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 Abstract: In the design of equipment's overall 

assembly process, traditional approaches utilizing 
two-dimensional process cards fail to provide 
intuitive descriptions of the assembly process and 
are incapable of automatically generate assembly 
processes based on three-dimensional models, 
resulting in inadequate guidance for assembly 
work on the assembly site. To address this issue, 
a method that combines rigid body kinematics 
with the reinforcement learning Q-Learning 
algorithm has been proposed. This method 
automatically extracts assembly information from 
equipment models and plans the optimal 
assembly path. Furthermore, an assembly path 

planning plugin has been developed within the 
Creo software system. This plugin integrates 
virtual assembly technology to visualize the 
assembly process, thereby enhancing the 
efficiency and accuracy of the process design. 

I. INTRODUCTION  

Traditional two-dimensional process cards are 
increasingly insufficient to meet modern production 
demands, prompting researchers to urgently seek an 
efficient and precise method for automated assembly. 
Virtual assembly, a process that utilizes computer 
technology for product design and manufacturing, 
enables rapid simulation of product design and 
manufacturing processes. This approach reduces trial 

and adjustment times, thereby improving production 
efficiency 

[1]
. Many experts at home and abroad have 

conducted research in this area and have achieved 
certain results. Michael Grieves proposed a product 
lifecycle management method based on virtual 
assembly, which can help companies better manage 
and optimize the entire product lifecycle 

[2]
. Wu Lingling 

developed a virtual assembly system based on VR 
virtual reality technology, which improves the 
interactivity and efficiency of virtual assembly through 
VR immersive simulation of the assembly process 

[3]
. 

Zhang Peng explored a virtual assembly path planning 
technology for robotic arms based on Solid Works, 
reducing the debugging work of the robotic arm and 
improving the final product quality 

[4]
. 

Based on these studies, the characteristics of 
products based on Creo assembly design are 
analyzed, and a functional module for automatically 
generating assembly processes and virtual assembly 
based on Creo assembly files is proposed. This 
method is based on Creo's overall assembly virtual 
assembly technology, using MFC programming 
technology and the Creo/TOOLKIT secondary 
development package under Creo, to simulate 
assembly routes and detect assembly collisions in 
components of the Creo assembly, finding the optimal 
assembly path to ensure the rationality and feasibility 
of the assembly process. 

Assembly information acquisition: 

Before simulating the assembly of a product, it is 
essential to identify the parent assembly to which the 
components belong, the assembly relationship 
information, and the posture information. These three 
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types of assembly information correspond to the 
hierarchical relationship information, constraint 
information, and position/posture information of the 
components. The extraction of these three types of 
assembly information is mainly achieved by traversing 
the model feature tree structure: the hierarchical 
relationship information can be obtained step by step 
through a top-down traversal, the posture information 
can be obtained from the component information, and 
the constraint information can be obtained under the 
assembly. 

A. Extraction of BOM Information Hierarchy and Pose 
Relationships 

After the product design is completed, a 
corresponding three-dimensional model is generated 
within the Creo system. This model contains features, 
and from this feature tree, the design Bill of Materials 
(BOM) can be extracted. After the design BOM is 
extracted, it is combined with supporting information to 
generate the process BOM. Finally, the design BOM 
and the process BOM are saved to the database. 

B. Extraction of Hierarchy and Pose Relationships 

Before conducting the simulated assembly, the 
components destined for assembly must be integrated 
into their respective higher-level assemblies and 
positioned to engage in constraint formation. 
Therefore, it is necessary to obtain the hierarchical 
relationships and pose information of the components. 

In Creo, the hierarchical relationships of assemblies 
are expressed using a structure tree. As shown in 
Figure 1, the lower-level feature relationships in Creo 
are represented by feature numbers. In an assembly, 
the same component may participate in multiple 
assemblies, such as a standard part being involved in 
the installation of multiple devices. Although these 
standard parts correspond to a single physical object, 
they need to be distinguished during assembly. At this 
time, feature IDs are introduced for differentiation. In 
Figure 2, the feature ID table for component A is 
num=3, table[0]=1, table[1]=5, table[2]=8

[5].
 

The pose information of components is 
encapsulated in a 4x4 matrix, which includes the 
translation and rotation information of the component 
relative to the origin. These information serve as 
important guidance for virtual path planning. 

 

Fig. 1.  Tree hierarchy of an assembly composition 

(The ○ symbol represents a component and the □ 
symbol represents a part) 

To obtain the hierarchical relationships of 
components, it is necessary to traverse all components 
starting from the top level of the assembly. The 
process and relevant APIs for extracting model 
hierarchy relationships and pose information are 
shown in Figure 2. The specific process is as follows: 

Use the pfcGetProESession function under OTK to 
obtain the current session. 

Obtain the current model pointer through the 
current session. The model pointer class contains 
functions for retrieving model information and 
properties. For example, these functions can be used 
to retrieve basic information such as the current model 
name, model path, and model pose matrix. Use the 
GetPosition function to retrieve the current model's 
pose matrix. 

Use the GetType function under the model pointer 
to determine the current model type. If the current 
component is a part, retrieve basic information about 
the model using the model pointer. If it is an assembly, 
traverse the assembly and extract information. 

 

Fig. 2. Model hierarchy extraction process and 
related APIs 

After extracting the model hierarchy information, 
the model hierarchy information will be associated with 
the product compatibility information imported when 
creating a new product, generating the final process 
BOM (Bill of Materials). This BOM is used for further 
process file design and displayed in the product 
structure tree. 

C.  Extraction of Assembly Relationships 

Assembly relationships encompass the constraint 
information of components relative to reference 
features, including types such as coincidence, 
alignment, distance, and tangency, reflecting the 
constraint relationships between components and 
references. By moving components to determined 
positions based on hierarchical relationships and pose 
information, assembly relationships are established 
between components and references, completing the 
assembly process. 

For assembly information within the assembly, 
simply add assembly information extraction methods to 
the next step of pfcComponentFeat_ptr in Figure 3. 

Under the traversed subcomponent features of the 
assembly, obtain the array of constraint features for 
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the component, iterate through the array of constraint 
features, and obtain the constraint pointer. Using the 
constraint pointer function, obtain the constraint type 
and references of the assembly, as well as references 
of the assembly component. Convert the two 
constraints into model object pointers, and obtain their 
parent model pointers, thereby completing the 
extraction of constraint types and reference 
information in the constraint information. The 
extraction process of assembly information and the 
involved APIs are shown in Figure 4. 

 

Fig. 3. Extraction process of assembly information 

II. COMPONENT POSITION TRANSFORMATION AND 

INTERFERENCE DETECTION 

After the design personnel place the component to 
be assembled at the starting point, the plugin can 
obtain its pose based on the corresponding OTK API. 
The starting and ending poses of the component to be 
assembled are known. To avoid interference during 
the translational and rotational motion of the 
component and continuously approach the final 
assembly position, the motion of the component needs 
to be differentiated to ensure smooth and continuous 
movement. The pose information of the component is 
a 4X4 numerical matrix, and its motion can introduce 
matrix transformations. Sequentially recording the 
pose information of each step in order to guide the 
completion of virtual assembly without interference. 

A. Representation of Component Poses in 
Assemblies 

In Creo assemblies, each component participating 
in the assembly within the assembly structure has its 
corresponding pose matrix. The pose matrix reflects 
the position and orientation of the component's own 
coordinate system relative to the assembly coordinate 
system. 

B.  Creation of Component Assembly Constraints and 
Assembly Interference Detection 

For aligning the component's pose with the target 
pose, assembly constraints can be effectively 
established using the OTK C++ library provided by 

Creo during the final continuous pose transformation. 
The process is as follows: 

Create a constraint group using the static method 
Create of pfcComponentConstraints. 

Use the pfcCreateModelItemSelection method to 
obtain the assembly features of the component to be 
assembled and the assembly features on the 
assembly. 

Use the static method Create of the 
pfcComponentConstraint class to create a constraint, 
specifying the type according to the actual constraint. 

Use SetAssemblyReference to assign the obtained 
two assembly features to the created constraint. 

Add the constraint to the constraint group created 
earlier, apply the constraint group using the 
SetConstraints method, and then refresh the model 
display to complete the assembly. If there are multiple 
constraints, add them to the constraint group and then 
apply the constraint group. 

Interference detection is crucial in path planning, as 
it largely determines the outcome of the entire process. 
In Creo, interference detection is divided into two 
types: static global interference detection and real-time 
dynamic collision detection. 

Static global interference detection is implemented 
when components within the assembly are not being 
manipulated. It detects interference among all 
components in the assembly. Dynamic collision 
detection, on the other hand, detects real-time 
interference only between the dragged components 
and other components in the assembly. 

Comparing the two detection methods, because the 
transformation of component poses is not continuous 
motion, collision detection is not applicable. Therefore, 
static global interference detection is performed. This 
method utilizes ProFitGlobalinterferenceCompute to 
calculate all interference data within the assembly, 
thereby obtaining the interference status information of 
the current assembly components. The process of 
interference detection is illustrated in Figure 4. 

 

Fig. 4. Flow chart of Interference Detection Algorithm 

http://www.jmest.org/
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III. Q-LEARNING BASED ASSEMBLY PATH PLANNING 

ALGORITHM 

Automatically arrange the components involved in 
assembly before and after according to the sequential 
order of process steps and procedures in the process 
document. Then, combined with pose transformation 
matrices and interference detection technology, and 
utilizing Q-learning algorithm to plan paths, it is 
possible to achieve the planning of component 
assembly paths and create a complete simulation 
video of the assembly process. 

A. Q-Learning Algorithm 

The Q-learning algorithm is a classic algorithm in 
reinforcement learning, commonly used for path 
planning problems in complex environments. The 'Q' 
value, denoted as Q(s,a), signifies the expected 
reward associated with taking a specific action within a 
given state. When an agent takes an action from a 
certain state, the environment provides corresponding 
feedback in terms of a reward. The essence of this 
algorithm lies in creating a Q_Table, a matrix of 
expected rewards, that archives Q-values for each 
unique state-action combination. Then, actions that 
lead to maximum rewards are selected based on these 
Q-values. The rows of the Q_Table represent states, 
and the columns represent actions [8]. Figure 5 
illustrates the process of maintaining the Q_Table 
within the context of this algorithm. 

The training formula for the Q-learning algorithm 
can be expressed as follows: New estimate ← Old 
estimate + Step size * [Target - Old estimate]. In 
mathematical terms, it can be represented as follows: 

Q(s, a) ← Q(s, a) + α(R(s, a) + γmax
a

Q(S′, a) − Q(s, a)) 

In this equation, α represents the update step size, 

which ranges from α ∈ (0,1] and indicates the degree 
of influence of feedback on the current policy. R(s,a) 
denotes the reward function, typically represented in 
the form of a reward table. γ is the discount factor, 
indicating the importance of future rewards. In 
reinforcement learning algorithms, the discount factor 
helps avoid infinite loops when calculating rewards. 
max𝑎 𝑄(𝑆

′, 𝑎)  represents the potential maximum 
expected reward of the state after executing the action. 
After each action is executed, Q(s,a) is calculated and 
updated in the Q_Table. Through continuous 
execution of actions and updating the Q-value table, 
the values of Q(s,a) in the table may vary significantly 
and tend to follow certain patterns after a certain 
number of training iterations. 

 

Fig. 5. The flow of the Q-learning algorithm to 
maintain the Q_Table 

B. Algorithm Environment Modeling 

Given that the Q-learning algorithm is contingent on 
environmental factors, it is imperative to conduct an 
environmental analysis and establish a model prior to 
problem-solving 

[9]
. 

The Q-learning algorithm is based on states and 
actions, and during execution, immediate factors when 
executing actions are not considered. Therefore, in a 
narrow sense, it can be viewed as a nonlinear solving 
process. Creo, a three-dimensional software suite, 
offers a virtual space akin to real-world conditions, 
facilitating spatial modeling within its environment. The 
assembly process is simplified as follows: the 
assembly space is discretized into a grid, parts are 
represented as points, and motion changes are 
characterized by the pose transformations of these 
points, while rotational transformations are ignored. 
Considering the worst-case scenario for positions, the 
assembly space is gridified into an M×M×M three-
dimensional array model, with each point being 
assigned a reward corresponding to its position, 
completing the virtualization of the assembly process. 

The gridification of the assembly space is shown in 
Figure 6, where the start and end points of the 
assembly process are represented by startP and 
endP, respectively. Except for graphite points on the 
grid, every other point is represented by stepP. In the 
process of gridification, for each segment on the line 
connecting startP and endP, planes are generated at 
intervals of SegDistance to serve as square spatial 
partitioning planes. For each partitioning plane, the 
side length SegSideLength is chosen as the maximum 
value between the diagonal distance of the assembly 
body's bounding box and the distance between the 
assembly body and the part to be assembled. 
SegDistance is the partitioning distance. If the final 
segment distance to reach the end point is not equal to 

http://www.jmest.org/
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SegDistance, the last partitioning plane passes directly 
through the end point. Gridification is then performed 
on each partitioning plane, with UnitD as the size of 
the grid unit. During the algorithm execution process, 
both SegDistance and UnitD affect the speed of the 
algorithm and the final generated assembly space. 
Therefore, careful consideration is required when 
selecting them. Here, UnitD is chosen as half of the 
diagonal distance of the bounding box of the part to be 
assembled, and SegDistance is chosen as the integer 
part of the diagonal distance of the bounding box. In 
Figure 10, UnitD is 10, and SegDistance is 20. 

 

Fig. 6. Schematic diagram of assembly space grid 

The movement of parts in the grid space is only 
specified by their movement on the current partitioning 
plane and the movement towards the next partitioning 
plane. There are 26 directions of displacement for the 
three-dimensional model in the grid space, and 
backward movement of the model is not allowed. 
Therefore, there are 17 actions for the movement of 
parts in the grid. 

C. Selection of Algorithm Parameters and Specific 
Steps 

To elucidate the algorithm more effectively, we 
initially define key variables, as shown in Table I 

TABLE I.  ALGORITHM KEY VARIABLES 

Parameter Name 
Parameter 

Size 
Parameter Meaning 

Move Direction i 1-17 
Movement direction for the 

next action of the 
component 

Algorithm Update 
Step Size α 

0.8 
Magnitude of the influence 

of the next state on the 
current state (0~1) 

Algorithm 
Discount Factor γ 

0.8 
Expectation for the future 

(0~1) 
Greedy 

Coefficient greedy 
0.2 

Avoiding falling into local 
optima 

Training Times 5,000 
Number of times the 
algorithm is trained to 

obtain the final Q_Table 

 

With the greedy coefficient set at 0.2, Q-learning is 
essentially a greedy algorithm. However, by 
consistently selecting actions with the highest 
expected rewards, the algorithm risks not exploring 

other potential actions during training, potentially 
becoming trapped in a "local optimum" and failing to 
achieve the desired outcome. Therefore, by using the 
greedy coefficient, components have a probability of 
taking the optimal action and also a certain probability 
of exploring new paths. 

The algorithm follows these specific steps: 

Step 1: Obtain the components to be assembled in 
the current process and their corresponding assembly 
bodies based on the contents of the manual, open 
them, and move the components to be assembled to 
their assembly starting point. 

Step 2: Get the assembly start point (startP) and 
assembly end point (endP) for the components, 
calculate the distance between the start and end 
points, as well as the diagonal distance of the 
assembly body bounding box to determine the side 
length of the cutting plane (SegSideLength), cutting 
plane distance (SegDistance), and grid cell size 
(UnitD). 

Step 3: Based on the cutting plane side length 
(SegSideLength), number of cutting planes, and grid 
cell size (UnitD), establish the Q_Table matrix 
Q[x][y][z][i], and then establish the reward matrix 
R[x][y][z][i]. Perform interference detection for all 
positions in the grid. If interference is detected, set the 
reward for actions leading to that point as -100 to 
prevent the algorithm from considering this point. After 
interference detection, refine the reward matrix based 
on displacement distance and whether it moves 
towards the next cutting plane. 

Step 4: Enter the training phase. During training, 
each grid that the components pass through receives a 
reward from the environment as the score for that 
position. Perform 5,000 training iterations to obtain the 
final Q_Table matrix. 

Step 5: Retrieve the optimal path route from the 
Q_Table, move the components accordingly, and 
record the animation. 

IV. RESULTS PRESENTATION 

For instance, in the assembly scenario depicted in 
Figure 7, the internal structure of a product's box is 
illustrated, with red highlighting the already assembled 
components. The next step involves assembling the 
blue sensor bracket into the box. For some reasons, 
the initial position of the sensor bracket is fixed. If 
assembled directly in a straight line, it will collide with 
other components. The blue polyline delineates the 
final assembly path, with the user interface on the left 
displaying the critical nodes of this trajectory. 

http://www.jmest.org/
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Fig. 7. Sensor bracket assembly path demonstration 

V. CONCLUSION 

This paper focuses on the assembly phase within 
the production process, integrating Creo 3D software 
and secondary development technologies to extract 
assembly model information. By employing 
reinforcement learning algorithms, the paper actualizes 
the simulation and optimization of the assembly path, 
thereby improving the efficiency and accuracy of the 
assembly phase in the product manufacturing process. 
The plane segmentation method, which employs an 
end-to-end connection approach, can effectively 
reduce the error rate of interference detection. The 
integration of the Q-learning algorithm facilitates the 
planning of a more rational assembly path, offering a 
solid foundation for the actual assembly process. 
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