
Journal of Multidisciplinary Engineering Science and Technology (JMEST) 
ISSN: 2458-9403 

Vol. 12 Issue 3, March - 2025 

www.jmest.org 
JMESTN42354520 17407 

Multilingual Speaker Identification Low Signal-
To-Noise Ratio Environments Using K-Nearest 

Neighbour (KNN) Model 
 

Jimoh Jacob Afolayan1 
Department of Electrical / Electronic Engineering  

University of Uyo, Akwa Ibom State 
 

Kingsley M. Udofia2 
Department of Electrical / Electronic Engineering  

University of Uyo, Akwa Ibom State 
 

Kufre M. Udofia3 
Department of Electrical / Electronic Engineering  

University of Uyo, Akwa Ibom State 
 

Abstract— Multilingual speaker identification 
low signal-to-noise ratio environments using k-
nearest neighbour (KNN) model is presented. The 
study targeted identification of speaker from 
multilingual speech signal sampled in different 
Nigerian languages.  The work also studied the 
impact of noise on the performance of the model 
in identifying the speaker. Several speech signals 
were sampled from different speakers in different 
Nigerian languages. Each of the speech data 
samples lasted for about two minutes. After 
detailed data preprocessing, the data were split 
for training and validation set and then used in the 
model training. Notably, the speech data were 
sampled under controlled noise level with signal 
to noise ratio (SNR) ranging from 0 dB to 30 dB 
and the environment with minimal noise which is 
referred to as the clean signal with SNR of about 
100 dB. The results on the comparison of the 
accuracy of the composite trained model and the 
cleaned data trained model validated using 
speech data at different SNR showed that 
accuracy of 93 % was achieved with the 
composite data trained model while the clean data 
trained model achieved 80 % accuracy. Also,  the 
improvement in accuracy realized by using the 
composite data trained model instead of the clean 
data trained model is about 16 % , though at some 
SNR the improvement was up to 880 %. Similar 
results were achieved in respect of precision, 
F1_score and recall, each showed that the 
composite data trained model is better. Hence, it 

is recommended that that the KNN model should 
be trained using composite dataset. 
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1. Introduction 
Today, multilingual speaker identification system 

has become a very useful tool for many applications [1,2,3]. 
Also, as globalization increases language diversity in 
communication, multilingual systems play an essential role 
in overcoming the complexities of cross-lingual and multi-
accented speech [4,5]. However, over the years, one of the 
most significant challenges facing multilingual speaker 
identification lies in handling linguistic diversity, including 
differences in phonemes, accents, intonation, and speech 
patterns across various languages [6,7]. This requires the 
system to be adaptable and robust, ensuring accurate 
identification regardless of the speaker's language or dialect 
[8,9]. By incorporating advanced voice analysis techniques 
and machine learning models, these systems can deliver 
reliable and consistent results in diverse and dynamic 
environments [10,11]. 

Multilingual speaker identification systems are 
designed to determine the identity of an unknown speaker 
by analyzing their voice and comparing it against a 
database of known speakers, even when multiple languages 
are involved [12,13]. Unlike speaker verification, which 
involves confirming or rejecting a claimed identity through 
a one-to-one comparison, speaker identification answers the 
broader question, "Who is speaking?" This process involves 
key stages such as extracting unique features from the 
speaker's voice, matching these features to patterns, and 
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comparing them to stored voice samples [14]. These 
systems are particularly valuable in applications where 
identifying the speaker is critical, such as law enforcement, 
forensic analysis, and customer service operations.  

While multilingual system has been studied for 
many languages, the Nigerian languages have not really 
been used because of lack of appropriate dataset for such 
study. Moreover, the study of speech identification system 
in noisy environment is essential since the impact of noise 
power can be very significant in the model performance 
[16,17]. Hence, in this study the K-Nearest Neighbour 
(KNN) model is used for speaker identification in noisy 
environment with different signal to noise ratio [18,19]. 
The study targeted the Nigerian languages. The focus is to 
evaluate the performance of different versions of the model 
under different noise levels.   

2. Methodology 

The motivation in this work is to use K-Nearest 
Neighbours (KNN) for identification of speaker from 
multilingual speech signal sampled in different Nigerian 
languages.  The work also studied the impact of noise on 
the performance of the model in identifying the speaker.   

Notably, the K-Nearest Neighbours (KNN) is a 
non-parametric classifier that classifies a new sample based 
on the majority class of its K-nearest neighbours in the 
feature space. The distance between samples is typically 
measured using Euclidean distance 𝑑ሺ𝑥, 𝑥ሻ between two 

points 𝑥 and 𝑥 given as: 

𝑑൫𝑥, 𝑥൯ ൌ ට∑ ൫𝑥, െ 𝑥,൯
ଶ

ୀଵ   (1) 

The class label is determined by the most frequent label 
among the 𝑘  nearest points. The details of the procedure 
used in the KNN model is given in Algorithm 1. The 
research procedure for the KNN model training and 
performance evaluation is presented in Figure 1. 

 

Algorithm 1: The KNN Procedure 

Step 1: Input relevant data items 

Step 1.1: Input the training dataset and the test data item 

Step 1.2: Input K  // the number for the nearest neighbours 

Step-2: Compute the Euclidean distance, 𝑑൫𝑥, 𝑥൯ between the test data item and all the training dataset.  

Step-3: Arrange the Euclidean distance between the test data and all the training dataset in ascending order (from 

the smallest to the largest distance).  

Step-4: Take the first K neighbours in the sorted list (they are the K nearest neighbours based on the Euclidean 

distance 

Step-5: From the selected K neighbours, count the number of data points that occurred for in each of the data 

categories.  

Step-6: By voting method, the category of the test data point is the category with the highest count in Step 5 

Step-7: Repeat the Step 3 to Step 5 for all the Test Data Items. 
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Figure 1 The research procedure for the KNN model training and performance evaluation 

In order to accomplish the main aim of this study, 
speech signals are sampled from different speakers 
speaking in different Nigerian languages. Each of the 
speech data samples lasted for about two minutes. Detailed 
data preprocessing was done which included data 
augmentation, feature extraction, data normalization, and 
then data splitting into the training and validation datasets.  
The speech data were sampled under controlled noise level 
with signal to noise ratio (SNR) ranging from 0 dB to 30 
dB and the environment with minimal noise which is 
referred to as the clean signal with SNR of about 100 dB. 
The speech sample with low SNR are referred to as 
composite signal with high presence of noise. 

 
 
 
 

3. Results and discussion 

4.1.3  Performance Evaluation of k-Nearest 
Neighbour (KNN) Model 

The results detailing the performance of the k-
Nearest Neighbour (KNN) model under varying conditions 
are presented in Figure 2 to Figure 8.  The bar chart 
comparing the accuracy (%) of the composite trained model 
and the cleaned data trained model validated using speech 
data at different SNR is shown in Figure 2. The results in 
Figure 2 showed that accuracy of 93 % was achieved with 
the composite data trained model while the clean data 
trained model achieved 80 % accuracy. In Figure 3 the 
improvement in accuracy realized by using the composite 
data trained model instead of the clean data trained model is 
about 16 % , though at some SNR the improvement was up 
to 880 %. 
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Figure 2 The bar chart comparing the accuracy (%) of the composite trained model and the cleaned data trained model 

validated using speech data at different SNR 

 
Figure 3 The bar chart summarizing the improvement in Accuracy realized by using the composite data trained model 

instead of the clean data trained model 
The bar chart comparing the precision of the 

composite trained model and the cleaned data trained model 
validated using speech data at different SNR is shown in 
Figure 4. The results in Figure 4 showed that precision of 
93 % was achieved with the composite data trained model 
while the clean data trained model achieved 80 % precision. 
In Figure 5 the improvement in precision realized by using 
the composite data trained model instead of the clean data 
trained model is about 16 % , though at some SNR the 
improvement was up to 960 %. 

The bar chart comparing the F1_Score of the 
composite trained model and the cleaned data trained model 
validated using speech data at different SNR is shown in 
Figure 6. The results in Figure 6 showed that F1_Score of 
92 % was achieved with the composite data trained model 
while the clean data trained model achieved 79 % 
F1_Score. In Figure 7 the improvement in F1_Score 
realized by using the composite data trained model instead 
of the clean data trained model is about 16 % , though at 
some SNR the improvement was up to 1000 %. 
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Figure 4 The bar chart comparing the Precision (%) of the composite trained model and the cleaned data trained model 

validated using speech data at different SNR 

 
Figure 5 The bar chart summarizing the improvement in Precision realized by using the composite data trained model 

instead of the clean data trained model 
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Figure 6 The bar chart comparing the F1_Score (%) of the composite trained model and the cleaned data trained 

model validated using speech data at different SNR 
 

 
Figure 7 The bar chart summarizing the improvement in F1_score realized by using the composite data trained model 

instead of the clean data trained model 
The bar chart comparing the Recall of the 

composite trained model and the cleaned data trained model 
validated using speech data at different SNR is shown in 
Figure 8. The results in Figure 8 showed that Recall of 93 
% was achieved with the composite data trained model 

while the clean data trained model achieved 80 % Recall. In 
Figure 9 the improvement in Recall realized by using the 
composite data trained model instead of the clean data 
trained model is about 16 % , though at some SNR the 
improvement was up to 700 %. 
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Figure 8  The bar chart comparing the Recall  (%) of the composite trained model and the cleaned data trained model 

validated using speech data at different SNR 
 

 
Figure 9  The bar chart summarizing the improvement in Recall realized by using the composite data trained model 

instead of the clean data trained model 
4. Conclusion 

The K-Nearest Neighbours (KNN)  model is 
presented for recognizing speaker from a dataset of 
multilingual speech signal presented for different Nigerian 
languages. The study examined the model training in the 
presence of different noise power levels depicted using 
signal to noise ratio (SNR). The results showed that the 
model that was trained using the composite speech signal 
with significant noise power performed better that the 
model that was trained using clean signal with negligible 
noise power. In essence, the KNN is recommended to be 
trained with composite speech signal to enhance the 
prediction performance of the model. 
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