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Abstract— This study utilizes the sophisticated Lattice 
Boltzmann method (LBM) enhanced by Multiple Relaxation Time 
(LB-MRT) to simulate the complex dynamics of oil spills. Chosen for 
its ability to accurately manage interactions between oil and water, 
the LBM allows for realistic modeling of oil behavior following 
marine spills. The MRT model significantly enhances the LBM by 
offering improved stability, accuracy, and flexibility for simulating 
complex fluid dynamics in oil spill scenarios. Its application 
provides a detailed and realistic portrayal of spill dynamics, crucial 
for developing effective response strategies and advancing 
environmental simulation technologies. 

Our simulations provide detailed visualizations of initial oil 
dispersion and subsequent spread, offering crucial insights for 
emergency response planning and environmental impact 
minimization. Future enhancements will focus on boosting 
computational efficiency and incorporating complex interactions 
such as chemical degradation and biological effects, as well as 
detailed geographic features. 

By improving predictive capabilities and broadening 
applicability, this research enhances our ability to effectively 
manage and mitigate the consequences of oil spills, demonstrating 
the significant benefits of advanced computational methods in 
environmental disaster management. 
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I.  INTRODUCTION 

Oil spills stand as one of the most critical environmental disasters, 
causing widespread damage to marine life, coastal communities, 
and local economies. The immediate consequences, such as 
habitat contamination, are visible and alarming, but also the long-
term effects, harming biodiversity and economic activities, pose a 
lingering threat. The challenge in addressing oil spills lies in their 
complexity, influenced by factors like the type of oil spilled, the 
amount, the environmental conditions at the time, and the 
specifics of the affected coastal areas. 
A clear example of such a disaster is the 2010 Deepwater Horizon 
spill in the Gulf of Mexico, which lasted 87 days and released over 
3 million barrels of oil [1]. This incident led to the death of 
thousands of marine animals and birds, and economic losses 
estimated in the billions, impacting the fishing and tourism 
industries. Moreover, the full extent of the spill's impact on public 
health and the quality of life for millions remains uncertain. Factors 
such as currents, wind and the oil's chemical makeup critically 
influence how spilled oil behaves and changes over time. 
Processes like evaporation, mixing with water, breaking down, 
and being consumed by microbes make the spilled oil's impact 
more complex and challenging to mitigate. 

In this context, computational modeling has become a key 
strategy for managing oil spill impacts. By simulating how oil spills 
evolve in marine environments, these models help predict the best 
response strategies, guiding efficient clean-up efforts and 
protecting vulnerable areas. They play a crucial role in both 
immediate responses, helping to quickly contain and clean up 
spills, and long-term planning, improving strategies for dealing 
with spills and informing policies to prevent future disasters. 
Essentially, computational models help make informed decisions 
faster, reducing the overall damage of oil spills and aiding in the 
recovery of affected ecosystems and economies. 
The Lattice-Boltzmann Method 
The choice of the Lattice Boltzmann Method (LBM) over traditional 
computational fluid dynamics (CFD) techniques such as Finite 
Difference (FD), Finite Element (FE), and Finite Volume (FV) 
methods for simulating oil spills is driven by several compelling 
factors that align with the unique challenges posed by such 
environmental phenomena. These factors include the inherent 
suitability of LBM for multiphase flows, its ability to handle 
complex boundary conditions, and its scalability on modern 
computational architectures, among others.  
One of the critical challenges in simulating oil spills is accurately 
modeling the interaction between multiple phases – oil, water, and 
possibly air. LBM inherently excels in dealing with multiphase and 
multicomponent flows, thanks to its mesoscopic nature and the 
ease of implementing complex interfacial dynamics. 
Oil spill simulations frequently involve complex geometries and 
dynamic interactions with the environment, such as coastlines, 
vegetation, and man-made structures. LBM's discrete lattice 
structure and local collision dynamics facilitate the straightforward 
handling of complex boundaries and moving objects. In contrast, 
FD, FE, and FV methods typically require intricate meshing 
strategies and often struggle with stability issues near boundaries. 
Additionally, turbulence plays a significant role in the dispersion of 
oil spills. LBM directly simulates the Navier-Stokes equations at a 
mesoscopic level, enabling the capture of turbulent flow features 
with a higher degree of accuracy and reliability than the traditional 
CFD methods. The intrinsic kinetic approach of LBM allows for a 
more natural representation of the turbulent eddies and flow 
structures characteristic of oil spill scenarios. 
Furthermore, the parallel nature of LBM, where computations are 
localized to the lattice nodes, makes it highly scalable and efficient 
on modern high-performance computing architectures, including 
GPUs, as demonstrated in this project. This scalability is important 
for simulating the vast spatial extents and fine details required in 
oil spill simulations. While FD, FE, and FV methods can also be 
parallelized, LBM's simplicity in data structure and local 
communication patterns results in superior computational 
efficiency and easier implementation on massively parallel 
systems. 

http://www.jmest.org/


Journal of Multidisciplinary Engineering Science and Technology (JMEST) 

ISSN: 2458-9403 

Vol. 11 Issue 4, April - 2024  

www.jmest.org 

JMESTN42354378 16814 

II. LITERATURE REVIEW 

In the literature, authors commonly employ either the Lagrangian 
(microscopic) or the Eulerian (macroscopic) approach to simulate 
the propagation of oil spills in the sea. Recently, a novel 
technique, the Lattice Boltzmann (mesoscopic) method, has 
emerged. This approach bridges the gap between the two 
traditional methods by utilizing particle velocity distribution 
functions, enabling the transition from microscopic to macroscopic 
variables. 
Lattice Boltzmann has already been used in the simulation of oil-
spills. Zhang et al [2-3] have used the Lattice Boltzmann 
advection-diffusion equation to study the oil-spill that occurred at 
the Gulf of Mexico using real ocean current data from the Unified 
Wave Interface-Coupled model. They have validated their model 
against GNOME and involved the simulation of a Gaussian hill 
using linear currents and realistic ocean currents and were found 
to be in good agreement.  
Meslo et al. [4] have used LB simulations to conduct large scale 
oil-spill modeling for the Lebanon oil spill. They have investigated 
the stability of single and two relaxation time models and have 
included flux limiting interpolation techniques on the velocity in the 
Lattice Boltzmann to avoid oscillations. 
Keramea et al. [5] have provided an extensive review regarding 
oil-spill simulations created from marine traffic, petroleum 
production, or other sources. The models range from simplistic 
models to three-dimensional models, which can be coupled to 
meteorological, hydrodynamic, and wave models, able to forecast 
in high-resolution, the transportation of oil. They list eighteen, 
state-of-the-art models for oil-spill simulations and signify 
spreading, advection, diffusion, evaporation, emulsification, and 
dispersion as the most significant processes involved in oil-spill 
simulations. Some of the more important software are CDOG, 
OSCAR, OSIS, OILMAP, OILMAPDEEP, SIMAP, TAMOC, BLO-
SOM, MOTHY, OILTOX, MOHID, POSEIDONOSM, MEDS-LIK, 
GNOME, OILTRANS, OSERIT, MEDSLIK-II and OPENOIL.   
Li et. al. [6] utilizes a hydrodynamic model to analyze the oil-spill 
in the Luanjiakou District, near the Port of Yantai. In the 
mathematical model, they include the spreading of an oil slick on 
its edge, diffusion and drift, evaporation and spreading thickness 
of an oil slick in its interior, and the adsorption and emulsification 
near shorelines and islands. In another paper by Li et al.  [7], they 
have used a coupled numerical method for the direct simulation of 
shallow water dynamics and pollutant transport. For this purpose, 
the shallow water dynamics equations and the convection–
diffusion equations are solved using the Lattice Boltzmann 
method. In a paper by Zhang et al. [8], they use the Lattice 
Boltzmann method for oil-spill simulation by comparing the Navier-
Stokes model vs the advection-diffusion equation models. Ha et 
al. [9] have used the Lattice Boltzmann method to simulate the 
advection-diffusion of the spread of oil-slick on the sea. Li et al. 
[10] have used the D2Q5 and D2Q9 lattices to simulate the 
convection-diffusion equation for scalar transport. Banda et al. 
[11] have used the Lattice Boltzmann method to simulate pollutant 
dispersion by shallow water flows. The mass, momentum and 
transport equations are obtained from the nine-velocity 
distributions (D2Q9) of hydraulic flow and pollutant concentration 
variables for the Strait of Gibraltar. 
In a book by Fingas [12], oil spill modeling is introduced, where 
predictions are given for key processes such as evaporation, 
water-in-oil emulsification, spontaneous dispersion, and 
dissolution. Other processes such as photo-oxidation, 
sedimentation and oil-micromaterial interactions are also 

discussed. An important behavioral process is evaporation. Light 
oil can lose 30-60% of its mass in 2 days due to evaporation. 
Algorithms for calculating the amount of evaporation are 
summarized. Another important behavior is hydration. Oil can 
absorb water in one of five ways: as water soluble, no significant 
uptake or instability, entrained water, meso-stable emulsion or 
stable emulsion. The last three mechanisms are important as they 
have a large impact on the further behavior of the oil and have a 
large impact on countermeasures.  Fingas stresses also the effect 
of environmental factors such as weathering on the oil spill 
development, and the need for accurate oceanic currents, as well 
as environmental weather conditions.  
Given the increasing frequency and severity of oil spill incidents, 
there's an immediate need to improve the reliability and accuracy 
of the methods employed in oil spill detection and mapping [13-
19]. The complexities of detecting, monitoring, and categorizing oil 
spills in oceans and seas pose significant challenges [13-14]. 
Consequently, researchers have implemented machine learning 
algorithms to address these issues. Numerous machine learning 
approaches have been applied to detect oil spills, including 
decision trees [20], support vector machines [21-22], random 
forests [23-25], and artificial neural networks [26-30] Among these 
techniques, deep learning has garnered increased attention [30-
34]. Broadly classified as a subset of machine learning methods 
[35], deep learning distinguishes itself by learning directly from 
data instead of relying on predetermined features [32,34,35]. 
Recent advancements in deep learning architectures have 
significantly impacted the detection of oil spills [30,34]. Therefore, 
providing an overview of the current state and trends in using 
deep learning for oil spill detection and mapping becomes crucial 
to consolidate practical analytical methods and approaches for 
identification and monitoring. This effort contributes to the 
enhancement of knowledge and the evolution of this scientific 
domain [30-31]. 
 

III. METHODOLOGY 

A. Diffusion Equation 

We utilize the advection-diffusion equation as a cornerstone for 
modelling the dispersion of oil spills in marine environments. The 
advection-diffusion equation for sea water ad oil, represented as 

𝜕𝐶

𝜕𝑡
+ 𝑢 ∙ ∇𝐶 = 𝐷∆𝐶 

, where C denotes the concentration of oil at a given point in 
space and time, ∂C/∂t signifies the rate of change of 
concentration with respect to time, u represents the velocity field 
of the fluid, D is the diffusion coefficient, and ∆C represents the 
Laplacian operator acting on the concentration field, serves as the 
foundation for understanding the combined effects of advection 
and diffusion on the movement of oil in water. By accounting for 
both the transport of oil by fluid currents (advection) and its spread 
due to random molecular motion (diffusion), this equation enables 
us to predict the spatial and temporal evolution of oil slicks. Our 
methodology involves solving this partial differential equation 
numerically, considering environmental factors such as sea 
currents, to accurately simulate the complex dynamics of oil spill 
dispersion. 

B. Mathematical model 

The lattice Boltzmann method originated from the Ludwig 
Boltzmann’s kinetic theory of gases, which was proposed by 
James Clerk Maxwell and others between the 1860s to 1890s 
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[36]. The lattice Boltzmann method has garnered increasing 
interest since it emerged from lattice gas models in the late 1980s 
[37]. Additionally, the lattice Boltzmann method (LBM) with the 
multiple relaxation time (MRT) collision operator was developed 
by a group of researchers led by Prof. Shiyi Chen and Prof. Hao 
Chen, in the late 1990s. The LB-MRT method adjusts multiple 
relaxation time parameters to offer higher stability and accuracy 
than the LB-BGK model [38]. 

1) Equations 

The Lattice-Boltzmann-MRT Method consists of several main 
stages. These include the initialization of distribution functions, the 
streaming step, the collision step, and the applied boundary 
conditions. For the first step of initializing the distribution functions, 

the initial guess for the distribution function fi can be set to fi
eq

 at 

each lattice node: 

fi(x, t)  =  fi
eq
(x, t)  

The Equilibrium Distribution function for fluid simulations can be 
defined as follows: 

𝑓𝑖
𝑒𝑞
(𝐱, 𝑡) = 𝑤𝑖𝜌 (1 +

𝐮 ⋅ 𝐜𝑖
𝑐𝑠
2
+
(𝐮 ⋅ 𝐜𝑖)

2

2𝑐𝑠
4

−
𝐮 ⋅ 𝐮

2𝑐𝑠
2
) 

where 𝑤𝑖  are weights, 𝜌 is the local fluid density, 𝐮 is the fluid 
velocity, and 𝑐𝑠  is the speed of sound. Then, we calculate the 
macroscopic variables of fluid density and velocity, from the 
distribution functions. We proceed with updating the distribution 
functions by applying the collision operator at the collision step: 

fi
∗(x, t) =  fi(x, t) − M

−1 S M[fi(x, t) − fi
eq(x, t)] 

fi
∗(x, t) =  fi(x, t) − M

−1 S[mi − mi
eq
] 

, where mi are the moments calculated as follows:  
a. mi = Mfi , for i = [0,8] 

Regarding the D2Q9 model in the context of MRT, the M matrix is 
as follows: 

(

 
 
 
 
 
 

1 1 1 1 1 1 1 1 1
−4 −1 −1 −1 −1 2 2 2 2
4 −2 −2 −2 −2 1 1 1 1
0 1 0 −1 0 1 −1 −1 1
0 −2 0 2 0 1 −1 −1 1
0 0 1 0 −1 1 1 −1 −1
0 0 −2 0 2 1 1 −1 −1
0 1 −1 1 −1 0 0 0 0
0 0 0 0 0 1 −1 1 −1)

 
 
 
 
 
 

 

b.  

 
and the M-1 matrix is as follows: 

(

 
 
 
 
 
 
 

1/9 − 1/9 1/9 0 0 0 0 0 0
 1/9 −1/36 −1/18 1/6 −1/6 0 0 1/4 0
 1/9 −1/36 −1/18 0 0 1/6 −1/6 −1/4 0
 1/9 −1/36 −1/18 −1/6 1/6 0 0 1/4 0
 1/9 −1/36 −1/18 0 0 −1/6 1/6 −1/4 0
 1/9 1/18 1/36 1/6 1/12 1/6 1/12 0 1/4
 1/9 1/18 1/36 −1/6 −1/12 1/6 1/12 0 −1/4
 1/9 1/18 1/36 −1/6 −1/12 −1/6 −1/12 0 1/4
 1/9 1/18 1/36 1/6 1/12 −1/6 −1/12 0 −1/4)

 
 
 
 
 
 
 

 

c.  

 
The nine velocity directions in two-dimensions are given as 
follows: 

(
0 1 0 −1 0 1 −1 −1 1
0 0 1 0 −1 1 1 −1 −1

) 

 
And the weights associated with the above directions are: 

𝑤𝑖  =

{
 
 

 
 
4

9
,               𝑓𝑜𝑟 𝑖 = 0

1

9
, 𝑓𝑜𝑟 𝑖 = [1,4]

1

36
, 𝑓𝑜𝑟 𝑖 = [5,8]

    

 
Additionally, the streaming step takes place, where we propagate 
the distribution functions to neighbouring lattice nodes. The 
distribution functions at each lattice node fi(x, t)  move to 
adjacent nodes in the direction of the corresponding velocity 
vector ei, as shown in the following equation: 

fi(x + ei ∗ Δ t, t + Δt)  =  fi
∗(x, t)  

 
2) Reynolds number: bulk and dynamic viscosity 

The Reynolds number, denoted as Re, is a fundamental concept 
in fluid dynamics that becomes particularly pivotal when 
simulating phenomena such as oil spills. This dimensionless 
quantity is defined by the formula: Re=ρUL/μ, where ρ represents 
the fluid's density, U is the characteristic flow velocity, L refers to a 
characteristic length (size of the oil spill), and μ is the dynamic 
viscosity of the fluid. Understanding and accurately applying the 
Reynolds number in simulations is critical for several reasons, 
especially when dealing with the complex interactions between oil, 
water, and possibly other substances present in an oil spill 
scenario. 
The dynamic viscosity (μ) of a fluid is essentially a measure of its 
resistance to gradual deformation by shear or tensile stress. In the 
context of oil spills, this property significantly influences how the 
oil behaves once it enters the water. The higher the dynamic 
viscosity, the slower the oil tends to spread and mix with the 
water, affecting everything from the spill's initial dispersion to its 
long-term environmental impact. Bulk viscosity, on the other hand, 
is a measure of a fluid's resistance to compression. It becomes 
important in situations where the fluid undergoes rapid changes in 
volume or pressure. This can happen in turbulent conditions or 
when an oil spill interacts with obstacles, such as underwater 
topography or man-made structures. 
One of the key applications of the Reynolds number in oil spill 
simulations is its ability to indicate the transition between laminar 
and turbulent flow regimes. Laminar flows are smooth and orderly, 
typically occurring at lower Reynolds numbers, while turbulent 
flows are chaotic and mixed, occurring at higher Reynolds 
numbers. Understanding this transition is crucial for predicting the 
behavior of an oil spill. For example, in laminar flow conditions, oil 
may spread in a relatively uniform manner, allowing for more 
straightforward containment measures. In contrast, turbulent 
conditions can lead to unpredictable dispersion patterns, making 
containment and clean-up efforts more challenging. 
 

3) Conversion from physical to LB parameters and 

characteristic scales 

Translating physical parameters into their Lattice Boltzmann (LB) 
equivalents is a critical process in the simulation of oil spills, to 
ensure a realistic representation of actual phenomena. This 
conversion is fundamental in the LB method, where physical 
phenomena are modelled in a lattice framework rather than 
continuous space. 

http://www.jmest.org/
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In LB simulations, fluid properties like density and viscosity are 
expressed in lattice units, which necessitates their conversion 
from real-world values. The density in lattice units is normalized 
for simplicity. The viscosity is recalculated based on the lattice's 
relaxation time (τ) using the formula: 

μ = ρc2 ∗  (τ − 0.5)Δt 
where c represents the speed of sound within the lattice 
framework, and Δt is the time step used. This equation bridges 
the gap between the macroscopic physical properties and their 
mesoscopic representations within the LB simulation. It ensures 
that the fluid's behavior in the simulation mirrors real-world 
behavior. 
The scaling of velocity and length from their physical 
measurements to lattice units is also important for preserving the 
integrity of the simulation. This step involves adjusting the 
reference velocity and length scale from the real scenario to fit the 
discrete nature of the lattice framework, ensuring that the 
simulation remains faithful to physical reality. A crucial aspect of 
this conversion is maintaining the Mach number (Ma = U/c) 
significantly below 1, below 0.3, which is essential for the 
incompressibility assumption that underpins oil spills simulations. 
This assumption simplifies the simulations and is particularly 
relevant for flows at lower speeds, which are common in 
environmental and industrial applications. 
 

C. Methodology of LB – MRT 

 
1) Initial Conditions (Water and Crude Oil such as density 

and viscosity) 

The computational domain that has been simulated is of size 40 x 
40 LB nodes. The density of the crude oil was taken to be 800 
kgm-3 and of the sea water 1000 kgm-3. An inlet velocity of 0.1 ms-

1 for the incoming sea wave was introduced on the west boundary 
at the beginning of the simulation, assuming that the overall initial 
seawater velocity was zero.  
 

2) Collisions - Equilibrium Moments and Moments  

The moment vector m is as follows:  
d. 𝒎 =  (𝜌, 𝑒, 𝜀, 𝑗𝑥, 𝑞𝑥, 𝑗𝑦, 𝑞𝑦, 𝑃𝑥𝑥, 𝑃𝑥𝑦)

𝑇
  

The equilibrium moments 𝑚𝑖
𝑒𝑞

 are as follows: 

𝑚𝑖  =

{
 
 
 
 
 
 
 

 
 
 
 
 
 
 

𝜌 

−2𝜌 +
3(𝑗𝑥𝑗𝑥 + 𝑗𝑦𝑗𝑦)

𝜌

𝜌 +
3(𝑗𝑥𝑗𝑥 + 𝑗𝑦𝑗𝑦)

𝜌
𝑗𝑥
−𝑗𝑥
𝑗𝑦
−𝑗𝑦

(𝑗𝑥𝑗𝑥 − 𝑗𝑦𝑗𝑦)

𝜌

(𝑗𝑥𝑗𝑦)

𝜌

  

 
The nine moments are defined as ρ being the fluid density, e is 
the energy, ε  is related to the square of energy, jx is the 
momentum of the fluid in the x-direction, qx is moment related to 
flux in the x-direction, jy is the momentum in the y-direction, qy is 

the moment related to flux in the y-direction, Pxx is the moment 
related to the stress-rate tensor term in the xx-direction and Pxy is 
the stress-rate tensor term related to the xy-direction. Moments ρ, 
jx and jy are the conserved moments, whereas e, ε, qx, qy, Pxx, Pxy 
are the non-conserved moments.   
 
 

3) Relaxation Parameters  

The relaxation parameter of the sea water is calculated by:  

𝜔f  =  
1

3 ∗ νf ∗  
 Ct

Cl ∗  Cl
+ 
1
2

 , 

, where νf is the kinematic viscosity,  νf =1e-6 m2s-1.     
  Relaxation parameter for the crude oil is: 

𝜔a  =  
1

3 ∗ Da ∗  
 Ct

Cl ∗  Cl
+ 
1
2

 , 

, where Da is the diffusion coefficient of the crude oil, Da =1e-5 
m2s-1. 
 

D. Boundary Conditions and Source Terms 

Boundary conditions play a crucial role in ensuring both stability 
and precision in numerical solutions. In the Lattice Boltzmann 
method, it's essential to appropriately handle the discrete 
distribution functions at boundaries to accurately represent the 
macroscopic conditions of the fluid. For this purpose of oil-spill 
simulations, the outflow and Dirichlet inlet boundary conditions 
were used. 
 

1) Dirichlet boundary conditions 

In the context of oil spills, Dirichlet boundary conditions can be 
applied as inlet or no-slip conditions on solid surfaces to model 
the spread and behaviour of oil on the surface of water. In our oil 
spill simulations, the inflow boundary condition is crucial for 
realistically introducing sew water movement that will affect the 
conditions of an actual spill. By testing multiple inflow velocity 
conditions, it allows us for a detailed examination of how oil 
disperses and behaves in response to various environmental and 
physical sea wave input currents.  
 

2) Neumann Boundary Conditions 

Neumann boundary conditions are another type of boundary 
condition commonly used in mathematical modeling, including in 
the context of oil spills. Neumann boundary conditions specify the 
flux of a quantity across the boundary of the domain rather than 
directly specifying the value of the quantity at the boundary, as 
Dirichlet boundary conditions do and are used for slip boundary 
conditions. 
 

3) Outflow Boundary Conditions 

Outflow boundary conditions in oil spill simulations define how oil 
and contaminated water exit the computational domain, critically 
influencing the simulation's portrayal of oil movement and 
dispersion into larger bodies of water. Achieving realistic and 
reliable simulations hinges on correctly establishing these 
conditions, which govern the end-state dynamics of the modelled 
substances. The methodologies for implementing outflow 
boundary conditions can vary based on the simulation's specifics 
and the environmental characteristics being modelled. A common 
method involves specifying the gradients of variables such as 
velocity or oil concentration at the boundaries. This approach 
controls how these properties change as they transition out of the 

http://www.jmest.org/
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simulation domain, ensuring that their variation reflects realistic 
outflow dynamics. Alternatively, convective outflow conditions 
might be employed, where the properties of the fluids at the 
boundary are set in accordance with the flow characteristics at 
those points. Outflow conditions hold particular importance in oil 
spill simulations, especially in open water contexts. The modeling 
of these conditions directly affects predictions regarding the 
spread and dispersion of oil as it moves beyond the initially 
impacted area. For instance, in simulations where oil spills into an 
ocean, setting appropriate outflow conditions at the domain 
boundaries can realistically simulate the spread of oil into 
unaffected regions. Accurately modeling this spread is critical for 
assessing the potential reach of the oil, evaluating possible 
impacts on distant ecosystems, and aiding the planning of 
extensive response and mitigation efforts. Insights gained from 
these outflow boundary conditions can help predict long-term 
environmental effects and guide comprehensive cleanup 
operations across expansive oceanic regions. Consequently, 
outflow boundary conditions are integral to comprehensive oil spill 
modeling, effectively linking localized spill dynamics with broader 
environmental and ecological outcomes. This connection is vital 
for developing strategic responses and understanding the far-
reaching consequences of oil spills, thereby informing both 
immediate and long-term environmental protection efforts. 
 

4) Source terms – Mass Flow Rate 

We have successfully incorporated source terms in the LBM 
simulations including its formulation. In our case, the source term 
is the influx of crude oil in the sea water, originating from a 
spillage. We assume that an initial mass of oil is released and 
subsequently spreads and propagates due to diffusion and 
incoming advection sea waves respectively.  
Formulation of source term involves the incorporation of 
distribution function terms for all velocity directions of the flow rate, 
multiplied by the corresponding weights. Then, each distribution 
function of the source flow rate is added as a separate term to the 
post-collision distribution functions, prior to streaming. 
    The Mass Flow Rate in these simulations, has been assigned 
the value of 1 kgm-2s-1 per dt (chosen time-step) over an area of 
400 nodes, positioned in the centre of the domain, of size 20 x 20. 
 

E. LB Mesh - Partitioning  

The effectiveness of the LBM in parallel computing environments 
is affected by the efficiency of the mesh partitioning algorithms. 
For this purpose, we delve into the intricacies of a specialized 
parallel partition algorithm software tailored for LBM mesh 
simulations. Our mesh partitioning algorithm is based on splitting 
nodes of the parent partition into contiguous partitions. The 
algorithm also manages the communication for shared nodes by 
taking advantage of the properties of parallel computing. This is 
achieved by efficiently distributing nodes across different 
processors, ensuring seamless communication and optimizing 
computational efficiency. 
For our project, we utilized METIS, a set of partitioning graphs 
programs. The METIS algorithms are based on the multilevel 
recursive-bisection, multilevel k-way and multi-constraint 
partitioning schemes [39]. METIS partitions are better than those 
produced by spectral partitioning algorithms and faster than other 
widely used partitioning algorithms. METIS reduces the storage 
and computational requirements of sparse matrix factorization, 
and its elimination trees are suitable for parallel direct factorization. 

A commonly used mesh partitioning library of METIS is mpmetis. 
However, we identified limitations in existing partitioning library in 
balancing the load of the partitions, therefore alternatives were 
utilized. These include m2gmetis for graph creation, and graph 
partitioning METIS (gpmetis) for partitioning. 
The graph partitioning METIS (gpmetis) is a graph partitioning 
library that employs a multi-level approach [40]. The algorithm 
initially coarsens the graph, merging vertices to create a smaller 
representation, while preserving the structural properties of the 
graph. Then, a fast-partitioning algorithm is utilized to partition the 
coarsened graph. Additionally, it refines the partitioning by 
iteratively moving vertices between partitions to reduce the edge-
cut, which is the number of edges connecting different partitions. 
Finally, the refined partitioning is projected to the original graph. 
gpmetis utilizes sophisticated techniques to balance the load 
across partitions and minimize communication overhead, making 
it efficient for partitioning large graphs in various applications of 
computing and parallel processing. This strategic integration of 
tools optimizes the partitioning process, enabling efficient 
utilization of computational resources and accelerating simulation 
times. 
 

F. Parallel Libraries: MPI, NCCL, and Thrust  

Parallel computing libraries play a pivotal role in optimizing the 
performance and scalability of computational tasks in various 
domains, including high-performance computing (HPC), data 
analytics, and machine learning. The prominent parallel libraries 
employed in our project include Message Passing Interface (MPI), 
NVIDIA Collective Communications Library (NCCL), and Thrust 
(CUDA). 
 

1) Message Passing Interface (MPI) 
 

MPI is a standardized and widely used parallel programming 
model and library for distributed memory systems. It enables 
efficient communication and coordination among processes 
running on different compute nodes in a parallel computing 
environment. MPI provides a rich set of functionalities for point-to-
point and collective communication, allowing developers to design 
and implement parallel algorithms for diverse applications. In our 
project, MPI facilitates seamless communication and data 
exchange between computational nodes, thereby enabling the 
efficient distribution of workload and parallelization of tasks. 
 

2) NVIDIA Collective Communications Library (NCCL) 

NCCL is a high-performance communication library specifically 
designed for NVIDIA GPUs and multi-GPU systems. It offers 
optimized collective communication operations, such as all-gather, 
all-reduce, and broadcast, tailored for GPU-accelerated 
computations. NCCL leverages the underlying hardware 
architecture of NVIDIA GPUs to achieve high throughput and low 
latency communication, making it well-suited for e.g. deep 
learning training or GPU-accelerated applications. In our project, 
NCCL enhances the scalability and performance of parallel 
algorithms by efficiently utilizing the computational power of 
multiple GPUs within a distributed system. 
 

3) Thrust: 

Thrust is a parallel algorithms library of CUDA provided by NVIDIA, 
offering a collection of high-level abstractions and optimized 
primitives for parallel computing on GPUs. It simplifies the 
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development of parallel algorithms by providing familiar interfaces 
and idioms inspired by the C++ Standard Template Library (STL). 
While thrust does not directly handle communication between 
GPUs like NCCL, it supports a wide range of parallel operations, 
including sorting, scanning, and reduction, enabling developers to 
express complex parallel computations concisely and efficiently. 
In our project, thrust provides a high-level interface for expressing 
parallel algorithms on NVIDIA GPUs, leveraging its optimized 
primitives and algorithms to achieve superior performance and 
scalability. 
In summary, the integration of MPI, NCCL, and Thrust in our 
project empowers us to leverage parallel computing techniques 
effectively, optimizing performance, scalability, and efficiency 
across distributed and GPU-accelerated computing environments. 
The execution of parallel algorithms offers a significantly time-
efficient solution using computational advancements in our 
research endeavours. 
 

IV.  RESULTS/ DISCUSSION 

 
Figure 1. Density of the oil at the time of the deployment of the oil 
spill as a square. 
 
In the initial phase of the simulation, a square oil spill profile was 
introduced at the center of the domain, amid the advancing water 
wave traveling from left to right. As illustrated in Fig. 1, there was 
a notable spike in the total system density upon the deployment of 
the oil spill, signifying the infusion of oil into the previously uniform 
water medium. This abrupt density increase serves as a clear 
indication of the initiation of the oil spill event within the simulated 
environment. Subsequent dynamics observed in the simulation, 
characterized by the gradual dispersion of the oil spill towards the 
right boundary of the domain under the influence of the water flow, 
are mirrored in the evolving density patterns depicted in the 
subsequent figures. 
 

 
Figure 2. Oil density distribution after being transported by the 
wave and undergoing diffusion, resulting in its radial spread from 
the center 

 
Figure 3. The transformation of the oil density profile from a 
square shape to a more circular and slightly elliptical distribution 
as it travels towards the right boundary. This evolution signifies 
the spreading and smoothing of the oil spill due to the combined 
effects of advection and diffusion processes. 
 
As the simulation progresses, we witness the interaction between 
fluid dynamics and diffusion, influencing the movement and 
diffusion of the oil density within the domain. Initially characterized 
by a well-defined square profile, depicted in Fig. 2, the oil density 
gradually diffuses and spreads under the influence of the flowing 
water. This phenomenon, governed by the advection-diffusion 
equation solved in our model, is indicative of the lateral spread of 
the oil density towards the domain's right boundary. Figure 3 
illustrate the evolving density distribution as the oil propagates 
from left to right. 

http://www.jmest.org/


Journal of Multidisciplinary Engineering Science and Technology (JMEST) 

ISSN: 2458-9403 

Vol. 11 Issue 4, April - 2024  

www.jmest.org 

JMESTN42354378 16819 

Throughout the simulation duration, the combined effects of 
advection and diffusion play pivotal roles in shaping the spatial 
evolution and spreading dynamics of the oil spill. The advection-
driven movement of the oil density, coupled with diffusion-induced 
homogenization, leads to a gradual dispersion and attenuation of 
the initially well-defined oil profile. Such behaviour is consistent 
with the diffusion equation and reflects the expected outcome in 
real-world oil spill scenarios. Importantly, the profile of the oil 
density becomes circular and then slightly elliptical during its 
propagation to the right, a phenomenon evident from the observed 
patterns in Fig. 3. By accurately simulating these phenomena, our 
model demonstrates its capability to capture the intricacies of oil 
spill dynamics and provides valuable insights for understanding 
and managing such environmental events effectively. 
 

V.  CONCLUSIONS/FUTURE WORK 

A comprehensive simulation framework was developed capable of 
predicting the behaviour of oil spills with a high degree of 
accuracy. Throughout this project, we have leveraged a 
combination of computational fluid dynamics (CFD) methods to 
create a versatile and robust modeling platform. By integrating 
techniques such as the Lattice Boltzmann method with Multiple 
Relaxation Time (LB-MRT), we have achieved a level of 
sophistication that allows for the prediction of oil spill dynamics 
under varying environmental conditions.  
Summing up, state-of-the-art methods, algorithms and techniques 
were implemented in KYAMOS software for simulating the oil 
spills. The LB-MRT model was implemented in software 
programming language C++ and was validated against well-
known benchmarks. After being validated, it was applied to a real 
oil-spill simulation model. Having validated the oil-spill model, the 
solver was converted to state-of-the-art, CUDA aware MPI 
protocol for increased speed and accuracy. In future work, 
multiple results will be produced and used as input to a deep-
learning process for training and validation of the AI model, that 
will be fine-tuned to instantly predict oil-spill simulations.   
Moreover, this project represents a significant step forward in the 
ongoing effort to develop proactive measures for preventing and 
mitigating the impact of oil spills. By providing decision-makers 
with timely and accurate information, our simulations empower 
them to make informed choices that can minimize harm to 
ecosystems and coastal communities. Utilizing the above 
methods, we have achieved a model that not only captures the 
complex fluid dynamics involved but also provides real-time 
insights crucial for effective decision-making in spill response 
efforts. 
 

VI. ACKNOWLEDGMENT 

This work was co-funded by the European Regional Development 
Fund of the European Union and the Republic of Cyprus through 
the Research and Innovation Foundation (Project: CONCEPT-
OILSPILLS/0722/0066). 

 

REFERENCES 

[1] “Deepwater Horizon – BP Gulf of Mexico Oil Spill | US 
EPA.” US EPA, 14 Aug. 2023, 
www.epa.gov/enforcement/deepwater-horizon-bp-gulf-
mexico-oil-

spill#:~:text=On%20April%2020%2C%202010%2C%20the,
of%20marine%20oil%20drilling%20operations. 

[2] Z. Zhang, M. E. Kress, and T. Schäfer, "A lattice boltzmann 
advection diffusion model for ocean oil spill surface 
transport prediction," in 2020 Winter Simulation Conference 
(WSC), 2020, pp. 680-691: IEEE. 

[3] Z. Zhang, T. Schaefer, and M. E. Kress, "GNOME and 
LBM Model Evaluation on Ocean Oil Spill Far-Field 
Impacts to Highly Sensitive Areas," arXiv preprint 
arXiv:2105.05193, 2021. 

[4] A. Maslo, J. Panjan, and D. Žagar, "Large-scale oil spill 
simulation using the lattice Boltzmann method, validation 
on the Lebanon oil spill case," Marine pollution bulletin, vol. 
84, no. 1-2, pp. 225-235, 2014. 

[5] P. Keramea, K. Spanoudaki, G. Zodiatis, G. Gikas, and G. 
Sylaios, "Oil Spill Modeling: A Critical Review on Current 
Trends, Perspectives, and Challenges," Journal of Marine 
Science and Engineering, vol. 9, no. 2, p. 181, 2021. 

[6] D. Li, X. Tang, Y. Li, X. Wang, and H. Zhang, 
"Mathematical Modeling of Marine Oil Spills in the 
Luanjiakou District, near the Port of Yantai," Discrete 
Dynamics in Nature and Society, vol. 2018, p. 2736102, 
2018/01/17 2018. 

[7] Y. Li and P. Huang, "A coupled lattice Boltzmann model for 
the shallow water‐contamination system," International 
journal for numerical methods in fluids, vol. 59, no. 2, pp. 
195-213, 2009. 

[8] Z. Zhang, T. Schaefer, and M. E. Kress, "9.5 LATTICE 
BOLTZMANN METHOD FOR OCEAN OIL SPILL 
PROPAGATION MODEL AND SIMULATION." 

[9] S. Ha, N. Ku, and K.-Y. Lee, "Lattice Boltzmann Simulation 
For the Prediction of Oil Slick Movement And Spread In 
Ocean Environment," in The Twenty-second International 
Offshore and Polar Engineering Conference, 2012, vol. All 
Days, ISOPE-I-12-155. 

[10] L. Li, R. Mei, and J. F. Klausner, "Lattice Boltzmann 
models for the convection-diffusion equation: D2Q5 vs 
D2Q9," International Journal of Heat and Mass Transfer, 
vol. 108, pp. 41-62, 2017. 

[11] M. K. Banda and M. Seaid, Lattice Boltzmann simulation 
for shallow water flow applications. INTECH Open Access 
Publisher, 2012. 

[12]  Fingas, Mervin. Oil Spill Science and Technology. Gulf 
Professional Publishing, 2016. 

[13]  Fingas, M.; Brown, C. Review of Oil Spill Remote Sensing. 
Mar. Pollut. Bull. 2014, 83, 9–23. 

[14] Fingas, M.; Brown, C.E. A Review of Oil Spill Remote 
Sensing. Sensors 2018, 18, 91.  

[15]  Alpers, W.; Holt, B.; Zeng, K. Oil Spill Detection by Imaging 
Radars: Challenges and Pitfalls. In Proceedings of the 
2017 IEEE International Geoscience and Remote Sensing 
Symposium (IGARSS), Fort Worth, TX, USA, 23–28 July 
2017; IEEE: Piscataway, NJ, USA, 2017; pp. 1522–1525. 

http://www.jmest.org/


Journal of Multidisciplinary Engineering Science and Technology (JMEST) 

ISSN: 2458-9403 

Vol. 11 Issue 4, April - 2024  

www.jmest.org 

JMESTN42354378 16820 

[16]  Topouzelis, K.N. Oil Spill Detection by SAR Images: Dark 
Formation Detection, Feature Extraction and Classification 
Algorithms. Sensors 2008, 8, 6642–6659. 

[17] Brekke, C.; Solberg, A.H.S. Oil Spill Detection by Satellite 
Remote Sensing. Remote Sens. Environ. 2005, 95, 1–13. 

[18] Gens, R. Oceanographic Applications of SAR Remote 
Sensing. GIsci. Remote Sens. 2008, 45, 275–305. 

[19] Leifer, I.; Lehr, W.J.; Simecek-Beatty, D.; Bradley, E.; 
Clark, R.; Dennison, P.; Hu, Y.; Matheson, S.; Jones, C.E.; 
Holt, B.; et al. State of the Art Satellite and Airborne Marine 
Oil Spill Remote Sensing: Application to the BP Deepwater 
Horizon Oil Spill. RemotemSens. Environ. 2012, 124, 185–
209. 

[20] Topouzelis, K.N.; Psyllos, A. Oil Spill Feature Selection and 
Classification Using Decision Tree Forest on SAR Image 
Data. ISPRS J. Photogramm. Remote Sens. 2012, 68, 
135–143. 

[21] Li, K.; Yu, H.; Xu, Y.; Luo, X. Detection of Marine Oil Spills 
Based on HOG Feature and SVM Classifier. J. Sens. 2022, 
2022, 3296495. 

[22] Dong, Z.-M.; Guo, L.-X.; Zeng, J.-K.; Zhou, X.-B. Oil-Spills 
Detection in Net-Sar Radar Images Using Support Vector 
Machine. Open Autom. Control. Syst. J. 2015, 7, 1958–
1962. 

[23] Conceição, M.R.A.; Mendonça, L.F.F.; Lentini, C.A.D.; 
Lima, A.T.C.; Lopes, J.M.; Vasconcelos, R.N.; Gouveia, 
M.B.; Porsani, M.J. Sar Oil Spill Detection System through 
Random Forest Classifiers. Remote Sens. 2021, 13, 2044. 

[24] Lentini, C.A.D.; de Mendonça, L.F.F.; Conceição, M.R.A.; 
Lima, A.T.C.; de Vasconcelos, R.N.; Porsani, M.J. 
Comparison between Oil Spill Images and Look-Alikes: An 
Evaluation of SAR-Derived Observations of the 2019 Oil 
Spill Incident along Brazilian Waters. An. Acad. Bras. 
Cienc. 2022, 94, 1. 

[25] Vasconcelos, R.N.; Lentini, C.A.D.; Cunha Lima, A.T.; 
Mendonça, L.F.F.; Miranda, G.V.; Cambuí, E.C.B.; Costa, 
D.P.; Duverger, S.G.; Gouveia, M.B.; Lopes, J.M.; et al. Oil 
Spill Detection Based on Texture Analysis: How Does 
Feature Importance Matter in Classification? Int. J. Remote 
Sens. 2022, 43, 4045–4064. 

[26] Del Frate, F.; Petrocchi, A.; Lichtenegger, J.; Calabresi, G. 
Neural Networks for Oil Spill Detection Using ERS-SAR 
Data. IEEE Trans. Geosci. Remote Sens. 2000, 38, 2282–
2287. 

[27] Krestenitis, M.; Orfanidis, G.; Ioannidis, K.; Avgerinakis, K.; 
Vrochidis, S.; Kompatsiaris, I. Oil Spill Identification from 
Satellite Images Using Deep Neural Networks. Remote 
Sens. 2019, 11, 1762. 

[28] Garcia-Pineda, O.; MacDonald, I.R.; Li, X.; Jackson, C.R.; 
Pichel, W.G. Oil Spill Mapping and Measurement in the 
Gulf of Mexico with Textural Classifier Neural Network 
Algorithm (TCNNA). IEEE J. Sel. Top. Appl. Earth Obs. 
Remote Sens. 2013, 6, 2517–2525. 

[29] Singha, S.; Bellerby, T.J.; Trieschmann, O. Satellite Oil 
Spill Detection Using Artificial Neural Networks. IEEE J. 
Sel. Top. Appl.Earth Obs. Remote Sens. 2013, 6, 2355–
2363. 

[30] Yang, Y.-J.; Singha, S.; Mayerle, R. A Deep Learning 
Based Oil Spill Detector Using Sentinel-1 SAR Imagery. 
Int. J. Remote Sens. 2022, 43, 4287–4314. 

[31] Al-Ruzouq, R.; Gibril, M.B.A.; Shanableh, A.; Kais, A.; 
Hamed, O.; Al-Mansoori, S.; Khalil, M.A. Sensors, 
Features, and Machine Learning for Oil Spill Detection and 
Monitoring: A Review. Remote Sens. 2020, 12, 3338. 

[32] Shaban, M.; Salim, R.; Abu Khalifeh, H.; Khelifi, A.; 
Shalaby, A.; El-Mashad, S.; Mahmoud, A.; Ghazal, M.; El-
Baz, A. A Deep-Learning Framework for the Detection of 
Oil Spills from SAR Data. Sensors 2021, 21, 2351. 

[33] Jha, M.N.; Levy, J.; Gao, Y. Advances in Remote Sensing 
for Oil Spill Disaster Management: State-of-the-Art Sensors 
Technology for Oil Spill Surveillance. Sensors 2008, 8, 
236–255. [CrossRef] 

[34] Huby, A.A.; Sagban, R.; Alubady, R. Oil Spill Detection 
Based on Machine Learning and Deep Learning: A Review. 
In Proceedings of the 2022 5th International Conference on 
Engineering Technology and its Applications (IICETA), Al-
Najaf, Iraq, 31 May–1 June 2022; IEEE: Piscataway, NJ, 
USA, 2022; pp. 85–90. 

[35] Cresson, R. Deep Learning for Remote Sensing Images 
with Open Source Software, 1st ed.; CRC Press: Boca 
Raton, FL, USA, 2020; Volume 1, ISBN 9781003020851. 

[36] Bao, Yuanxun & Meskas, J., Lattice Boltzmann Method for 
Fluid Simulations, ResearchGate, 2014 

[37]   T. Krüger et al. The Lattice Boltzmann Method Principles 
and Practice, Springer, Graduate Texts in Physics, 2016.] 

[38]   Shan, Xiaowen, and Hudong Chen. “Lattice Boltzmann 
Model for Simulating Flows With Multiple Phases and 
Components.” Physical Review E, vol. 47, no. 3, American 
Physical Society (APS), Mar. 1993, pp. 1815–19. Crossref, 
https://doi.org/10.1103/physreve.47.1815.] 

[39]   METIS - Serial Graph Partitioning and Fill-reducing Matrix 
Ordering, Karypis Lab. 
glaros.dtc.umn.edu/gkhome/metis/metis/overview.] 

[40]   Gpmetis: Partitions a Graph Into a Specified Number of 
Parts.  Metis Commands, Man Pages,  ManKier. 
www.mankier.com/1/gpmetis 

 

 

http://www.jmest.org/

