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Abstract— In this paper, development and 
evaluation of calibration model of embedded 
firmware IoT blood pressure data acquisition 
device is presented. Specifically, in this paper, IoT 
blood pressure data acquisition hardware device 
(denoted as IoTBPDAH device) and BP Accoson 
and Son (Surgical) Ltd 5PQ blood pressure device 
(denoted as HBP device) are used to explain an 
approach for developing regression model and 
applying the model in the firmware program of the 
IoT blood pressure data acquisition hardware to 
automatically estimate a more accurate blood 
pressure value whenever the IoTBPDAH device is 
used to capture blood pressure data. With the 
embedded program concept, the calibration of the 
blood pressure data can be performed in real-
time. The flow diagram for the model development 
and evaluation is presented. A total of 84 blood 
pressure measurements were made and used in 
the model development. The dependent samples t-
test analysis was conducted on the 84 paired 
blood pressure data samples and the results gave 
a mean error of -0.266666667 and standard 
deviation of 1.34077242, as well as the 95 % 
confidence interval of -0.287021499 to 
0.287021499. The results show also that when the 
model was applied the mean error of 0.000438988   
and standard deviation of 1.302122525 were 
obtained, as well as the 95 % confidence interval 
of -0.278747648 to 0.278747648. Essentially, the 
model greatly reduced the mean error. The model 
is then recommended for the embedded firmware 
program to be used for real-time calibration of the 
blood pressure measurement. 

Keywords— Calibration Model, Embedded 
Firmware, BP Accoson and Son (Surgical) Ltd 
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1. Introduction  
Data acquisition devices enable real-world data to be 
captured and digitized and possibly further processed, 
displayed, stored, transmitted or manipulated or utilized in 
many other ways [1,2,3]. This is possible due to the 
advances in electronics, communications, and software 
technologies. The technological advancements in these 
areas have given rise to embedded systems with 
applications in wireless sensors, robots, Internet of Thins 
(IoT), smart systems and many other areas [4,5,6,7]. At the 
core of every embedded system is a microcontroller or 
microprocessor which utilizes the embedded firmware in its 
memory to control the entire components of the embedded 
system. In this paper embedded firmware IoT blood 
pressure data acquisition device is considered [8,8,9,10,11]. 
The device is used to remotely acquire blood pressure 
measurement data from users or patients and transit such 
data to a web server equipped with requisite web 
applications for management of the acquired blood pressure 
data records.  
Particularly, this paper seeks to present an approach for 
real-time calibration of the IoT blood pressure data 
acquisition hardware device (denoted as IoTBPDAH 
device) using BP Accoson and Son (Surgical) Ltd 5PQ 
blood pressure device (denoted as HBP device) as the 
reference device [12,13,14]. The approach adopted in this 
paper is to use field measured paired datasets of blood 
pressure captured with IoTBPDAH device and with HBP 
device to derive an analytical model which is then 
programmed into the microcontroller firmware such that 
when the IoTBPDAH device is acquired the 
microcontroller automatically adjusts (that is calibrates) the 
IoTBPDAH device-measured blood pressure to reflect what 
the HBP device would have given is the measurement was 
conducted with the HBP device. The dependent samples t-
test approach is used for statistical evaluation of the model 
[15,16,17,18]. The essence of the study is to provide an 
approach that can enable real-time calibration of such IoT 
blood pressure data acquisition hardware device so that it 
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will provide reliable blood pressure reading suitable for use 
in health care delivery service. 

 
2 Methodology 

In this paper, IoT blood pressure data acquisition hardware 
device (denoted as IoTBPDAH device) and BP Accoson 
and Son (Surgical) Ltd 5PQ blood pressure device (denoted 
as HBP device) are used to explain an approach for 
developing regression model and applying the model in the 
firmware program of the IoT blood pressure data 
acquisition hardware to automatically estimate a more 
accurate blood pressure value whenever the IoTBPDAH 
device is used to capture blood pressure data. With the 
embedded program concept, the calibration of the blood 
pressure data can be performed in real-time. The flow 
diagram for using field measured pair dataset to develop 
and evaluate the regression model for calibration of the 
IoTBPDAH device-measured blood pressure is presented in 

Figure 1 while the flow diagram for the real-time automatic 
calibration of the IoTBPDAH device-measured blood 
pressure is presented in Figure 2. 
In the model evaluation (as presented in Figure 1), 
dependent samples t-test on d(x) at 95% confidence level is 
used along with Mean Error (ME) and Root Mean Square 
Error (RMSE). Also, Microsoft Excel trend line tool is used 
in generating the regression model from the scatter graph of 
the HBP device-measured blood pressure dataset versus the 
IoTBPDAH device-measured blood pressure dataset.  
Essentially, in this study, the HBP device is the reference 
blood pressure measuring device used for the calibration of 
the IoTBPDAH device. The same approach presented here 
can be used to calibrate the device with respect to other 
blood pressure measuring devices that may be considered 
more accurate.  

 

Start 

Set maximum number, n paired blood pressure data required for the model development 
 

For or x = 1,  to  n measure blood pressure with IoTBPDAH device, denoted as  IoTBPDAH(x) 
and measure blood pressure with HBP (x) device, denoted as  RM(x)  CE012 IPx2 

 

Compute  𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 =  �1
𝑛𝑛

 � �∑ �IoTBPDAH(x) −  HBP(x)�𝑛𝑛
𝑥𝑥=1 � and  

Compute𝑅𝑅𝑀𝑀𝑅𝑅𝐸𝐸 =  ��1
𝑛𝑛

 � [∑ (IoTBPDAH(x) −  HBP(x) )2𝑛𝑛
𝑥𝑥=1 ]2

 
 

Compute  d(x) = IoTBPDAH(x) −  HBP(x) for x = 1, 2, 3, …, n 
Conduct dependent samples t-test on d(x) at 95% confidence level 

 

Plot graph of  HBP(x)  verssus   IoTBPDAH(x) in Microsoft Excel 
Fit appropriate trend line model on the graph of  HBP(x)  versus IoTBPDAH(x) 

Use the model to generate predicted value of 𝑃𝑃𝑃𝑃𝑃𝑃(𝑥𝑥) from IoTBPDAH(x) for data record count 
x = 1, 2, 3, …, n  

Stop 

Compute  𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 =  �1
𝑛𝑛

 � �∑ �𝑃𝑃𝑃𝑃𝑃𝑃(𝑥𝑥)  −  HBP(x)�𝑛𝑛
𝑥𝑥=1 � and  

Compute𝑅𝑅𝑀𝑀𝑅𝑅𝐸𝐸 =  ��1
𝑛𝑛

 � [∑ (𝑃𝑃𝑃𝑃𝑃𝑃(𝑥𝑥)  −  HBP(x) )2𝑛𝑛
𝑥𝑥=1 ]2

 
 

Compute  dP(x) = 𝑃𝑃𝑃𝑃𝑃𝑃(𝑥𝑥)  −  HBP(x) for x = 1, 2, 3, …, n 
Conduct dependent samples t-test on dP(x) at 95% confidence level 
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Figure 1 The flow diagram for using field measured pair dataset to develop and evaluate the regression model for 
calibration of the IoTBPDAH device-measured blood pressure 

Importantly, the real-time automatic calibration capability 
is realized by virtue of embedded program concept, 
whereby, a low-level firmware program is developed based 
on the generated regression model and the stored in the 
program memory of the IoTBPDAH device. The program is 

invoked each time a blood pressure data is captured by the 
blood pressure sensor, as shown in Figure 2. In addition, the 
IoT device (IoTBPDAH device) has requisite transceiver 
that enables it to transmit the data records to a remoted web 
server.  

 
Figure 2 The flow diagram for the real-time automatic calibration of the IoTBPDAH device-measured blood pressure 

 
3. Results and Discussion 

A total of 84 blood pressure   measurements were made and 
used in the model development. The 84 blood pressure data 
item were simultaneously measured using the two blood 
pressure measuring devices IoTBPDAH(x) and HBP(x), as 
shown in Table 1 and Figure 2.  Dependent samples t-test 

analysis is conducted on the 84 paired blood pressure data 
samples and the results are shown in Table 2 and Figure 4. 
It dependent samples t-test analysis gave a mean error of -
0.266666667 and standard deviation of 1.34077242, as well 
as the 95 % confidence interval of -0.287021499 to 
0.287021499. 

 
Table 1 The blood pressure data simultaneously measured using the two blood pressure measuring devices 

IoTBPDAH(x) and HBP(x) 

S/N 

 
IoTBPDAH(x) 

Blood 
pressure 
(mmHg) 

HBP(x)  
Blood 

pressure 
(mmHg) 

S/N 

 
IoTBPDAH(x) 

Blood 
pressure 
(mmHg) 

HBP(x)  
Blood 

pressure 
(mmHg) 

S/N 

 
IoTBPDAH(x) 

Blood 
pressure 
(mmHg) 

HBP(x)  
Blood 

pressure 
(mmHg) 

1 88.5 90 29 114.1 113 57 124.8 123.8 

2 92 92.3 30 114.1 112.7 58 124.8 124 

3 92.7 93.1 31 114.5 113.1 59 125 125.4 

4 97.1 95.2 32 114.7 113.2 60 126.3 125.3 

5 99.2 98.6 33 116.2 120 61 126.3 125.6 

6 99.5 98.7 34 116.2 120 62 126.4 127.9 

7 99.7 99.2 35 117.2 118.4 63 126.4 128 

8 99.8 99.9 36 118.2 117.2 64 128.2 130 

9 99.9 98.8 37 118.4 120 65 129.1 130 

10 100.1 98.9 38 118.9 120 66 129.2 128.5 

11 100.1 98.8 39 119.4 123.1 67 129.5 128.9 

12 105.1 106.2 40 120.1 121.5 68 130.8 129.8 

13 105.8 105.8 41 120.2 119.2 69 130.9 130.1 

14 106 107.6 42 120.2 120 70 131 130.7 

15 106.2 107.8 43 120.2 119.4 71 131.4 130.1 

Microcontroller 
memory 

Regression model-
based real-time 
calibration   of 
blood pressure 
data using the 

firmware program 

LCD display of the 
calibrated blood pressure Blood pressure data 

capture from user or 
patient using the 
blood pressure 

measuring device 
sensor  

Transmission of the 
raw Blood pressure 
and the calibrated 

pressure data to the 
online database 

Microcontroller 
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16 106.5 108 44 120.4 120.2 72 131.6 130.5 

17 108 106.2 45 120.7 120.5 73 133.1 131.8 

18 108.1 107.8 46 120.9 121 74 133.7 132.8 

19 108.2 109.2 47 120.9 120.6 75 133.9 132.8 

20 108.2 108.2 48 121.2 121.1 76 134.1 132.7 

21 108.2 110 49 121.5 119.9 77 134.1 133 

22 109.7 110 50 121.9 120.2 78 135.1 133.2 

23 110.6 112.1 51 122.2 120 79 138.2 138 

24 110.9 110 52 123.2 121.8 80 138.6 138.5 

25 111.2 111.4 53 123.7 122.5 81 138.9 137.7 

26 111.2 111.1 54 124.4 122.2 82 139.5 138.3 

27 112.1 110 55 124.7 123.7 83 140.4 140 

28 112.3 110 56 124.7 123.2 84 140.8 139.6 
 

 
Figure 3 The graph of 84 blood pressure data items captured simultaneously using the two measuring devices 
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Figure 4 The results of the dependent samples t-test analysis for the 84 paired blood pressure data samples 

 
Table 2 The summary of the results of the dependent samples t-test analysis for the 84 paired blood pressure data samples 

Sample Mean   -0.266666667 
Sample Standard Deviation   1.34077242 

 Population Mean   0 
 95% confidence interval, lower limit -0.287021499 
  95% confidence interval, upper limit 0.287021499 

 
A regression model is fitted on the graph of IoTBPDAH(x) 
Blood pressure (mmHg) versus HBP(x)  Blood pressure 
(mmHg) (show in Figure 5 ) and Equation 1 where PBP(x)   
is the predicted value from the given value of 
IoTBPDAH(x); 

PBP(x)   = -0.000881 (𝐼𝐼𝐸𝐸𝐼𝐼𝑃𝑃𝑃𝑃𝐼𝐼𝐼𝐼𝐼𝐼(𝑥𝑥))2+ 
1.183518 (𝐼𝐼𝐸𝐸𝐼𝐼𝑃𝑃𝑃𝑃𝐼𝐼𝐼𝐼𝐼𝐼(𝑥𝑥))- 9.505629  (1) 

The actual and the model predicted 84 blood pressure data 
samples are shown in Table 3. Dependent samples t-test 

analysis is conducted on the actual and the model predicted 
84 blood pressure data samples and the results are shown in 
Table 4 and Figure 6. It dependent samples t-test analysis 
gave a mean error of 0.000438988   and standard deviation 
of 1.302122525, as well as the 95 % confidence interval of 
-0.278747648 to 0.278747648. The summary of the 
comparison of the results of the dependent samples t-test 
analysis for the 84 blood pressure data samples with and 
without the optimization model is shown in Table 5, Figure 
7, Figure 8 and Figure 9. 

[X VALUE] [X VALUE] [X VALUE] [X VALUE]  

0
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Difference in  MeasuredTempareture, d (°C)  
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Figure 5 The graph of 84 blood pressure data paired blood pressure data samples showing the regression model for minimizing 

the measurement error 
 

  Table 3 The actual and the model predicted 84  blood pressure data samples 

S/N 

PBP(x)   
Blood 

pressure 
(mmHg) 

HBP(x) 
Blood 

pressure 
(mmHg) 

S/N 

PBP(x)   
Blood 

pressure 
(mmHg) 

HBP(x) 
Blood 

pressure 
(mmHg) 

S/N 

PBP(x)   
Blood 

pressure 
(mmHg) 

HBP(x) 
Blood 

pressure 
(mmHg) 

1 88.33556 90 29 114.065 113 57 124.4764 123.8 
2 91.92145 92.3 30 114.065 112.7 58 124.4764 124 
3 92.63603 93.1 31 114.458 113.1 59 124.669 125.4 
4 97.10792 95.2 32 114.654 113.2 60 125.9198 125.3 
5 99.23019 98.6 33 116.124 120 61 125.9198 125.6 
6 99.53274 98.7 34 116.124 120 62 126.0159 127.9 
7 99.73435 99.2 35 117.102 118.4 63 126.0159 128 
8 99.83513 99.9 36 118.078 117.2 64 127.7424 130 
9 99.93589 98.8 37 118.273 120 65 128.6035 130 

10 100.1374 98.9 38 118.76 120 66 128.6991 128.5 
11 100.1374 98.8 39 119.247 123.1 67 128.9858 128.9 
12 105.1511 106.2 40 119.928 121.5 68 130.2262 129.8 
13 105.8496 105.8 41 120.025 119.2 69 130.3215 130.1 
14 106.0489 107.6 42 120.025 120 70 130.4168 130.7 
15 106.2483 107.8 43 120.025 119.4 71 130.7977 130.1 
16 106.5471 108 44 120.219 120.2 72 130.9881 130.5 
17 108.0389 106.2 45 120.511 120.5 73 132.4135 131.8 
18 108.1383 107.8 46 120.705 121 74 132.9826 132.8 
19 108.2376 109.2 47 120.705 120.6 75 133.1721 132.8 
20 108.2376 108.2 48 120.996 121.1 76 133.3616 132.7 
21 108.2376 110 49 121.287 119.9 77 133.3616 133 
22 109.7249 110 50 121.675 120.2 78 134.3079 133.2 
23 110.6154 112.1 51 121.965 120 79 137.2303 138 
24 110.9119 110 52 122.932 121.8 80 137.6061 138.5 

y = -0.000881x2 + 1.183518x - 9.505629 
R² = 0.988710 
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25 111.2083 111.4 53 123.415 122.5 81 137.8878 137.7 
26 111.2083 111.1 54 124.091 122.2 82 138.4508 138.3 
27 112.0964 110 55 124.38 123.7 83 139.2939 140 
28 112.2935 110 56 124.38 123.2 84 139.6682 139.6 

 

 
Figure 6 The results of the dependent samples t-test analysis for the actual and the model predicted 84 blood pressure 

data samples  
Table 4 The summary of the results of the dependent samples t-test analysis for the actual and the model predicted 84 

blood pressure data samples 
Sample Mean (mmHg) 0.000438988 

Sample Standard Deviation (mmHg) 1.302122525 
 Population Mean (mmHg) 0 

 95% confidence interval, lower limit (mmHg) -0.278747648 
  95% confidence interval, upper limit (mmHg) 0.278747648 

 
 

Table 5 The summary of the comparison of the results of the dependent samples t-test analysis for the 84 blood 
pressure data samples with and without the optimization model 

 

IoTBPDAH device performance 
without optimization 

IoTBPDAH device performance with the 
quadratic Regression optimization model 

Absolute value of sample 
mean error 0.26667 0.000439 

RMSE 1.359184 1.294349 
Sample Standard Deviation 

(mmHg) 1.34077242 1.302122525 
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Difference in  Measured Blood Pressure, d (°C)  
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Figure 7  The bar chat of the absolute value of sample mean error (mmHg) for the 84 blood pressure data samples with 

and without the optimization model 
 

 
Figure 8 The bar chat of the RMSE for the 84 blood pressure data samples with and without the optimization model 

 
 

 

IoTBPDAH device
performance without
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performance with the
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optimization model

Absolute value of sample mean
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Figure 9  The bar chat of the standard deviation for the 84 blood pressure data samples with and without the 
optimization model 

After the was developed and evaluated, a set of cross 
validation datasets were collected and used to cross validate 
the model. The model validation dataset and the summary 
of the evaluation results are show in Table6 , Figure 10 and 

Figure 11. The results show that the mean error without the 
model is -0.174  which reduces to 0.066 when the model is 
employed. Also, the RMSE without the model is 0.555 
which reduces to 0.507 when the model is employed. 

Table 6 The model cross validation dataset and the summary of the evaluation results 

S/N HBP(x)  Actual Blood 
pressure (mmHg) 

 IoTBPDAH(x) Measured  Blood pressure 
(mmHg) {not optimised with model} 

PBP(x)   Blood pressure (mmHg)  
{Optimised with model} 

1 92.600 92.722 92.658 

2 97.550 98.472 98.495 

3 103.050 102.493 102.542 

4 106.100 105.849 105.898 

5 108.100 107.392 107.435 

6 109.100 109.575 109.601 

7 111.400 111.603 111.606 

8 113.600 113.474 113.449 

9 116.200 116.366 116.287 

10 119.350 119.003 118.861 

11 120.850 120.074 119.903 

12 120.650 120.608 120.421 

13 121.450 121.964 121.736 

14 122.500 123.656 123.373 

15 124.250 125.15 124.814 

16 126.650 126.831 126.430 

17 128.900 128.984 128.493 

18 130.150 130.607 130.042 

19 131.600 132.175 131.535 

20 135.600 135.484 134.671 

21 134.805 135.637 134.815 

Mean Error   -0.1745 0.066 

RMSE    0.555 0.507 

Sample Standard Deviation  0.539922181 0.515400584 
 

 
Figure 10 The results of the dependent samples t-test analysis for the actual  (un-optimized)  21 cross validation blood 

pressure data samples 
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Figure 11 The results of the dependent samples t-test analysis for the model optimized predicted 21 cross validation 

blood pressure data samples 
 

4. Conclusion 
An approach for improving the blood pressure 
measurement accuracy of a data acquisition hardware 
device is presented. The device is design to measure blood 
pressure using a an embedded firmware which can be 
programed to enhance the measurement accuracy by 
providing real-time tuning of the raw blood pressure data 
acquired from the patients. The accuracy of the blood 
pressure measurement is assessed with reference to the 
blood pressure captured using BP Accoson and Son blood 
pressure measurement device.  
Notably, paired data collection was conducted with the data 
acquisition hardware and the BP Accoson and Son blood 
pressure measurement device. Then. A regression model 
was developed for improving the measurement accuracy of 
the data acquisition hardware. The dependent samples t-test 
was used to assess the accuracy of the data acquisition 
hardware, first without the use of the regression model and 
then the regression model was used to minimize the 
measurement error and the dependent samples t-test was 
then conducted. The results showed that the regression 
model afforded significant improvement in the 
measurement accuracy of the blood pressure data 
acquisition hardware as it reduced the mean error, the root 
mean square error and the standard deviation of the 
measured data records.   
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