows:

2.2 The Von Mangoldt function

The result of the conformal mapping will be applied

on the von Mangoldt function, A(n), which is defined
as (p prime and r integer):

_(log(p), ifn=p",r=1,
An) = {0, otherwise . #
(2.2.1)

this gives the following upper bounds:
A(n) <log(n) <+n
Thus, this satisfies the convergence condition:

A
paoisy LN ? ={(0—1/2)

n
nz1 nz1

which converges for ¢ > 3/2. To derive the Von
Mangoldt function the integral that follows is used:

s 1 J+(Z)logz
A(k) = 711_1;210 2_7'[l¢ Ck T D(A,O’+
dz
(T/m)logz) — . #(2.2.2)

The Dirichlet series of the Von Mangoldt function
is:
R{O)
¢(s)

According to (2.2.3) this Dirichlet series can be
expressed as this sum:

{(s) 1 1
RO WZZO T2

Where p is the roots of the zeta function on the
critical strip and the trivial zeroes of the zeta function,
that is p = —2m,m € N. To calculate the integral, we
use the branch cut contour at [—m, ) by the keyhole
contour C as shown before: To calculate the integral
we use the residue theorem [4] at = e/ (w=9) :

DA, s) = #(2.2.3)

_ 1 s a+(Z)logz
A(k)—ﬁ}ggfﬁ ck™\m

M 4 \“‘ !
l = \ —
| ’ o+ (%) logz—1
| N | 1 dz
\ / —#(2.2.5)
' / o+ (T/m)logz—p z
\ / Gto O T (T/mlogz —p
or:
Where it is centered to zero with argument
—r < arg(z) < m, with the small radius € > 0 really
small and the big radius arbitrary large, with lower
bound R > e?.
Www.jmest.org
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ka+(g) logz

A(k) = lim  lim
T_)wz:e(T)(l_U) VA
7z — e(F)a-9)

T
o+ (E logz—1
ku+(g)logz
lim
(oo z=eDE= 7
7 — e@/T)(p—0)

o+ (T/m)logz —

p #(2.2.6)

or, by the definition of the derivative:

ACk) = lim k-2 E f-2m
Tooo T T 4
m=

A

kP#(2.2.7)

¢(p)=0
0<R(p)<1
-T<3(p)<T

but, since T —» +o and k « T, we deduce that:

1 T
= 1j — ] —= p
ACk) Tlggo(T> - {;0 kP H#(2.2.8)
0<R(p)<1
-T<3(p)<T

And since }im 0 (%) - 0, the result is as follows:
T
A(k) = Tlim —7 kP#(2.2.9)
{(p)=0
0<R(p)<1
-T<3(p)<T
which agrees with Landau's findings in paper [1].
We must note, that since the argument is —m <
arg(z) < m, the argument of the transformation is
-T< %arg(z) < T which restricts the imaginary parts

of the zeta zeros on the critical stripto —T < J(p) <T.
2.3 Prime Characteristic Function

The prime characteristic function is a fundamental
arithmetic function that identifies whether a given
natural number n is prime. It is defined as:

1, ifnelP

xp(n) = {0, otherwise #(2.3.1)

where P denotes the set of prime numbers.
According to [6], it can be expressed as:

1
1) = s mzl ARY™)u(m)#(2.3.2)
nl/meN

where the summation is taken over all m > 1 such
that n'/™ is a natural number. This compact form
emphasizes the role of the Mdébius function u(m) in
eliminating contributions from composite powers of
primes.

By changing the order of summation and applying
the Taylor expansion for the exponential function, we
obtain the following result:

- log(n)*
VN0

Furthermore, since ian+((n) = 1, we obtain:
ne

F(n;s) = Z y(m)n% = sk#(2.3.3)
m=1

|F(n; )| < [n®l.

According to Landau [1], the prime characteristic
function can also be expressed as a summation
involving the nontrivial zeros p of the Riemann zeta
function {(s). Specifically, we have:

= lim - ——
xp(n) Tl_f)g log() T
F(n; p)#(2.3.4)
{(p)=0
-T<3(p)sT
0<R(p)<1

where the summation is taken over all nontrivial
zeros p = B + iy of {(s), with 0 <R(p) =B <1 and
() =v.

2.4 M6bius Function

The Mobius function p(n) is an important
multiplicative function in number theory and is defined

as follows:
(—D)*™, ifp? tnvp € P,
um) =41, ifn=1, #(2.4.1)
0, otherwise,

where w(n) is the number of distinct prime factors
of n. The M@bius function satisfies the following key
properties:

. The Mo6bius inversion formula:

Spa = Y u(d)#(2.4.2)

where &, ; is the Kronecker delta function.

e  The Dirichlet series representation of u(n) :

1 N A
= D) _; T R(s) > 1#(243)

In order to find a form concerning the zeta zeros of
the Mdobius function, it will be derived by the following
integral:

1 T
p() = Jim =—§ k@D 0
dz
+(T/m)log z) - #(2.4.4)

Which satisfies the convergence condition:

ID(w )| < Z O] ¢ (oy#(245)
n=1

n
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since |u(n)] <1 which converges for o > 1.
Working in the same way as the Von Mangoldt
function was derived by using the residue theorem
close to the non-trivial zeros by a Taylor expansion of
the zeta function, we get the result:

(k) = lim — § w246
u(k) = lim = ——#(2.4.
T—>00T !
¢(p)=0 ¢
0<R(p)<1
—T<3(p)<T

2.5 Euler's totient function
In number theory, Euler's totient function counts
the positive integers up to a given integer n that are

relatively prime to n. ¢(n) is the Euler totient function,
defined by:

b(n) = nl_[ (1 - %) #(2.5.1)

pin

The Dirichlet series for ¢(n) may be written in
terms of the Riemann zeta function as:

N -1
D(d,s) = ¢r(:)=<(;(s))

with the convergence condition:
¢ _{@-1)
ne ()
n=1

which is convergent for ¢ > 2. To find another form
of the Euler's totient function, the integral to be used is
the following:

LR(s) > 2#(2.5.2)

n=1

|D(¢,s)| <

EERT 1 a+(z)logz
dz
D(¢,0 + (T/m)log z) 7#:(2.5.3)
Working in a same manner as for the Mdobius

function, the Euler's totient function according to the
non-trivial zeros of the zeta function, gets the form:

—1
$(k) = lim % p % #(2.5.4)
¢(p)=0 p
0<R(p)<1
-T<3(p)<T

where we take the analytic continuation of the zeta
function.

Il Conclusions and Final Remarks

In this paper, we investigated the inversion of
Dirichlet series associated with elementary arithmetic
functions and their deep connections to the non-trivial
zeros of the Riemann zeta function. Through rigorous
contour integration techniques and spectral
decomposition methods, we demonstrated how
fundamental arithmetic functions such as the Von
Mangoldt function, the Mdbius function, Euler's totient
function, and the prime characteristic function can be
expressed in terms of zeta zeros.

A key outcome of our study is the explicit
representation of these functions via the non-trivial
zeros of the Riemann zeta function, reinforcing their
connection to the critical strip. Our findings align with
classical results in number theory, including Landau's
work on prime number distributions, and provide
further insight into the intricate relationship between
arithmetic functions and the analytic structure of the
zeta function.

The results presented here contribute to a broader
understanding of the spectral nature of arithmetic
functions. Future research could explore further
generalizations of these techniques, including
applications to other special functions in number
theory, as well as deeper implications for open
problems such as the Riemann Hypothesis.
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