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Abstract—Cellular network propagation loss 
characterization using Standard Path loss (SP) 
model is presented. The work is based on 
empirical measurement of the received signal 
strength, evaluation of the SP model’s ability to 
accurately predict the path loss and then tuning 
the SP model to optimize its prediction accuracy 
thereby minimizing the SP model’s path loss 
prediction error for the given study area.  The 
cellular network operating in the 1800 MHz 
frequency band was considered. The model was 
tuned using the root mean square (RMSE) method 
and also using the function of residue method. 
The measured path length range was  0.15 km to 
2.26 km while the corresponding path loss range 
was  79.49 dB to 128.39 dB. The un-turned model 
had RMSE of 39.89 dB for the urban propagation 
environment. The RMSE–based tuned model had 
RMSE of 3.067 dB for the urban propagation 
environment which is about 92.3 % improvement 
over the un-tuned model prediction, while the 
function of residue-based tuned model had RMSE 
of 1.07896 dB which is about 97.3 % improvement 
over the un-tuned model prediction. Similar 
performance improvement in RMSE was 
experienced in the suburban and rural 
environments, with the function of residue-based 
tuned model giving the best performance. The 
results showed that the function of residue 
method performed much better than the RMSE 
method which is the most widely used method. 

Keywords— Cellular Network, Propagation 
Loss, Standard Path Loss Model, Path loss Model 
Tuning, Empirical Model 

 
1. Introduction 

 The growing adoption of wireless networks and 
the rising demand for more bandwidth and enhanced 
quality of service is posing running challenges to wireless 

network designers and operators [1,2,3]. This is due to 
some inevitable challenges associated with wireless signal 
propagations. One of the problem is the propagation loss 
which is always suffered by wireless signals as they 
propagate over a communication environment [4,5,6]. The 
propagation loss, also known as path loss is dependent on 
several factors and hence varies from one communication 
environment to another [7,8].  

In practice, wireless network designers and 
operators conduct site survey to estimate the expected 
propagation loss for their wireless signal [9,10]. The site 
survey can also be avoided if there is a propagation loss 
model that can accurately characterize the propagation loss 
in the given environment for the same signal frequency of 
interest. Hence, researchers always provide study reports of 
such empirical models that are optimized for wireless 
network installation in a given area.  

Accordingly, in this study, the focus is to conduct 
the empirical propagation loss model evaluation and tuning 
for a cellular network in the 18000 MHz frequency band 
[11,12,13]. Specifically, the Standard Path loss model (SP 
model) is considered [14,15]. Most importantly, the 
approach for the model tuning approaches adopted are, one, 
the root mean square error (RMSE)-based method and two, 
the function of residue-based method. The performance of 
the models tuned using the two methods are compared and 
the best model is recommended for the case study cellular 
network in the given case study area. 

 
2.0  METHOD 

The focus in this work is to use the Standard 
Propagation (SP) model to characterize the propagation loss 
cellular network signal. The work is based on empirical 
measurement of the prevailing path loss, evaluation of the 
SP models ability to accurately predict the path loss and 
then tuning the SP model to optimize its prediction 
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Table 2 The empirical measurement data with the base station located at longitude of 7.94177 and latitude of 4.64657 

Data point, i  Longitude  Latitude  RSSI (dBm)  Data point, i  Longitude  Latitude  RSSI (dBm) 

1  7.942397  4.645414  ‐50.9915  14  7.94026 4.63706 ‐83.412 

2  7.94298 4.6447 ‐65.4208  15  7.93901 4.63661 ‐88.6254 

3  7.9432 4.64381 ‐68.2004  16  7.93888 4.6354 ‐90.2176 

4  7.94338 4.64248 ‐71.4159  17  7.93892 4.6351 ‐87.0313 

5  7.94382 4.64177 ‐77.985  18  7.93818 4.6343 ‐90.4016 

6  7.94408 4.64075 ‐81.7754  19  7.9384 4.63413 ‐89.9097 

7  7.94427 4.64017 ‐80.6482  20  7.93767 4.63314 ‐92.2763 

8  7.94368 4.63917 ‐78.9148  21  7.93703 4.63206 ‐92.6083 

9  7.94355 4.63904 ‐79.0846  22  7.93633 4.63163 ‐94.8689 

10  7.94311 4.63821 ‐83.5667  23  7.93607 4.63101 ‐95.8166 

11  7.94186 4.63768 ‐84.8455  24  7.93535 4.63021 ‐95.1633 

12  7.94126 4.63737 ‐88.5572  25  7.93468 4.62877 ‐94.6366 

13  7.94117 4.63737 ‐85.7314  26  7.93373 4.62798 ‐96.543 

14  7.94026 4.63706 ‐83.412  27  7.93382 4.62784 ‐99.8945 

 
 
2.3  DETERMINATION OF THE 

TRANSMISSION PATH LENGTH   
USING THE  HAVERSINE FORMULA 

After the drive test, each measurement 
point coordinates are used along with the base 
station coordinates to determine the transmission 
path length using the Haversine formula which is 
expressed as follows: 

 
𝑑 ൌ

2ሺ𝑅௘௔௥௧௛ሻ ቊටsin ቀ
௅஺ ೘்ି௅஺்್

ଶ
ቁ

ଶ
൅ cosሺ𝐿𝐴𝑇௕ሻ cosሺ𝐿𝐴𝑇௠ሻ sin ቀ

௅ைேீ೘ି௅ைேீ್

ଶ
ቁ

ଶమ
ቋ

 (4) 

𝐿𝐴𝑇௥௔ௗ =   
൫௅஺்೏೐೒  ∗ ଷ.ଵସଶ൯

ଵ଼଴
   (5) 

𝐿𝑂𝑁𝐺௥௔ௗ =   
൫௅ைேீ೏೐೒  ∗ ଷ.ଵସଶ൯

ଵ଼଴
  (6) 

Where 𝐿𝐴𝑇௕ and 𝐿𝐴𝑇௠ denote the latitude of the 
base station and the mobile device respectively 

𝐿𝑂𝑁𝐺௕ and 𝐿𝑂𝑁𝐺௠ denote the  longitude of the 
base station and the mobile device respectively. 

Also, latitude in radians is denoted as 𝐿𝐴𝑇௥௔ௗ , 
latitude in degrees is denoted as 𝐿𝐴𝑇ௗ௘௚ ,  

longitude in radians is denoted as 𝐿𝑂𝑁𝐺௥௔ௗ , and  
longitude in degrees is denoted as 𝐿𝑂𝑁𝐺ௗ௘௚ . In 

addition,  𝑅௘௔௥௧௛ denotes the earth radius which is 
6371 km , while d is the transmission path length 
in km.  

 
 

2.4 DETERMINATION OF THE MEASURED 
PATH LOSS USING THE 
EMPIRICALLY MEASURED RSSI 
VALUES 

The empirically measured Received Signal 
Strength Intensity (RSSI) data values are 
converted to measured path loss 𝐿௠௦ሺௗ஻ሻ using the 

analytical expression as follows: 
𝐿௠௦ሺௗ஻ሻ =𝐸𝐼𝑅𝑃௕ሺௗ஻ሻ  + 𝑃௠ሺௗ஻ሻ    (7) 

𝐸𝐼𝑅𝑃௕ሺௗ஻ሻ ൌ   𝑃௕ሺௗ஻ሻ ൅ 𝐺௕ሺௗ஻ሻ ൅  𝐺௠ሺௗ஻ሻ െ 𝐿ை்  (8) 

     where   
𝐿௠௦ሺௗ஻ሻ denotes the  measured path loss, 𝑃௠ሺௗ஻ሻ   

denotes the Received Signal Strength Intensity 
(RSSI) measured at the mobile device, 𝑃௕ሺௗ஻ሻ 

denote the transmitter power at the base station, 
𝐺௕ሺௗ஻ሻ denote the transmitter antenna gain at the 

base station, 𝐺௠ሺௗ஻ሻ  denote the receiver antenna 

gain at the mobile device, 𝐿ை் denotes the sum of 
other losses which include feeder cable loss, 
combiner and filter loses , among others. Typical 
values used for the study are; 𝑃௕ሺௗ஻ሻ ൌ 30 dBm, 

𝐺௕ሺௗ஻ሻ ൌ  10.5 dBi , 𝐺௠ሺௗ஻ሻ ൌ 0 dBi , 𝐿ை் ൌ  7 

dBm. Then; 
𝐸𝐼𝑅𝑃௕ሺௗ஻ሻ ൌ   25 ൅ 10.15 ൅  0 െ 7 ൌ 28.5  (9) 

Therefore 
𝐿௠௦ሺௗ஻ሻ =𝑃௠ሺௗ஻ሻ ൅  28.5     (10) 
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2.5  THE PERFORMANCE METRICS 
The metrics used for evaluation of the path loss 

model’s prediction performance are; Root Mean Square 
Error (RMSE), Mean Absolute Error (MAE), R-Squared 
(𝑅ଶ) value and prediction accuracy expressed as the Mean 
Absolute Percentage Error (PAMAPE). 

The Mean Absolute Error (MAE) is computed 
using analytical expression as follows: 

MAE ൌ
ଵ

௡
  ൫∑ ห𝐿௠௦ሺௗ஻ሻሺ୧ሻ െ 𝐿௣௥௘ௗሺௗ஻ሻሺ୧ሻห௜ ୀ ௡

 ௜ ୀ ଵ ൯ (11) 

Where  𝐿௠௦ሺௗ஻ሻሺ୧ሻ  and 𝐿௣௥௘ௗሺௗ஻ሻሺ୧ሻ are the ith measured and 

predicted path loss respectively while n denotes the  
number of data points in the dataset. 

The Root Mean Square Error (RMSE) is computed 
using analytical expression as follows: 

RMSE ൌ  ටቄ 
ଵ

௡
ቂ∑ ൫𝐿௠௦ሺௗ஻ሻሺ୧ሻ െ 𝐿௣௥௘ௗሺௗ஻ሻሺ୧ሻ൯

ଶ௜ ୀ ௡
௜ ୀ ଵ ቃቅ

మ
  (12) 

The prediction accuracy expressed as the Mean 
Absolute Percentage Error (PA/MAPE) which is computed 
using analytical expression as follows: 

PA/MAPE ൌ ൜1 െ
ଵ

௡
  ൬∑ ฬ

௅೘ೞሺ೏ಳሻሺ౟ሻି௅೛ೝ೐೏ሺ೏ಳሻሺ౟ሻ

௅೘ೞሺ೏ಳሻሺ౟ሻ
 ฬ௜ୀ௡

 ௜ୀଵ ൰ൠ * 100% (13) 

 
2.6  MODEL OPTIMIZATION  

In practice, when the measured and model 
predicted path loss has  RMSE ൐ 6dB , then the model 
prediction performance is not acceptable and the model will 
require parameter tuning to optimize the prediction 
performance. In this study, two model optimization 
approaches are considered, namely;  

Method 1: the RMSE –based model tuning and  
Method 2: the function of residue-based method. 

 
2.6.1 THE RMSE –BASED MODEL TUNING 
METHOD 

Step 1: Compute the prediction error, 𝑒௜ in data point i, 
where, 

𝑒௜ ൌ 𝐿௣௥௘ௗሺௗ஻ሻሺ୧ሻ െ 𝐿௠௦ሺௗ஻ሻሺ୧ሻ  (14) 

Step 2: Compute the mean of the prediction error, 𝑒పഥ  , 
where, 

𝑒పഥ ൌ
∑ ሺ௘೔ሻ೔స೙

೔సభ

௡
  (15) 

Step 3: Compute the root mean square of the prediction 
error RMSE, where, 

RMSE ൌ ටቄ 
ଵ

௡
ൣ∑ ሺ𝑒௜ሻଶ௜ ୀ ௡

௜ ୀ ଵ ൧ቅ
మ

  (16) 

Step 4: Tune the model predicted path loss, denoted as 
𝐿𝑇௣௥௘ௗெଵሺௗ஻ሻሺ୧ሻ where, 

𝐿𝑇௣௥௘ௗெଵሺௗ஻ሻሺ୧ሻ ൌ

ቊ
𝐿௣௥௘ௗሺௗ஻ሻሺ୧ሻ ൅ RMSE   for 𝑒పഥ  ൑ 0 
𝐿௣௥௘ௗሺௗ஻ሻሺ୧ሻ െ RMSE   for 𝑒పഥ ൐  0          (17) 

The optimized path loss model using the method 1 
is therefore defined as,  

𝐿𝑃ௌ௉ெଵሺௗ஻ሻ  ൌ

൜
𝐴 ൅  𝐵ሺlogଵ଴ሺ𝑑௜ሻሻ ൅ 𝐶௠ ൅ RMSE   for 𝑒పഥ  ൑ 0
𝐴 ൅  𝐵ሺlogଵ଴ሺ𝑑௜ሻሻ ൅ 𝐶௠  െ RMSE   for 𝑒పഥ ൐  0

          

(18) 
2.6.2 THE FUNCTION OF RESIDUE-BASED 

METHOD 
Step 1: Compute the prediction error, 𝑒௜ in data point i, 

where, 
𝑒௜ ൌ 𝐿௣௥௘ௗሺௗ஻ሻሺ୧ሻ െ 𝐿௠௦ሺௗ஻ሻሺ୧ሻ  (19) 

Step 2: Plot the graph of 𝑒௜ versus log(𝑑௜), where d is the 
path length in km and insert linear trend line 
analytical expression to predict the error at 𝑑௜, where 
the predicted error 𝑒𝑃௜ at 𝑑௜ is given as,  

𝑒𝑃௜ ൌ 𝛽ሺlogଵ଴ሺ𝑑௜ሻሻ ൅ 𝛿  (20) 
Where 𝛽  is the slop or gradient of the line and 𝛿 is 

the intercept (a constant). 
Step 3: Tune the model predicted path loss, denoted as 

𝐿𝑇௣௥௘ௗெଶሺௗ஻ሻሺ୧ሻ where, 

𝐿𝑇௣௥௘ௗெଶሺௗ஻ሻሺ୧ሻ ൌ 𝐿௣௥௘ௗሺௗ஻ሻሺ୧ሻ ൅ 𝑒𝑃௜         

(21) 
𝐿𝑃ௌ௉ெሺௗ஻ሻ  ൌ 𝐴 ൅  𝐵ሺlogଵ଴ሺ𝑑௜ሻሻ ൅ 𝐶௠  ൅ 𝑒𝑃௜         

(22) 
𝐿𝑃ௌ௉ெሺௗ஻ሻ  ൌ 𝐴 ൅  𝐵ሺlogଵ଴ሺ𝑑௜ሻሻ ൅ 𝐶௠  ൅ 𝛽ሺlogଵ଴ሺ𝑑௜ሻሻ ൅ 𝛿

         (23) 
𝐿𝑃ௌ௉ெሺௗ஻ሻ  ൌ 𝐴 ൅ ሺ𝐵 ൅ 𝛽ሻሺlogଵ଴ሺ𝑑௜ሻሻ ൅ 𝐶௠ ൅ 𝛿 

         (24) 
3. RESULTS AND DISCUSSION 

The results of the path length computation using 
the Haversine formula and the measurement points’ 
longitude and latitude are presented in Table 3 along with 
the measured path loss. The path length range is 0.15  km  to 

2.26  km  while the corresponding path loss range is  79.49 

dB to 128.39 dB. 

Comparison of the line charts of the empirically 
measured path loss, the tuned and the un-tuned model 
predicted path loss for the urban environment is presented 
in Figure 3. Similar comparison for the suburban 
environment is presented in Figure 4 while that of the rural 
environment is presented in Figure 5. Again, the results of 
the performance parameters, namely, MAE, RMSE and 
PA/MAPE (%) for the un-tuned model, the RMSE–based 
tuned model and the function of residue-based tuned model 
are presented in Table 4.   
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Table 3 The results of the measured path loss and the path length computation using the Haversine formula 

S/N 
Path Length, d 

(km)  Field Measured Path Loss (dB)  S/N 

Path Length, d 

(km)  Field Measured Path Loss (dB) 

1  0.15  79.49  14  1.07  111.91 

2  0.25  93.92  15  1.15  117.13 

3  0.35  96.70  16  1.28  118.72 

4  0.49  99.92  17  1.32  115.53 

5  0.58  106.49  18  1.42  118.90 

6  0.70  110.28  19  1.43  118.41 

7  0.76  109.15  20  1.56  120.78 

8  0.85  107.41  21  1.70  121.11 

9  0.86  107.58  22  1.77  123.37 

10  0.94  112.07  23  1.84  124.32 

11  0.99  113.35  24  1.96  123.66 

12  1.03  117.06  25  2.13  123.14 

13  1.03  114.23  26  2.25  125.04 

14  1.07  111.91  27  2.26  128.39 

 

 
Figure 2 The line chart of the empirically measured path loss 
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Figure 3 
Comparison of the line charts of the empirically measured path loss , the tuned and  the un-tuned model predicted path loss for 

the urban environment  

 
Figure 4 Comparison of the line charts of the empirically measured path loss , the tuned and  the un-tuned model predicted path 

loss for the suburban environment  
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Figure 5 
Comparison of the line charts of the empirically measured path loss , the tuned and  the un-tuned model predicted path loss for 

the rural environment  
The results in Table 4 show that for the urban 

environment, the un-turned model, the RMSE is 39.89 dB 
which is far above the maximum acceptable value of 6 dB 
for model predicted path loss. Hence, the model tuning is 
required. The RMSE–based tuned model has RMSE of 
3.067 dB which is about 92.3 % improvement over the un-
tuned model prediction, as shown in Figure 6, while the 
function of residue-based tuned model has RMSE of 
1.07896  dB which is about 97.3 % improvement over the 
un-tuned model prediction.  Similar performance 
improvement in RMSE is experienced in the suburban and 

rural environments, as shown in Table 4 and Figure 6, with 
the function of residue-based tuned model giving the best 
performance.  

Similar comparison of the percentage 
improvement in MAE (%)  for the model tuning methods is 
presented in Figure 7 while the comparison of the 
percentage improvement in MA/MAP (%)  for the model 
tuning methods is presented in Figure 8. Again, the function 
of residue-based tuned model has the best performance in 
all the performance parameters considered.  

Table 4  The results of the performance parameters for the un-tuned model, the RMSE–based tuned model and the function of 
residue-based tuned model 

PROPAGATION 
ENVIRONMENT 

CATEGORY 
MODEL TUNING METHOD 

RMSE 
(dB) 

MAE 
(dB) 

PA/MAPE 
(%) 

URBAN 

ENVIRONMENT  
URBAN (ORIGINAL MODEL) 

39.98812  39.87047  64.15765 

  URBAN (RMSE –BASED MODEL 

TUNING)  3.067358  2.366157  97.76705 

  URBAN (FUNCTION OF RESIDUE‐

BASED MODEL)  1.07896  0.843695  99.23599 

SUBURBAN 

ENVIRONMENT 
SUBURBAN (ORIGINAL MODEL) 

46.29184  46.26468  58.67021 

  SUBURBAN (RMSE –BASED 

MODEL TUNING)  1.585852  1.253635  98.85309 

  SUBURBAN (FUNCTION OF 

RESIDUE‐BASED MODEL)  1.427651  1.127791  98.97475 

  RURAL (ORIGINAL MODEL)  19.24677  17.58846  83.56565 
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RURAL 

ENVIRONMENT 

RURAL (RMSE –BASED MODEL 

TUNING)  7.989628  6.423645  94.0455 

  RURAL (FUNCTION OF RESIDUE‐

BASED MODEL)  1.095101  0.833496  99.24996 

 

 
Figure 6 Comparison of the percentage improvement in RMSE (%)  for the model tuning methods 

 

 
Figure 7 Comparison of the percentage improvement in MAE (%)  for the model tuning methods 
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Figure 8 Comparison of the percentage improvement in PA/MAPE (%)  for the model tuning methods 

 
4. CONCLUSION 

The Standard propagation (SP) model is presented 
for estimating the path loss in a cellular network operating 
in the 1800 MHz frequency band. The SP model prediction 
performance for the case study site is evaluated for the 
urban, the suburban and the rural environment using 
empirically measured received signal strength. The model 
was tuned using the root mean square (RMSE) method and 
also using the function of residue method. The results 
showed that the function of residue method performed 
much better than the RMSE method which is the most 
widely used method.  
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