
Journal of Multidisciplinary Engineering Science and Technology (JMEST)

ISSN: 2458-9403

Vol. 11 Issue 4, April - 2024

www.jmest.org

JMESTN42354365 16752

 Enhancing Creo's Assembly Process Through
Virtual Simulation And Q-Learning Algorithm

WU Hongyu
School of Mechanical Engineering, University of

Shanghai for Science and Technology
Shanghai 200093,China

15534411086why@sina.com

NI Jing
Business school, University of Shanghai for

Science and Technology
Shanghai 200093, China

Nijin501@126.com

MIAO Tao
School of Mechanical Engineering, University of

Shanghai for Science and Technology
Shanghai 200093, China
miao010126@163.com

ZHANG Sheng
School of optical-Electrical and Computer

Engineering, University of Shanghai for Science and
Technology

Shanghai 200093, China
zhangsheng@usst.edu.cn

LI Shuai

DFH SATELLITE CO.LTD
Beijing 10089, China

ls0387@163.com

ZHONG Liangwei
School of Mechanical Engineering, University of

Shanghai for Science and Technology
Shanghai 200093,China

zlvcad@126.com

ZHANG Peng

School of Mechanical Engineering, University of
Shanghai for Science and Technology

Shanghai 200093, China
hefengzxp@163.com

 Abstract: In the design of equipment's overall

assembly process, traditional approaches utilizing
two-dimensional process cards fail to provide
intuitive descriptions of the assembly process and
are incapable of automatically generate assembly
processes based on three-dimensional models,
resulting in inadequate guidance for assembly
work on the assembly site. To address this issue,
a method that combines rigid body kinematics
with the reinforcement learning Q-Learning
algorithm has been proposed. This method
automatically extracts assembly information from
equipment models and plans the optimal
assembly path. Furthermore, an assembly path

planning plugin has been developed within the
Creo software system. This plugin integrates
virtual assembly technology to visualize the
assembly process, thereby enhancing the
efficiency and accuracy of the process design.

I. INTRODUCTION

Traditional two-dimensional process cards are
increasingly insufficient to meet modern production
demands, prompting researchers to urgently seek an
efficient and precise method for automated assembly.
Virtual assembly, a process that utilizes computer
technology for product design and manufacturing,
enables rapid simulation of product design and
manufacturing processes. This approach reduces trial

and adjustment times, thereby improving production
efficiency

[1]
. Many experts at home and abroad have

conducted research in this area and have achieved
certain results. Michael Grieves proposed a product
lifecycle management method based on virtual
assembly, which can help companies better manage
and optimize the entire product lifecycle

[2]
. Wu Lingling

developed a virtual assembly system based on VR
virtual reality technology, which improves the
interactivity and efficiency of virtual assembly through
VR immersive simulation of the assembly process

[3]
.

Zhang Peng explored a virtual assembly path planning
technology for robotic arms based on Solid Works,
reducing the debugging work of the robotic arm and
improving the final product quality

[4]
.

Based on these studies, the characteristics of
products based on Creo assembly design are
analyzed, and a functional module for automatically
generating assembly processes and virtual assembly
based on Creo assembly files is proposed. This
method is based on Creo's overall assembly virtual
assembly technology, using MFC programming
technology and the Creo/TOOLKIT secondary
development package under Creo, to simulate
assembly routes and detect assembly collisions in
components of the Creo assembly, finding the optimal
assembly path to ensure the rationality and feasibility
of the assembly process.

Assembly information acquisition:

Before simulating the assembly of a product, it is
essential to identify the parent assembly to which the
components belong, the assembly relationship
information, and the posture information. These three

Keywords: Virtual assembly; interference
detection; Q-Learning; Creo/TOOLKIT;Creo

Secondary Development

http://www.jmest.org/
mailto:15534411086why@sina.com

Journal of Multidisciplinary Engineering Science and Technology (JMEST)

ISSN: 2458-9403

Vol. 11 Issue 4, April - 2024

www.jmest.org

JMESTN42354365 16753

types of assembly information correspond to the
hierarchical relationship information, constraint
information, and position/posture information of the
components. The extraction of these three types of
assembly information is mainly achieved by traversing
the model feature tree structure: the hierarchical
relationship information can be obtained step by step
through a top-down traversal, the posture information
can be obtained from the component information, and
the constraint information can be obtained under the
assembly.

A. Extraction of BOM Information Hierarchy and Pose
Relationships

After the product design is completed, a
corresponding three-dimensional model is generated
within the Creo system. This model contains features,
and from this feature tree, the design Bill of Materials
(BOM) can be extracted. After the design BOM is
extracted, it is combined with supporting information to
generate the process BOM. Finally, the design BOM
and the process BOM are saved to the database.

B. Extraction of Hierarchy and Pose Relationships

Before conducting the simulated assembly, the
components destined for assembly must be integrated
into their respective higher-level assemblies and
positioned to engage in constraint formation.
Therefore, it is necessary to obtain the hierarchical
relationships and pose information of the components.

In Creo, the hierarchical relationships of assemblies
are expressed using a structure tree. As shown in
Figure 1, the lower-level feature relationships in Creo
are represented by feature numbers. In an assembly,
the same component may participate in multiple
assemblies, such as a standard part being involved in
the installation of multiple devices. Although these
standard parts correspond to a single physical object,
they need to be distinguished during assembly. At this
time, feature IDs are introduced for differentiation. In
Figure 2, the feature ID table for component A is
num=3, table[0]=1, table[1]=5, table[2]=8

[5].

The pose information of components is
encapsulated in a 4x4 matrix, which includes the
translation and rotation information of the component
relative to the origin. These information serve as
important guidance for virtual path planning.

Fig. 1. Tree hierarchy of an assembly composition

(The ○ symbol represents a component and the □
symbol represents a part)

To obtain the hierarchical relationships of
components, it is necessary to traverse all components
starting from the top level of the assembly. The
process and relevant APIs for extracting model
hierarchy relationships and pose information are
shown in Figure 2. The specific process is as follows:

Use the pfcGetProESession function under OTK to
obtain the current session.

Obtain the current model pointer through the
current session. The model pointer class contains
functions for retrieving model information and
properties. For example, these functions can be used
to retrieve basic information such as the current model
name, model path, and model pose matrix. Use the
GetPosition function to retrieve the current model's
pose matrix.

Use the GetType function under the model pointer
to determine the current model type. If the current
component is a part, retrieve basic information about
the model using the model pointer. If it is an assembly,
traverse the assembly and extract information.

Fig. 2. Model hierarchy extraction process and
related APIs

After extracting the model hierarchy information,
the model hierarchy information will be associated with
the product compatibility information imported when
creating a new product, generating the final process
BOM (Bill of Materials). This BOM is used for further
process file design and displayed in the product
structure tree.

C. Extraction of Assembly Relationships

Assembly relationships encompass the constraint
information of components relative to reference
features, including types such as coincidence,
alignment, distance, and tangency, reflecting the
constraint relationships between components and
references. By moving components to determined
positions based on hierarchical relationships and pose
information, assembly relationships are established
between components and references, completing the
assembly process.

For assembly information within the assembly,
simply add assembly information extraction methods to
the next step of pfcComponentFeat_ptr in Figure 3.

Under the traversed subcomponent features of the
assembly, obtain the array of constraint features for

http://www.jmest.org/

Journal of Multidisciplinary Engineering Science and Technology (JMEST)

ISSN: 2458-9403

Vol. 11 Issue 4, April - 2024

www.jmest.org

JMESTN42354365 16754

the component, iterate through the array of constraint
features, and obtain the constraint pointer. Using the
constraint pointer function, obtain the constraint type
and references of the assembly, as well as references
of the assembly component. Convert the two
constraints into model object pointers, and obtain their
parent model pointers, thereby completing the
extraction of constraint types and reference
information in the constraint information. The
extraction process of assembly information and the
involved APIs are shown in Figure 4.

Fig. 3. Extraction process of assembly information

II. COMPONENT POSITION TRANSFORMATION AND

INTERFERENCE DETECTION

After the design personnel place the component to
be assembled at the starting point, the plugin can
obtain its pose based on the corresponding OTK API.
The starting and ending poses of the component to be
assembled are known. To avoid interference during
the translational and rotational motion of the
component and continuously approach the final
assembly position, the motion of the component needs
to be differentiated to ensure smooth and continuous
movement. The pose information of the component is
a 4X4 numerical matrix, and its motion can introduce
matrix transformations. Sequentially recording the
pose information of each step in order to guide the
completion of virtual assembly without interference.

A. Representation of Component Poses in
Assemblies

In Creo assemblies, each component participating
in the assembly within the assembly structure has its
corresponding pose matrix. The pose matrix reflects
the position and orientation of the component's own
coordinate system relative to the assembly coordinate
system.

B. Creation of Component Assembly Constraints and
Assembly Interference Detection

For aligning the component's pose with the target
pose, assembly constraints can be effectively
established using the OTK C++ library provided by

Creo during the final continuous pose transformation.
The process is as follows:

Create a constraint group using the static method
Create of pfcComponentConstraints.

Use the pfcCreateModelItemSelection method to
obtain the assembly features of the component to be
assembled and the assembly features on the
assembly.

Use the static method Create of the
pfcComponentConstraint class to create a constraint,
specifying the type according to the actual constraint.

Use SetAssemblyReference to assign the obtained
two assembly features to the created constraint.

Add the constraint to the constraint group created
earlier, apply the constraint group using the
SetConstraints method, and then refresh the model
display to complete the assembly. If there are multiple
constraints, add them to the constraint group and then
apply the constraint group.

Interference detection is crucial in path planning, as
it largely determines the outcome of the entire process.
In Creo, interference detection is divided into two
types: static global interference detection and real-time
dynamic collision detection.

Static global interference detection is implemented
when components within the assembly are not being
manipulated. It detects interference among all
components in the assembly. Dynamic collision
detection, on the other hand, detects real-time
interference only between the dragged components
and other components in the assembly.

Comparing the two detection methods, because the
transformation of component poses is not continuous
motion, collision detection is not applicable. Therefore,
static global interference detection is performed. This
method utilizes ProFitGlobalinterferenceCompute to
calculate all interference data within the assembly,
thereby obtaining the interference status information of
the current assembly components. The process of
interference detection is illustrated in Figure 4.

Fig. 4. Flow chart of Interference Detection Algorithm

http://www.jmest.org/

Journal of Multidisciplinary Engineering Science and Technology (JMEST)

ISSN: 2458-9403

Vol. 11 Issue 4, April - 2024

www.jmest.org

JMESTN42354365 16755

III. Q-LEARNING BASED ASSEMBLY PATH PLANNING

ALGORITHM

Automatically arrange the components involved in
assembly before and after according to the sequential
order of process steps and procedures in the process
document. Then, combined with pose transformation
matrices and interference detection technology, and
utilizing Q-learning algorithm to plan paths, it is
possible to achieve the planning of component
assembly paths and create a complete simulation
video of the assembly process.

A. Q-Learning Algorithm

The Q-learning algorithm is a classic algorithm in
reinforcement learning, commonly used for path
planning problems in complex environments. The 'Q'
value, denoted as Q(s,a), signifies the expected
reward associated with taking a specific action within a
given state. When an agent takes an action from a
certain state, the environment provides corresponding
feedback in terms of a reward. The essence of this
algorithm lies in creating a Q_Table, a matrix of
expected rewards, that archives Q-values for each
unique state-action combination. Then, actions that
lead to maximum rewards are selected based on these
Q-values. The rows of the Q_Table represent states,
and the columns represent actions [8]. Figure 5
illustrates the process of maintaining the Q_Table
within the context of this algorithm.

The training formula for the Q-learning algorithm
can be expressed as follows: New estimate ← Old
estimate + Step size * [Target - Old estimate]. In
mathematical terms, it can be represented as follows:

Q(s, a) ← Q(s, a) + α(R(s, a) + γmax
a

Q(S′, a) − Q(s, a))

In this equation, α represents the update step size,

which ranges from α ∈ (0,1] and indicates the degree
of influence of feedback on the current policy. R(s,a)
denotes the reward function, typically represented in
the form of a reward table. γ is the discount factor,
indicating the importance of future rewards. In
reinforcement learning algorithms, the discount factor
helps avoid infinite loops when calculating rewards.
max𝑎 𝑄(𝑆

′, 𝑎) represents the potential maximum
expected reward of the state after executing the action.
After each action is executed, Q(s,a) is calculated and
updated in the Q_Table. Through continuous
execution of actions and updating the Q-value table,
the values of Q(s,a) in the table may vary significantly
and tend to follow certain patterns after a certain
number of training iterations.

Fig. 5. The flow of the Q-learning algorithm to
maintain the Q_Table

B. Algorithm Environment Modeling

Given that the Q-learning algorithm is contingent on
environmental factors, it is imperative to conduct an
environmental analysis and establish a model prior to
problem-solving

[9]
.

The Q-learning algorithm is based on states and
actions, and during execution, immediate factors when
executing actions are not considered. Therefore, in a
narrow sense, it can be viewed as a nonlinear solving
process. Creo, a three-dimensional software suite,
offers a virtual space akin to real-world conditions,
facilitating spatial modeling within its environment. The
assembly process is simplified as follows: the
assembly space is discretized into a grid, parts are
represented as points, and motion changes are
characterized by the pose transformations of these
points, while rotational transformations are ignored.
Considering the worst-case scenario for positions, the
assembly space is gridified into an M×M×M three-
dimensional array model, with each point being
assigned a reward corresponding to its position,
completing the virtualization of the assembly process.

The gridification of the assembly space is shown in
Figure 6, where the start and end points of the
assembly process are represented by startP and
endP, respectively. Except for graphite points on the
grid, every other point is represented by stepP. In the
process of gridification, for each segment on the line
connecting startP and endP, planes are generated at
intervals of SegDistance to serve as square spatial
partitioning planes. For each partitioning plane, the
side length SegSideLength is chosen as the maximum
value between the diagonal distance of the assembly
body's bounding box and the distance between the
assembly body and the part to be assembled.
SegDistance is the partitioning distance. If the final
segment distance to reach the end point is not equal to

http://www.jmest.org/

Journal of Multidisciplinary Engineering Science and Technology (JMEST)

ISSN: 2458-9403

Vol. 11 Issue 4, April - 2024

www.jmest.org

JMESTN42354365 16756

SegDistance, the last partitioning plane passes directly
through the end point. Gridification is then performed
on each partitioning plane, with UnitD as the size of
the grid unit. During the algorithm execution process,
both SegDistance and UnitD affect the speed of the
algorithm and the final generated assembly space.
Therefore, careful consideration is required when
selecting them. Here, UnitD is chosen as half of the
diagonal distance of the bounding box of the part to be
assembled, and SegDistance is chosen as the integer
part of the diagonal distance of the bounding box. In
Figure 10, UnitD is 10, and SegDistance is 20.

Fig. 6. Schematic diagram of assembly space grid

The movement of parts in the grid space is only
specified by their movement on the current partitioning
plane and the movement towards the next partitioning
plane. There are 26 directions of displacement for the
three-dimensional model in the grid space, and
backward movement of the model is not allowed.
Therefore, there are 17 actions for the movement of
parts in the grid.

C. Selection of Algorithm Parameters and Specific
Steps

To elucidate the algorithm more effectively, we
initially define key variables, as shown in Table I

TABLE I. ALGORITHM KEY VARIABLES

Parameter Name
Parameter

Size
Parameter Meaning

Move Direction i 1-17
Movement direction for the

next action of the
component

Algorithm Update
Step Size α

0.8
Magnitude of the influence

of the next state on the
current state (0~1)

Algorithm
Discount Factor γ

0.8
Expectation for the future

(0~1)
Greedy

Coefficient greedy
0.2

Avoiding falling into local
optima

Training Times 5,000
Number of times the
algorithm is trained to

obtain the final Q_Table

With the greedy coefficient set at 0.2, Q-learning is
essentially a greedy algorithm. However, by
consistently selecting actions with the highest
expected rewards, the algorithm risks not exploring

other potential actions during training, potentially
becoming trapped in a "local optimum" and failing to
achieve the desired outcome. Therefore, by using the
greedy coefficient, components have a probability of
taking the optimal action and also a certain probability
of exploring new paths.

The algorithm follows these specific steps:

Step 1: Obtain the components to be assembled in
the current process and their corresponding assembly
bodies based on the contents of the manual, open
them, and move the components to be assembled to
their assembly starting point.

Step 2: Get the assembly start point (startP) and
assembly end point (endP) for the components,
calculate the distance between the start and end
points, as well as the diagonal distance of the
assembly body bounding box to determine the side
length of the cutting plane (SegSideLength), cutting
plane distance (SegDistance), and grid cell size
(UnitD).

Step 3: Based on the cutting plane side length
(SegSideLength), number of cutting planes, and grid
cell size (UnitD), establish the Q_Table matrix
Q[x][y][z][i], and then establish the reward matrix
R[x][y][z][i]. Perform interference detection for all
positions in the grid. If interference is detected, set the
reward for actions leading to that point as -100 to
prevent the algorithm from considering this point. After
interference detection, refine the reward matrix based
on displacement distance and whether it moves
towards the next cutting plane.

Step 4: Enter the training phase. During training,
each grid that the components pass through receives a
reward from the environment as the score for that
position. Perform 5,000 training iterations to obtain the
final Q_Table matrix.

Step 5: Retrieve the optimal path route from the
Q_Table, move the components accordingly, and
record the animation.

IV. RESULTS PRESENTATION

For instance, in the assembly scenario depicted in
Figure 7, the internal structure of a product's box is
illustrated, with red highlighting the already assembled
components. The next step involves assembling the
blue sensor bracket into the box. For some reasons,
the initial position of the sensor bracket is fixed. If
assembled directly in a straight line, it will collide with
other components. The blue polyline delineates the
final assembly path, with the user interface on the left
displaying the critical nodes of this trajectory.

http://www.jmest.org/

Journal of Multidisciplinary Engineering Science and Technology (JMEST)

ISSN: 2458-9403

Vol. 11 Issue 4, April - 2024

www.jmest.org

JMESTN42354365 16757

Fig. 7. Sensor bracket assembly path demonstration

V. CONCLUSION

This paper focuses on the assembly phase within
the production process, integrating Creo 3D software
and secondary development technologies to extract
assembly model information. By employing
reinforcement learning algorithms, the paper actualizes
the simulation and optimization of the assembly path,
thereby improving the efficiency and accuracy of the
assembly phase in the product manufacturing process.
The plane segmentation method, which employs an
end-to-end connection approach, can effectively
reduce the error rate of interference detection. The
integration of the Q-learning algorithm facilitates the
planning of a more rational assembly path, offering a
solid foundation for the actual assembly process.

REFERENCES

[1] Chen Yaoyao, Liu Yongxia and Fu Chunming.
Analysis of the development status of virtual assembly
technology. mechanical engineering and automation,
2020, (06): 220-222.
https://doi.org/10.3969/j.issn.1672-6413.2020.06.089.

[2] Grieves M. Digital Twin Certified: Employing
Virtual Testing of Digital Twins in Manufacturing to
Ensure Quality Products[J].Mach-ines,2023,11(8):808.
https://doi.org/10.3390/MACHINES11080808

[3] Wu Lingling. Research and implementation of
3D immersive learning system for engineering
drawing based on VR technology . South China
University of technology,
2019.https://doi.org/10.27151/d.cnki.ghnlu.2019.0015
82

[4] Zhang Peng, Zhong Liangwei, Zhang Zenan.
Research on virtual assembly path planning based on
SolidWorks . software engineering, 2022,25 (03): 17-
22. https://doi.org/10.27398/d.cnki.gxalu.2023.001284

[5] Zhao Jiaqi. Research on virtual assembly
path planning technology based on Creo . aerospace
manufacturing technology, 2016, (01): 61-
67.https://kns.cnki.net/kcms2/article/abstract?v=fsvnL
9wA1q0ZOGleRlfYTbjkLlR-
79ImTyFczntoS6p3wvpOUJ31zFocU_l8wBTRiA8l0_T
takJ60HrrJJr8D4OqcYTcWKjFjP0QJlZRESVmvxreXo

1YFxzCnxcZDJb4K23BRb6DYl2r1Hxl1Xp6zQ==&uni
platform=NZKPT&language=CHS

[6] Zhang Wenbin, Shen Jinghu, Jiang
Zhaokang. Parametric variant design of parts based
on secondary development of Creo. microcomputer
applications, 2018,34 (02): 48-50+54.
https://kns.cnki.net/kcms2/article/abstract?v=fsvnL9w
A1q0lO9d9dFk00H36tQOjVVG41RehcLHaNqhc5Mqw
TPcD5BDaZMh6yVoDOp4aWS4ChFQgGk2SV8D3R
LsodtpSGD6tvqHpkjkPTWXhgzVMKXcNTjUSkrP6T_
NjUgLvQ4fY32MC1dLJyDBi9A==&uniplatform=NZKP
T&language=CHS

[7] Han Xue. Research and application of robot
motion function pose matrix . China new technology
and new products, 2013, 21:2-3.
https://doi.org/10.13612/j.cnki.cntp.2013.21.050

[8] Mao Guojun, Gu Shimin. Improved Q-learning
algorithm and its application in path planning . Journal
of Taiyuan University of technology, 2021,52 (01): 91-
97. https://doi.org/10.16355/j.cnki.issn1007-
9432tyut.2021.01.012

[9] Song Lijun, Zhou Ziyu, Li Yunlong. Research
on path planning algorithm based on improved Q-
learning . small microcomputer system, 2023:1-8.
http://kns.cnki.net/kcms/detail/21.1106.tp.20230218.2
208.008.html.

[10] Wei Ning. Guidelines for the implementation
of deep reinforcement learning . Electronic Industry
Press, 2021.

http://www.jmest.org/
http://dx.chinadoi.cn/10.3969/j.issn.1672-6413.2020.06.089

