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Abstract—This paper explores the inversion of 
Dirichlet series associated with elementary 
arithmetic functions and their deep connections to 
the non-trivial zeros of the Riemann zeta function. 
By analyzing key functions such as the prime 
characteristic function, the Von Mangoldt 
function, the Möbius function, and Euler's totient 
function, we develop a framework that highlights 
their spectral decomposition in terms of zeta 
zeros. Through rigorous contour integration 
techniques and Dirichlet series manipulations, we 
derive new insights into the analytic structure of 
these functions. Our findings contribute to the 
broader understanding of prime number 
distributions and their link to the critical strip of 
the Riemann zeta function. Our findings 
contribute to the broader understanding of prime 
number distributions and their link to the critical 
strip of the Riemann zeta function. 

Keywords— Number theory, arithmetic 
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 I Introduction 

The study of Dirichlet series and their inversions 
plays a fundamental role in analytic number theory, 
particularly in understanding the distribution of prime 
numbers and related arithmetic functions. Among the 
most significant connections in this field is the 
interplay between elementary arithmetic functions and 
the non-trivial zeros of the Riemann zeta function. 
This relationship has far-reaching implications for key 
problems in number theory, including the Riemann 
Hypothesis and prime number theorems. 

In this work, we focus on the Dirichlet series 
representations of several elementary arithmetic 
functions, including the Von Mangoldt function, the 
Möbius function, Euler's totient function, and the prime 
characteristic function. By employing contour 
integration techniques and leveraging properties of 
the zeta function, we derive explicit expressions that 
highlight the role of zeta zeros in shaping these 
functions' behavior. 

A key objective of this paper is to demonstrate how 
these functions can be expressed in terms of the non-
trivial zeros of the Riemann zeta function. This 

spectral decomposition provides insight into the 
analytic structure of fundamental arithmetic functions 
and their asymptotic properties. Furthermore, our 
results align with classical findings in number theory, 
such as Landau's results on prime number 
distributions. 

The paper is structured as follows: In Section 2, we 
review the Dirichlet series of the Von Mangoldt 
function and its connection to prime numbers. Section 
3 examines the prime characteristic function, while 
Section 4 focuses on the Möbius function and its 
spectral decomposition. Section 5 discusses Euler's 
totient function in the context of Dirichlet series. 
Finally, we summarize our findings and discuss 
potential extensions of this approach to broader 
problems in number theory. 

II The Technique for Inverting the Dirichlet 
Series 

In this section, we present a method for inverting 
Dirichlet series, which are central to analytic number 
theory. The inversion of these series allows us to 
recover the underlying arithmetic function 𝑓(𝑛) from 

its associated Dirichlet series 𝐷(𝑓, 𝑠), defined as: 

𝐷(𝑓, 𝑠) = ∑  

∞

𝑛=1

 
𝑓(𝑛)

𝑛𝑠
, where 𝑠 ∈ ℂ#(2.0.1)  

The inversion problem plays a crucial role in 
deriving properties of arithmetic functions, particularly 
those connected to the distribution of prime numbers. 
We begin by introducing a conformal mapping, which 
provide a direct approach to inversion. 

2.1 The Classical Inversion of the Dirichlet 
Series 

The classical inversion of the Dirichlet series is a 
cornerstone result in analytic number theory. Given a 
Dirichlet series of the form 

𝐷(𝑓, 𝑠) = ∑  

∞

𝑛=1

 
𝑓(𝑛)

𝑛𝑠
, ℜ(𝑠) > 𝜎0, #(2.1.1)  

where 𝑓(𝑛) is an arithmetic function and 𝜎0 is the 
abscissa of convergence (see [5]), the goal of the 

inversion is to recover 𝑓(𝑘) for any natural number 𝑘. 
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The classical inversion formula, derived using the 
Mellin transform, is given by the limit: 

𝑓(𝑘) = lim
𝑇→∞

 
1

2𝑇
∫  

𝑇

−𝑇

 𝑘𝜎+𝑖𝑡𝐷(𝑓, 𝜎 + 𝑖𝑡)𝑑𝑡#(2.1.2)  

This is actually, a special case of Mellin inversion, 
or more generally, a special case of Fourier inversion. 
For a proof, the reader might see [2]. 

In order for the limit to exist, it must obey the 
following convergence condition: 

| lim
𝑇→∞

 
1

2𝑇
∫  

𝑇

−𝑇

 𝑘𝜎+𝑖𝑡𝐷(𝑓, 𝜎 + 𝑖𝑡)𝑑𝑡|

≤ 𝑘𝜎𝐷(|𝑓|, 𝜎)#(2.1.3)

 

thus, the integral has the asymptotic behavior: 

lim
𝑇→∞

 ∫  
𝑇

−𝑇

 𝑘𝜎+𝑖𝑡𝐷(𝑓, 𝜎 + 𝑖𝑡)𝑑𝑡 = 𝑂(𝑇)#(2.1.4)  

for 𝑘𝜎𝐷(|𝑓|, 𝜎) convergent. using the exponential 

conformal mapping 𝑧 = exp (𝑖𝑡𝜋/𝑇) we deduce to the 
integral below: 

𝑓(𝑘) = lim
𝑇→∞

 
1

2𝜋𝑖
∮  |𝑧|=1𝑘𝜎+(

𝑇
𝜋) log 𝑧𝐷(𝑓, 𝜎 +

(𝑇/𝜋)log 𝑧)
𝑑𝑧

𝑧
 (2.1.5)

 

which it can be extended, using analytic 
continuation to any closed curve 𝐶 : 

𝑓(𝑘) = lim
𝑇→∞

 
1

2𝜋𝑖
∮  𝐶𝑘𝜎+(

𝑇
𝜋) log 𝑧𝐷(𝑓, 𝜎 +

(𝑇/𝜋)log 𝑧)
𝑑𝑧

𝑧
 (2.1.6)

 

The curve 𝐶, that it will be used in all the length of 
this paper is as follows:  

 

Where it is centered to zero with argument 
−𝜋 ≤ arg (𝑧) ≤ 𝜋, with the small radius 𝜖 > 0 really 
small and the big radius arbitrary large, with lower 

bound 𝑅 > 𝑒2. 

 

 

2.2 The Von Mangoldt function 

The result of the conformal mapping will be applied 
on the von Mangoldt function, Λ(𝑛), which is defined 
as (p prime and r integer): 

Λ(𝑛) = {
log(𝑝) , if 𝑛 = 𝑝𝑟  , 𝑟 ≥ 1,
0,  otherwise .

#

 (2.2.1)
 

this gives the following upper bounds: 

Λ(𝑛) ≤ log (𝑛) ≤ √𝑛 

Thus, this satisfies the convergence condition: 

|𝐷(Λ, 𝑠)| ≤ ∑  

𝑛≥1

Λ(𝑛)

𝑛𝜎
≤ ∑  

𝑛≥1

√𝑛

𝑛𝜎
= 𝜁(𝜎 − 1/2) 

which converges for 𝜎 > 3/2. To derive the Von 
Mangoldt function the integral that follows is used: 

Λ(𝑘) = lim
𝑇→∞

 
1

2𝜋𝑖
∮  𝐶𝑘𝜎+(

𝑇
𝜋) log 𝑧𝐷(Λ, 𝜎 +

(𝑇/𝜋)log 𝑧)
𝑑𝑧

𝑧
. #(2.2.2)

 

The Dirichlet series of the Von Mangoldt function 
is: 

𝐷(Λ, 𝑠) = −
𝜁′(𝑠)

𝜁(𝑠)
. #(2.2.3)  

According to (2.2.3) this Dirichlet series can be 
expressed as this sum: 

−
𝜁′(𝑠)

𝜁(𝑠)
=

1

𝑠 − 1
− ∑  

𝜁(𝜌)=0

 
1

𝑠 − 𝜌
#(2.2.4)  

Where 𝜌 is the roots of the zeta function on the 
critical strip and the trivial zeroes of the zeta function, 
that is 𝜌 = −2𝑚, 𝑚 ∈ ℕ. To calculate the integral, we 
use the branch cut contour at [−𝜋, 𝜋) by the keyhole 

contour 𝐶 as shown before: To calculate the integral 

we use the residue theorem [4] at = 𝑒(𝜋/𝑇)(𝑤−𝜎) : 

Λ(𝑘) =
1

2𝜋𝑖
lim
𝑇→∞

 ∮  𝐶𝑘𝜎+(
𝑇
𝜋) log 𝑧

1

𝜎 + (
𝑇
𝜋

) log 𝑧 − 1
−

∑  

𝜁(𝜌)=0

 
1

𝜎 + (𝑇/𝜋)log 𝑧 − 𝜌

𝑑𝑧

𝑧
#(2.2.5)

 

or: 

http://www.jmest.org/
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Λ(𝑘) = lim
𝑇→∞

  lim
𝑧=𝑒

(
𝜋
𝑇)(1−𝜎)

 
𝑘𝜎+(

𝑇
𝜋) log 𝑧

𝑧

𝑧 − 𝑒(
𝜋
𝑇)(1−𝜎)

𝜎 + (
𝑇
𝜋

) log 𝑧 − 1
−

∑  

𝜁(𝜌)=0

  lim
𝑧=𝑒

(
𝜋
𝑇)(𝜌−𝜎)

 
𝑘𝜎+(

𝑇
𝜋) log 𝑧

𝑧

𝑧 − 𝑒(𝜋/𝑇)(𝜌−𝜎)

𝜎 + (𝑇/𝜋)log 𝑧 − 𝜌
#(2.2.6)

 

or, by the definition of the derivative: 

Λ(𝑘) = lim
𝑇→∞

 
𝜋

𝑇
𝑘 −

𝜋

𝑇
∑  

∞

𝑚=1

 𝑘−2𝑚

−
𝜋

𝑇
∑  

𝜁(𝜌)=0
0<ℜ(𝜌)<1

−𝑇≤𝔍(𝜌)≤𝑇

 𝑘𝜌#(2.2.7)  

but, since 𝑇 → +∞ and 𝑘 ≪ 𝑇, we deduce that: 

Λ(𝑘) = lim
𝑇→∞

 𝑂 (
1

𝑇
) −

𝜋

𝑇
∑  

𝜁(𝜌)=0
0<ℜ(𝜌)<1

−𝑇≤𝔍(𝜌)≤𝑇

 𝑘𝜌#(2.2.8)
 

And since lim
𝑇→∞

 𝑂 (
1

𝑇
) → 0, the result is as follows: 

Λ(𝑘) = lim
𝑇→∞

 −
𝜋

𝑇
∑  

𝜁(𝜌)=0
0<ℜ(𝜌)<1

−𝑇≤𝔍(𝜌)≤𝑇

 𝑘𝜌#(2.2.9)
 

which agrees with Landau's findings in paper [1]. 
We must note, that since the argument is −𝜋 ≤
arg (𝑧) ≤ 𝜋, the argument of the transformation is 

−𝑇 ≤
𝑇

𝜋
arg (𝑧) ≤ 𝑇 which restricts the imaginary parts 

of the zeta zeros on the critical strip to −𝑇 ≤ 𝔍(𝜌) ≤ 𝑇. 

2.3 Prime Characteristic Function 

The prime characteristic function is a fundamental 
arithmetic function that identifies whether a given 
natural number 𝑛 is prime. It is defined as: 

𝜒ℙ(𝑛) = {
1,  if 𝑛 ∈ ℙ
0,  otherwise 

#(2.3.1)  

where ℙ denotes the set of prime numbers. 
According to [6], it can be expressed as: 

𝜒ℙ(𝑛) =
1

log (𝑛)
∑  
𝑚≥1

𝑛1/𝑚∈ℕ

 Λ(𝑛1/𝑚)𝜇(𝑚)#(2.3.2)
 

where the summation is taken over all 𝑚 ≥ 1 such 

that 𝑛1/𝑚 is a natural number. This compact form 

emphasizes the role of the Möbius function 𝜇(𝑚) in 
eliminating contributions from composite powers of 
primes. 

By changing the order of summation and applying 
the Taylor expansion for the exponential function, we 
obtain the following result: 

𝐹(𝑛; 𝑠) = ∑  

∞

𝑚=1

 𝜇(𝑚)𝑛
𝑠

𝑚 = ∑  

∞

𝑘=1

 
log (𝑛)𝑘

𝑘! 𝜁(𝑘)
𝑠𝑘#(2.3.3)  

Furthermore, since inf
𝑛∈ℤ+

 𝜁(𝑛) = 1, we obtain: 

|𝐹(𝑛; 𝑠)| < |𝑛𝑠|. 

According to Landau [1], the prime characteristic 
function can also be expressed as a summation 

involving the nontrivial zeros 𝜌 of the Riemann zeta 
function 𝜁(𝑠). Specifically, we have: 

𝜒ℙ(𝑛) = lim
𝑇→∞

  −
𝜋

log(𝑛) 𝑇

∑  
𝜁(𝜌)=0

−𝑇≤ℑ(𝜌)≤𝑇
0<ℜ(𝜌)<1

 𝐹(𝑛; 𝜌)#(2.3.4)  

where the summation is taken over all nontrivial 
zeros 𝜌 = 𝛽 + 𝑖𝛾 of 𝜁(𝑠), with 0 < ℜ(𝜌) = 𝛽 < 1 and 

𝔍(𝜌) = 𝛾. 

2.4 Möbius Function 

The Möbius function 𝜇(𝑛) is an important 
multiplicative function in number theory and is defined 
as follows: 

𝜇(𝑛) = {
(−1)𝜔(𝑛),  if 𝑝2 ∤ 𝑛∀𝑝 ∈ ℙ,
1,  if 𝑛 = 1,
0,  otherwise, 

#(2.4.1)  

where 𝜔(𝑛) is the number of distinct prime factors 
of 𝑛. The Möbius function satisfies the following key 
properties: 

 The Möbius inversion formula: 

𝛿𝑛,1 = ∑  

𝑑∣𝑛

 𝜇(𝑑)#(2.4.2)  

where 𝛿𝑛,1 is the Kronecker delta function. 

 The Dirichlet series representation of 𝜇(𝑛) : 

1

𝜁(𝑠)
= 𝐷(𝜇, 𝑠) = ∑  

∞

𝑛=1

 
𝜇(𝑛)

𝑛𝑠
, ℜ(𝑠) > 1#(2.4.3)  

In order to find a form concerning the zeta zeros of 
the Möbius function, it will be derived by the following 
integral: 

𝜇(𝑘) = lim
𝑇→∞

 
1

2𝜋𝑖
∮  𝐶𝑘𝜎+(

𝑇
𝜋) log 𝑧𝐷(𝜇, 𝜎

+(𝑇/𝜋)log 𝑧)
𝑑𝑧

𝑧
#(2.4.4)

 

Which satisfies the convergence condition: 

|𝐷(𝜇, 𝑠)| ≤ ∑  

∞

𝑛=1

 
|𝜇(𝑛)|

𝑛𝜎
≤ 𝜁(𝜎)#(2.4.5)  

http://www.jmest.org/
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since |𝜇(𝑛)| ≤ 1 which converges for 𝜎 > 1. 
Working in the same way as the Von Mangoldt 
function was derived by using the residue theorem 
close to the non-trivial zeros by a Taylor expansion of 
the zeta function, we get the result: 

𝜇(𝑘) = lim
𝑇→∞

 
𝜋

𝑇
∑  

𝜁(𝜌)=0
0<ℛ(𝜌)<1

−𝑇<𝔍(𝜌)<𝑇

 
𝑘𝜌

𝜁′(𝜌)
#(2.4.6)

 

2.5 Euler's totient function 

In number theory, Euler's totient function counts 
the positive integers up to a given integer n that are 

relatively prime to n. 𝜙(𝑛) is the Euler totient function, 
defined by: 

𝜙(𝑛) = 𝑛 ∏  

𝑝∣𝑛

 (1 −
1

𝑝
) #(2.5.1)  

The Dirichlet series for 𝜙(𝑛) may be written in 
terms of the Riemann zeta function as: 

𝐷(𝜙, 𝑠) = ∑  

∞

𝑛=1

 
𝜙(𝑛)

𝑛𝑠
=

𝜁(𝑠 − 1)

𝜁(𝑠)
, ℜ(𝑠) > 2#(2.5.2)  

with the convergence condition: 

|𝐷(𝜙, 𝑠)| ≤ ∑  

∞

𝑛=1

𝜙(𝑛)

𝑛𝜎
=

𝜁(𝜎 − 1)

𝜁(𝜎)
 

which is convergent for 𝜎 > 2. To find another form 
of the Euler's totient function, the integral to be used is 
the following: 

𝜙(𝑘) = lim
𝑇→∞

 
1

2𝜋𝑖
∮  𝐶𝑘𝜎+(

𝑇
𝜋) log 𝑧

𝐷(𝜙, 𝜎 + (𝑇/𝜋)log 𝑧)
𝑑𝑧

𝑧
#(2.5.3)

 

Working in a same manner as for the Möbius 
function, the Euler's totient function according to the 
non-trivial zeros of the zeta function, gets the form: 

𝜙(𝑘) = lim
𝑇→∞

 
𝜋

𝑇
∑  

𝜁(𝜌)=0
0<ℜ(𝜌)<1

−𝑇<𝔍(𝜌)<𝑇

 𝑘𝜌
𝜁(𝜌 − 1)

𝜁′(𝜌)
#(2.5.4)

 

where we take the analytic continuation of the zeta 
function. 

III Conclusions and Final Remarks 

In this paper, we investigated the inversion of 
Dirichlet series associated with elementary arithmetic 
functions and their deep connections to the non-trivial 
zeros of the Riemann zeta function. Through rigorous 
contour integration techniques and spectral 
decomposition methods, we demonstrated how 
fundamental arithmetic functions such as the Von 
Mangoldt function, the Möbius function, Euler's totient 
function, and the prime characteristic function can be 
expressed in terms of zeta zeros. 

A key outcome of our study is the explicit 
representation of these functions via the non-trivial 
zeros of the Riemann zeta function, reinforcing their 
connection to the critical strip. Our findings align with 
classical results in number theory, including Landau's 
work on prime number distributions, and provide 
further insight into the intricate relationship between 
arithmetic functions and the analytic structure of the 
zeta function. 

The results presented here contribute to a broader 
understanding of the spectral nature of arithmetic 
functions. Future research could explore further 
generalizations of these techniques, including 
applications to other special functions in number 
theory, as well as deeper implications for open 
problems such as the Riemann Hypothesis. 
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