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Abstract— In this paper, prediction of breast 
cancer using support vector machine (SVM) and 
decision tree machine learning models was 
presented. The model training and validation are 
performed using the Breast Cancer Wisconsin 
(Diagnostic) dataset. The dataset consists of 569 
records of patients and 35 columns. Exploratory 
data analysis wais carried out on the diabetic 
patient dataset using the Pandas-Profiling library. 
The Seaborn library was used to show the 
Pearson Correlation of features in the dataset. The 
model training dataset was divided into 5 folds. 
Each fold was used as the validation set in 5 
iterations. The results show that for the training, 
the SVM has F1 score with mean value of 98.505% 
while the decision tree model has F1 score with 
mean value of 99.334 %. On the other hand, for the 
validation dataset, the SVM has F1 score with 
mean value of 96.696 % while the decision tree 
model has F1 score with mean value of 91.6729 
%.In addition, according to the results of the 
confusion matrix, the SVM has better performance 
as it had true (or correct) prediction with a higher 
value of 97.4 % while the decision tree has correct 
(true) prediction of 2.6%. Again, the SVM has 
better results for the untrue (or incorrect) 
prediction with a smaller value of 2.6 % while the 
decision tree has higher untrue (or incorrect) 
prediction of 5.3%. Essentially, the SVM model 
can predict the likelihood of breast cancer better 
that the decision tree model. 
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1. INTRODUCTION 

In recent years, there has been increase in the 
incidence of breast cancer across the globe [1,2,3]. 

Accordingly, many non-governmental organizations, as 
well as government agencies are making more effort to 
address the issue. The efforts are geared towards creating 
awareness of breast cancer and getting people to know 
measures that can be used to detect the likelihood of 
occurrence of breast [4,5,6]. Also, information on life styles 
that can increase the chances of breast cancer are also 
publicized so as to encourage people to avoid such [7,8,9].  

In addition, the medical practitioners and 
researchers have also applied some intelligent ways to 
diagnose and predict the likelihood of breast cancer in a 
patient based on medical historical data [10,11,12]. Such 
approach requires the use of intelligent algorithms which 
can be trained with the medical data records of breast 
cancer patients and hence enable such algorithms to predict 
with sufficient accuracy the likelihood of breast cancer in a 
person. Accordingly, in this work, support vector machine 
(SVM) and decision tree machine learning algorithms are 
employed to predict breast cancer [13,14,15,16]. A case 
study Breast Cancer Wisconsin (Diagnostic) dataset was 
used for the model training and validation [17,18,19]. The 
F1 score and the confusion matrix parameters were used to 
compare the prediction performance of the two machine 
learning models [20,21]. The essence of the study is to 
determine which of the two machine learning models is 
more suitable for breast cancer prediction. 

 
2. METHODOLOGY 

 
In this paper, the focus in the application of 

support vector machine and decision tree machine learning 
models for the prediction of breast cancer. The model 
training and validation are performed using the Breast 
Cancer Wisconsin (Diagnostic) dataset. The dataset consists 
of 569 records of patients and 35 columns. The dataset 
metadata, referred to as features are   presented in Table 1. 
In the features listed in Table 1, the column “Unnamed: 32” 
is irrelevant. There are null values. The column is removed 
during data cleaning. There are no missing values in the 
dataset. There are also no duplicate values. 
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Exploratory data analysis is carried out on the 
diabetic patient dataset using the Pandas-Profiling library 
[22, 23]. The screenshots shown  in Figure 1 and Figure 2 
show  that there are 569 missing values which are from the 
‘Unnamed: 32’ column. There are 31 numeric variables, 1 
categorical variable which is the ‘Diagnosis’ column. The 

Unsupported variable is the ‘Unnamed: 32’ column’. The 
screenshot in Figure 2 shows that there are no missing 
values in any of the columns except the ‘Unnamed: 32’ 
column 
 

Table 1: Features of diabetic patient dataset 
 

S/N Features Count     Data Type 
0 id  569 non-null     int64   
1 Diagnosis 569 non-null     object 
2 radius mean 569 non-null     float64 
3 texture mean                  569 non-null     float64 
4 perimeter mean             569 non-null     float64 
5 area mean                     569 non-null     float64 
6 smoothness mean          569 non-null     float64 
7 compactness mean         569 non-null     float64 
8 concavity mean             569 non-null     float64 
9 concave points mean     569 non-null     float64 

10 symmetry mean            569 non-null     float64 
11 fractal_dimension_mean    569 non-null     float64 
12 radius_se                            569 non-null     float64 
13 texture_se                       569 non-null     float64 
14 perimeter_se                   569 non-null     float64 
15 area_se                           569 non-null     float64 
16 smoothness_se               569 non-null     float64 
17 compactness_se            569 non-null     float64 
18 concavity_se                 569 non-null     float64 
19 concave points_se        569 non-null     float64 
20 symmetry_se                569 non-null     float64 
21 fractal_dimension_se      569 non-null     float64 
22 radius_worst              569 non-null     float64 
23 texture_worst             569 non-null     float64 
24 perimeter_worst           569 non-null     float64 
25 area_worst                569 non-null     float64 
26 smoothness_worst          569 non-null     float64 
27 compactness_worst         569 non-null     float64 
28 concavity_worst           569 non-null     float64 
29 concave points_worst      569 non-null     float64 
30 symmetry_worst            569 non-null     float64 
31 fractal_dimension_worst   569 non-null     float64 
32 Unnamed: 32               0 non-null       float64 
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used to determine the model that is better for application in 
breast cancer prediction. 

 

Table 2: The F1 scores for the training dataset across the 5 folds 
 

 1st Fold 2nd Fold 3rd Fold 4th Fold 5th Fold Average  

SVM F1 scores 98.5075 98.1273 99.2593 97.7444 98.8848 98.5046 

Decision Tree F1 scores 99.2593 99.6337 99.2701 100.0000 98.5075 99.3341 

 

 
Figure  7 The F1 scores for the training dataset across the 5 folds 

 
Table 3: The F1 scores for the validation dataset across the 5 folds  

 1st Fold 2nd Fold 3rd Fold 4th Fold 5th Fold Average  

SVM F1 scores 95.3846 100.0000 95.3846 97.0588 95.6522 96.6960 

Decision Tree F1 
scores 

95.5224 92.9577 89.8550 95.5224 84.5070 91.6729 

 

 
Figure  8 The F1 scores for the validation dataset across the 5 folds 

 

1st	Fold 2nd	Fold 3rd	Fold 4th	Fold 5th	Fold Average

SVM	F1	scores 98.5075 98.1273 99.2593 97.7444 98.8848 98.5046

Decision	Tree	F1	scores 99.2593 99.6337 99.2701 100 98.5075 99.3341
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Figure 12 Statistics of true or correct prediction 

 

 
Figure 13 Statistics of true or correct prediction 

 
4. CONCLUSION 

 
The focus of this paper is on the support vector machine 
(SVM) and decision tree machine learning models which 
are trained for prediction of breast cancer. The cancer 
patients’ dataset was acquired and the 5-fold technique was 
employed in splitting the dataset into training and 
validation set. The models were iteratively trained based on 
the 5-fold approach and the F1 scores were obtained for 
each model for each of the five folds. Also confusion 
matrix results were obtained for the two models. The results 
showed that the SVM model performed better than the 

decision tree in making correct predictions of breast cancer 
incidence in the patience. 
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