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Abstract—Cellular network propagation loss
characterization using Standard Path loss (SP)
model is presented. The work is based on
empirical measurement of the received signal
strength, evaluation of the SP model’s ability to
accurately predict the path loss and then tuning
the SP model to optimize its prediction accuracy
thereby minimizing the SP model’'s path loss
prediction error for the given study area. The
cellular network operating in the 1800 MHz
frequency band was considered. The model was
tuned using the root mean square (RMSE) method
and also using the function of residue method.
The measured path length range was 0.15 km to
2.26 km while the corresponding path loss range
was 79.49 dB to 128.39 dB. The un-turned model
had RMSE of 39.89 dB for the urban propagation
environment. The RMSE-based tuned model had
RMSE of 3.067 dB for the urban propagation
environment which is about 92.3 % improvement
over the un-tuned model prediction, while the
function of residue-based tuned model had RMSE
of 1.07896 dB which is about 97.3 % improvement
over the un-tuned model prediction. Similar
performance improvement in RMSE was
experienced in the suburban and rural
environments, with the function of residue-based
tuned model giving the best performance. The
results showed that the function of residue
method performed much better than the RMSE
method which is the most widely used method.

Keywords— Cellular Network, Propagation
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1. Introduction
The growing adoption of wireless networks and
the rising demand for more bandwidth and enhanced
quality of service is posing running challenges to wireless

network designers and operators [1,2,3]. This is due to
some inevitable challenges associated with wireless signal
propagations. One of the problem is the propagation loss
which is always suffered by wireless signals as they
propagate over a communication environment [4,5,6]. The
propagation loss, also known as path loss is dependent on
several factors and hence varies from one communication
environment to another [7,8].

In practice, wireless network designers and
operators conduct site survey to estimate the expected
propagation loss for their wireless signal [9,10]. The site
survey can also be avoided if there is a propagation loss
model that can accurately characterize the propagation loss
in the given environment for the same signal frequency of
interest. Hence, researchers always provide study reports of
such empirical models that are optimized for wireless
network installation in a given area.

Accordingly, in this study, the focus is to conduct
the empirical propagation loss model evaluation and tuning
for a cellular network in the 18000 MHz frequency band
[11,12,13]. Specifically, the Standard Path loss model (SP
model) is considered [14,15]. Most importantly, the
approach for the model tuning approaches adopted are, one,
the root mean square error (RMSE)-based method and two,
the function of residue-based method. The performance of
the models tuned using the two methods are compared and
the best model is recommended for the case study cellular
network in the given case study area.

2.0 METHOD
The focus in this work is to use the Standard
Propagation (SP) model to characterize the propagation loss
cellular network signal. The work is based on empirical
measurement of the prevailing path loss, evaluation of the
SP models ability to accurately predict the path loss and
then tuning the SP model to optimize its prediction
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accuracy thereby minimizing the SP model’s path loss
prediction error for the given study area.

So, first, the analytical equations for computing
the Standard Propagation (SP) model are presented
followed by the data collection and analysis. Then other
steps for the evaluation and optimization of the SP model
based on the empirical dataset from the case study area are
presented.

2.1 THE STANDARD PROPAGATION MODEL

The Standard Propagation (SP) Model is one of the
empirical models for characterizing propagation loss that is
experienced by wireless signal as it propagates from the
transmitter to the receiver over a path length. Base on the
SP model, the path loss, LPspqpy for a given path length, d

is expressed in the following analytical models [14,15]:

LPspiqpy = A+ B(logyo(d)) + Cp, (D
A=K + K3(10g10(HTXeff)) + K6(HTXeff) +
K7(10g10(Hrxerr)) )

B = Ky + Ks(10810(Hrxerr)) (3)

Cn = K,(Diffraction Loss) + K pirer (f (clutter)) +
Khiuvos (4)

Where, d is the path length in km, K uter 1S the

coefficient for clutter attenuation, hm denote the mobile
device antenna height of antenna , hb denote the base
station antenna height, K1, K, , K3 ,K, , K5 ,Ks and K, are
various constants which are defined in Table 1 for various
propagation environments. Hyyerr denotes the mobile
antenna height (in m) while f(clutter) denotes the
average of the weighted losses due to clutter.

Table 1 The K-Parameters specifications for the different propagation environments [14,15]

K Values Dense Urban Urban Suburban Rural Highways
K; 16.375 17.575 17.675 5.275 26.625
K, 48 45.9 45.9 48 40.1
K 5.83 5.83 5.83 5.83 5.83
K, 0.8 0.8 0.8 0.8 0.8
K -0.655 -0.655 -0.655 -0.655 -0.655
K¢ 0 0 0 0 0
K, 0.8 0.8 0.8 0.8 0.8
Kclutter 1 1 1 1 1
written for the analysis of the data. The Google
2.2 DATA COLLECTION AND ANALYSIS map visualization of the case study site is shown in
Empirical data collection was conducted Figure 1 while empirical measured data with the
through a test drive along the path within the case base station located at longitude of 7.94177 and
study area in Eket, in Akwa Ibom State, Nigeria. latitude of 4.64657 are presented in Table 2. The
The TEst Mobile System (TEMS), core i5 laptop, cellular network comsidered operates in the 1800
and 4G Modem with SIM card of the target GSM MHz frequency band.
service provider, GPS, and Python program
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Figure 1 The Google map visualization of the case study site
WWWw.jmest.org
JMESTN42354510 17316



Journal of Multidisciplinary Engineering Science and Technology (JMEST)

ISSN: 2458-9403

Vol. 12 Issue 1, January - 2025

Table 2 The empirical measurement data with the base station located at longitude of 7.94177 and latitude of 4.64657

Data point, i Longitude Latitude RSSI (dBm) Data point, i Longitude Latitude RSSI (dBm)
1 7.942397 4.645414 -50.9915 14 7.94026 4.63706 -83.412
2 7.94298 4.6447 -65.4208 15 7.93901 4.63661 -88.6254
3 7.9432 4.64381 -68.2004 16 7.93888 4.6354 -90.2176
4 7.94338 4.64248 -71.4159 17 7.93892 4.6351 -87.0313
5 7.94382 4.64177 -77.985 18 7.93818 4.6343 -90.4016
6 7.94408 4.64075 -81.7754 19 7.9384 4.63413 -89.9097
7 7.94427 4.64017 -80.6482 20 7.93767 4.63314 -92.2763
8 7.94368 4.63917 -78.9148 21 7.93703 4.63206 -92.6083
9 7.94355 4.63904 -79.0846 22 7.93633 4.63163 -94.8689
10 7.94311 4.63821 -83.5667 23 7.93607 4.63101 -95.8166
11 7.94186 4.63768 -84.8455 24 7.93535 4.63021 -95.1633
12 7.94126 4.63737 -88.5572 25 7.93468 4.62877 -94.6366
13 7.94117 4.63737 -85.7314 26 7.93373 4.62798 -96.543
14 7.94026 4.63706 -83.412 27 7.93382 4.62784 -99.8945

2.3 TRANDS];’PIFIIEIS?QI)?ATIP(ZN[H OFLENngiﬁ 2.4 DETERMINATION OF THE MEASURED
USING THE HAVERSINE FORMULA PATH LOSS USING THE
After the drive test, each measurement E/TE:J]:EISC ALLY ~ MEASURED  RSSI

point coordinates are used along with the base
station coordinates to determine the transmission
path length using the Haversine formula which is
expressed as follows:

d=

The empirically measured Received Signal
Strength Intensity (RSSI) data wvalues are
converted to measured path 10ss Lys(ap) using the
analytical expression as follows:

Linscagy EIRPyapy + Pmas) (7

_ 2
2(Rearen) {i/sin (M) + cos(LAT}) cos(LATy,) sin

2

“
(LAT geg *3.142)
LAT g = ~—"222 (5)
LONG, gy = (LONGgeg *3.142) 6)

180
Where LAT,, and LAT,, denote the latitude of the

base station and the mobile device respectively

LONGj, and LONG,, denote the longitude of the

base station and the mobile device respectively.
Also, latitude in radians is denoted as LAT,.q4,
latitude in degrees is denoted as LATgeq ,
longitude in radians is denoted as LONG,,4, and
longitude in degrees is denoted as LONGg,q. In
addition, R, denotes the earth radius which is
6371 km , while d is the transmission path length
in km.

(LONGm—LONGb )Q’}B
2

EHRPrragy = Poasy + Goas) + Gmeasy — Lot (8)
Lyns(ap) denotes the measured path loss, P45
denotes the Received Signal Strength Intensity
(RSSI) measured at the mobile device, Ppgp)
denote the transmitter power at the base station,
Gp(ap) denote the transmitter antenna gain at the
base station, Gp,(qp) denote the receiver antenna
gain at the mobile device, Ly denotes the sum of
other losses which include feeder cable loss,
combiner and filter loses , among others. Typical
values used for the study are; P45y = 30 dBm,
Gpapy = 10.5dBi , Gpapy =0dBi , Lor = 7
dBm. Then;
EIRPyqpy = 25+ 10.15+ 0—7 =285 (9)
Therefore
Lins(ay =Pmasy + 28.5 (10)
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2.5 THE PERFORMANCE METRICS
The metrics used for evaluation of the path loss
model’s prediction performance are; Root Mean Square
Error (RMSE), Mean Absolute Error (MAE), R-Squared
(R?) value and prediction accuracy expressed as the Mean
Absolute Percentage Error (PAMAPE).
The Mean Absolute Error (MAE) is computed
using analytical expression as follows:

MAE = % (X521 Lmscasycy — Lpreaas)a|) (11)
Where Lygapyi) and Lpreaas) i are the ith measured and
predicted path loss respectively while n denotes the
number of data points in the dataset.

The Root Mean Square Error (RMSE) is computed
using analytical expression as follows:

RMSE = 2\/{ % [Zf - Tll(Lms(dB)(i) - Lpred(dB)(i))Z]} (12)

The prediction accuracy expressed as the Mean
Absolute Percentage Error (PA/MAPE) which is computed
using analytical expression as follows:

PA/MAPE = {1 _% ( i=n Lmsas)@ ~Lpreawni |>} *100% (13)

Lims(dB) )

2.6 MODEL OPTIMIZATION

In practice, when the measured and model
predicted path loss has RMSE > 6dB, then the model
prediction performance is not acceptable and the model will
require parameter tuning to optimize the prediction
performance. In this study, two model optimization
approaches are considered, namely;

Method 1: the RMSE —based model tuning and

Method 2: the function of residue-based method.

2.61 THE RMSE
METHOD
Step 1: Compute the prediction error, e; in data point i,
where,

—-BASED MODEL TUNING

e; = Lyreacas)) — Lms(a) @ (14)
Step 2: Compute the mean of the prediction error, e, ,

where,
Step 3: Compute the root mean square of the prediction
error RMSE, where,

RMSE = 2/{%[ (=1(en?]) (16)

Step 4: Tune the model predicted path loss, denoted as

LTpream1(asyciy Where,

LTypream1(an)iy =
{Lpred(dB)(i) + RMSE fore, <0 (17
Lpreaas)i — RMSE fore, > 0
The optimized path loss model using the method 1
is therefore defined as,
LP, SPM1(dB) =
A+ B(log,y(d;)) + C,, + RMSE fore, <0
{A + B(log,o(d;)) + C,, —RMSE fore, > 0
(18)
2.6.2 THE FUNCTION OF RESIDUE-BASED
METHOD
Step 1: Compute the prediction error, e; in data point i,
where,
;i = Lypreacar)) — Lmscan) (19)
Step 2: Plot the graph of e; versus log(d;), where d is the
path length in km and insert linear trend line
analytical expression to predict the error at d;, where
the predicted error eP; at d; is given as,
eP; = B(logyo(d)) +6 (20)
Where 8 is the slop or gradient of the line and § is
the intercept (a constant).
Step 3: Tune the model predicted path loss, denoted as

LTy eamz(any(iy Where,

LTyreamz(asyiy = Lpreacan)dy + P

21)
LPspyapy = A+ B(logyo(d)) + Gy + P,
(22)
LPsppyapy = A+ B(logyo(d)) + Cpp + B(logyo(dy)) + 6
(23)
LPsppyapy = A+ (B + B)(logyo(dy)) + Cpp + 6
(24)

3. RESULTS AND DISCUSSION

The results of the path length computation using
the Haversine formula and the measurement points’
longitude and latitude are presented in Table 3 along with
the measured path loss. The path length range is 0.15 km to
2.26 km while the corresponding path loss range is 79.49
dB to 128.39 dB.

Comparison of the line charts of the empirically
measured path loss, the tuned and the un-tuned model
predicted path loss for the urban environment is presented
in Figure 3. Similar comparison for the suburban
environment is presented in Figure 4 while that of the rural
environment is presented in Figure 5. Again, the results of
the performance parameters, namely, MAE, RMSE and
PA/MAPE (%) for the un-tuned model, the RMSE-based
tuned model and the function of residue-based tuned model
are presented in Table 4.
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Table 3 The results of the measured path loss and the path length computation using the Haversine formula

SN Path Length, d Path Length, d
(km) Field Measured Path Loss (dB) S/N (km) Field Measured Path Loss (dB)
1 0.15 79.49 14 1.07 11191
2 0.25 93.92 15 1.15 117.13
3 0.35 96.70 16 1.28 118.72
4 0.49 99.92 17 1.32 115.53
5 0.58 106.49 18 1.42 118.90
6 0.70 110.28 19 1.43 118.41
7 0.76 109.15 20 1.56 120.78
8 0.85 107.41 21 1.70 121.11
9 0.86 107.58 22 1.77 123.37
10 0.94 112.07 23 1.84 124.32
11 0.99 113.35 24 1.96 123.66
12 1.03 117.06 25 2.13 123.14
13 1.03 114.23 26 2.25 125.04
14 1.07 111.91 27 2.26 128.39
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Figure 2 The line chart of the empirically measured path loss
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Figure 3
Comparison of the line charts of the empirically measured path loss , the tuned and the un-tuned model predicted path loss for
the urban environment
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Figure 4 Comparison of the line charts of the empirically measured path loss , the tuned and the un-tuned model predicted path
loss for the suburban environment
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Comparison of the line charts of the empirically measured path loss , the tuned and the un-tuned model predicted path loss for
the rural environment

The results in Table 4 show that for the urban
environment, the un-turned model, the RMSE is 39.89 dB
which is far above the maximum acceptable value of 6 dB
for model predicted path loss. Hence, the model tuning is
required. The RMSE—based tuned model has RMSE of
3.067 dB which is about 92.3 % improvement over the un-
tuned model prediction, as shown in Figure 6, while the
function of residue-based tuned model has RMSE of
1.07896 dB which is about 97.3 % improvement over the
un-tuned model prediction. Similar performance
improvement in RMSE is experienced in the suburban and

rural environments, as shown in Table 4 and Figure 6, with
the function of residue-based tuned model giving the best
performance.

Similar ~ comparison of the  percentage
improvement in MAE (%) for the model tuning methods is
presented in Figure 7 while the comparison of the
percentage improvement in MA/MAP (%) for the model
tuning methods is presented in Figure 8. Again, the function
of residue-based tuned model has the best performance in
all the performance parameters considered.

Table 4 The results of the performance parameters for the un-tuned model, the RMSE—based tuned model and the function of
residue-based tuned model

PROPAGATI RMSE
OPAGATION S MAE | PA/MAPE
ENVIRONMENT MODEL TUNING METHOD (dB) aB) %)
CATEGORY ¢
URBAN
URBAN (ORIGINAL MODEL)
ENVIRONMENT 39.98812 | 39.87047 | 64.15765
URBAN (RMSE -BASED MODEL
TUNING) 3.067358 | 2.366157 | 97.76705
URBAN (FUNCTION OF RESIDUE-
BASED MODEL) 1.07896 | 0.843695 | 99.23599
SUBURBAN
SUBURBAN (ORIGINAL MODEL)
ENVIRONMENT 46.29184 | 46.26468 | 58.67021
SUBURBAN (RMSE —BASED
MODEL TUNING) 1.585852 | 1.253635 | 98.85309
SUBURBAN (FUNCTION OF
RESIDUE-BASED MODEL) 1.427651 | 1.127791 | 98.97475
RURAL (ORIGINAL MODEL) 19.24677 | 17.58846 | 83.56565
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RURAL RURAL (RMSE —BASED MODEL
ENVIRONMENT TUNING) 7.989628 | 6.423645 94.0455
RURAL (FUNCTION OF RESIDUE-
BASED MODEL) 1.095101 | 0.833496 99.24996

Percentage Improvement in RMSE (%)
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Figure 6 Comparison of the percentage improvement in RMSE (%) for the model tuning methods
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JMESTN42354510

www.jmest.org

17322



Journal of Multidisciplinary Engineering Science and Technology (JMEST)

ISSN: 2458-9403
Vol. 12 Issue 1, January - 2025

= 75

.

§ 65

<z 55

[-»

= 45

- 35

]

£z 25

z <

= 15

=

£ 5

Ll

© Percentage

?3” Improvement in

g PA/MAPE (%) for

b Urban

2 Environment
E ORIGINAL MODEL (NOT TUNED) 0.0
= RMSE -BASED MODEL TUNING 52.4

FUNCTION OF RESIDUE-BASED 54.7

MODEL TUNING

Improvement in
PA/MAPE (%) for

Percentage
Improvement in
PA/MAPE (%) for

Percentage

Su.burban Rural Environment
Environment
0.0 0.0
68.5 12.5
68.7 18.8

Figure 8 Comparison of the percentage improvement in PA/MAPE (%) for the model tuning methods

for IoT  technologies:  Applications and

4. CONCLUSION challenges. IEEE Access, 10, 24095-24131.

The Standard propagation (SP) model is presented 5. Serghiou, D., Khalily, M., Brown, T. W., &
for estimating the path loss in a cellular network operating Tafazolli, R. (2022). Terahertz channel
in the 1800 MHz frequency band. The SP model prediction propagation phenomena, measurement techniques
performance for the case study site is evaluated for the and modeling for 6G wireless communication
urban, the suburban and the rural environment using applications: A survey, open challenges and future
empirically measured received signal strength. The model research directions. |IEEE Communications
was tuned using the root mean square (RMSE) method and Surveys & Tutorials, 24(4), 1957-1996.
also using the function of residue method. The results 6. Oladimeji, T. T., Kumar, P., & Elmezughi, M. K.
showed that the function of residue method performed (2022). Path loss measurements and model
much better than the RMSE method which is the most analysis in an indoor corridor environment at 28
widely used method. GHz and 38 GHz. Sensors, 22(19), 7642.

7. Tang, W., Chen, X., Chen, M. Z., Dai, J. Y., Han,
References Y., Di Renzo, M., ... & Cui, T. J. (2022). Path loss
1. Ahmed, R., Mahmood, M. R., & Matin, M. A. modeling and measurements for reconfigurable

(2023). Challenges in meeting QoS requirements intelligent surfaces in the millimeter-wave

toward 6G wireless networks: A state of the art frequency band. IEEE Transactions on

survey. Transactions on Emerging Communications, 70(9), 6259-6276.

Telecommunications Technologies, 34(2), e4693. 8. Ellingson, S. W. (2021, September). Path loss in

2. Alimi, I. A., Patel, R. K., Muga, N. J., Pinto, A. reconfigurable intelligent surface-enabled

N., Teixeira, A. L., & Monteiro, P. P. (2021). channels. In 2021 IEEE 32nd Annual International

Towards enhanced mobile broadband Symposium on Personal, Indoor and Mobile Radio

communications: A  tutorial on enabling Communications (PIMRC) (pp. 829-835). IEEE.

technologies, design considerations, and prospects 9. Hmamouche, Y., Benjillali, M., Saoudi, S.,

of 5G and beyond fixed wireless access Yanikomeroglu, H., & Di Renzo, M. (2021). New

networks. Applied Sciences, 11(21), 10427. trends in stochastic geometry for wireless
3. Taufique, A., Jaber, M., Imran, A., Dawy, Z., & networks: A tutorial and survey. Proceedings of

Yacoub, E. (2017). Planning wireless cellular the IEEE, 109(7), 1200-1252.

networks of future: Outlook, challenges and 10. Hu, S., Chen, X., Ni, W., Hossain, E., & Wang, X.

opportunities. IEEE Access, 5, 4821-4845. (2021). Distributed machine learning for wireless

4. Alobaidy, H. A., Singh, M. J., Behjati, M., Nordin, communication networks: Techniques,
R.,, & Abdullah, N. F. (2022). Wireless architectures, and applications. IEEE
transmissions, propagation and channel modelling Communications Surveys & Tutorials, 23(3),
1458-1493.
www.jmest.org

JMESTN42354510

17323



Journal of Multidisciplinary Engineering Science and Technology (JMEST)

ISSN: 2458-9403
Vol. 12 Issue 1, January - 2025

11. Ojo, S., Akkaya, M., & Sopuru, J. C. (2022). An 14. Popoola, S. L., Atayero, A. A., Faruk, N., Calafate,
ensemble machine learning approach for enhanced C. T., Olawoyin, L. A., & Matthews, V. O. (2017).
path loss predictions for 4G LTE wireless Standard propagation model tuning for path loss
networks. International Journal of Communication predictions in built-up environments.
Systems, 35(7), e5101. In Computational Science and Its Applications—

12. Shaibu, F. E., Onwuka, E. N., Salawu, N., ICCSA 2017: 17th International Conference,
Oyewobi, S. S., Djouani, K., & Abu-Mahfouz, A. Trieste, Italy, July 3-6, 2017, Proceedings, Part VI
M. (2023). Performance of path loss models over 17 (pp. 363-375). Springer  International
mid-band and high-band channels for 5G Publishing.
communication networks: A  review. Future 15. Popoola, S. L., Atayero, A. A., Faruk, N., Calafate,
Internet, 15(11), 362. C. T., Adetiba, E., & Matthews, V. O. (2017,

13. Adebowale, Q. R., Faruk, N., Adewole, K. S., July). Calibrating the standard path loss model for
Abdulkarim, A., Olawoyin, L. A., Oloyede, A. A., urban environments using field measurements and

. & Calafate, C. T. (2021). Application of geospatial data. In Proceedings of the World
computational intelligence algorithms in radio Congress on Engineering (Vol. 1, pp. 5-7).
propagation: a systematic review and metadata
analysis. Mobile Information  Systems, 2021(1),

6619364.
www.jmest.org
JMESTN42354510 17324



