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Abstract— In this paper, analysis of LoRa-Based IoT 
sensor node required transmitter power variation with 
communication range and bit error performance 
configurations is presented. The operating signal to noise 
ratio,  SNRopr and link margin were first determined for 
different BER after which Egli propagation loss model was 
used with different communication ranges to compute the 
required transmitter power for different spreading factor 
settings of the LoRa transceiver. The results show that for 
SF of 7, the operating signal to noise ratio,  SNRopr = -
3.52935 dBm whereas the required signal to noise ratio for 
the SF of 7 is -7.5 dBm , hence, the link margin is 3.97 dBm. 
The results also show that for the  BER = 1E-15, the 
operating signal to noise ratio,  SNRopr and link margin 
decrease  with SF, with SF of 12 having the lowest value.  
The results show that   SF of 7 has the highest required 
transmitter power for each communication range while 
SF=12 has the least required transmitter power. Also, LoRa 
transceiver datasheet indicates that the maximum 
transmitter power permitted is 20 dBm. Based on the 
datasheet specifications, the results show that with BER = 
1E-15, the SF = 7 LoRa transceiver cannot exceed 6.1 km 
communication range. Also, f while the SF =12 LoRa 
transceiver cannot exceed 13.5 km communication range 
with the given propagation loss. In all, the results show that 
the maximum communication range for BER =1 E -15 
increases exponentially with the spreading factor, from a 
value of  6.093 km at SF = 7 to a value of 13.461 km at SF = 
12. 
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1. Introduction 
The wireless communication and sensor technologies are 
greatly revolutionising the world with their support for 
Internet of things (IoT), as well as smart city applications 
[1,2,3,4,5]. This has become more prominent as many 
applications seek for timely or even real-time delivery of 
solutions, as well as location aware capabilities. In such 
cases, sensors are deployed to any location of interest to 
monitor the environmental parameters and communicate 
same to network gateways and servers where they are used 

for requisite operations [6,7,8, 9,10, 11,12,13,14, 
15,15,17,18]. Designing such wireless networks that will 
connect the distributed wireless sensor nodes deployed even 
to remotes areas require adequate knowledge of different 
parameters that pertains to the environment, the sensor 
nodes and the other network link components [19,20,21, 
22,23,24, 25,26,27, 28,29, 30,31, 32]. 
As regards the wireless signal propagation environment, 
issues of propagation loss must be considered such as free 
space path loss, diffraction loss, multipath loss, atmospheric 
loss and other losses that degrade the signal strength 
[33,34,35,36, 37,38,39, 40,41,42,43,44]. In any case, in 
order to accommodate those losses, the sensor nodes must 
have adequate transmitter power. However, sensor nodes 
are constrained in terms of resource including power, 
memory capacity, antenna gain, and processing capabilities. 
As such, especially for battery-powered sensor nodes, the 
lifespan of the sensor is highly dependent on the provisions 
that are made during the design of the network 
[45,46,47,48,49,50,51].  Accordingly, in this paper, the 
procedure that can be used at design time to determine the 
appropriate transmitter power required by a sensor node for 
different communication ranges and required bit error rate 
performance is presented. The requisite mathematical 
expressions for computing the relevant parameters are 
presented along with numerical examples based on LoRa-
based IoT sensor node. The LoRa technology adopts Chirp 
Spread Spectrum (CSS) modulation scheme and operates in 
different chirp spreading factors [52,53,54,55,56,57]. As 
such, the BER used in the analysis is based on the LoRa 
CSS modulation scheme and the analysis is conducted for 
the different chirp spreading factors for a LoRa-based 
sensor node operating in the 125 kHz bandwidth. 

2 Methodology 
The general link budget expressions for received signal 
power (𝑃𝑃𝑡𝑡𝑡𝑡) with respect to pathloss and in terms of link 

margin (LM) are given as follows; 
𝑃𝑃𝑟𝑟𝑡𝑡 =  𝑃𝑃𝑡𝑡𝑡𝑡 + (𝐺𝐺𝑡𝑡𝑡𝑡 + 𝐺𝐺𝑟𝑟𝑡𝑡) − 𝐿𝐿𝑃𝑃𝑃𝑃𝑡𝑡ℎ  (1) 

𝑃𝑃𝑟𝑟𝑡𝑡 = 𝐿𝐿𝐿𝐿 + 𝑆𝑆𝐿𝐿𝐿𝐿𝐿𝐿𝑃𝑃     (2) 
Where 𝑃𝑃𝑡𝑡𝑡𝑡  is the transmitter power, 𝐺𝐺𝑡𝑡𝑡𝑡  is the gain of the 
transmitter antenna, 𝐺𝐺𝑟𝑟𝑡𝑡 is the gain of the receiver antenna 
and 𝑆𝑆𝐿𝐿𝐿𝐿𝐿𝐿𝑃𝑃 is the LoRa transceiver sensitivity. The 𝑆𝑆𝐿𝐿𝐿𝐿𝐿𝐿𝑃𝑃 is 
defined in terms of the bandwidth (BW), the required signal 
to noise ratio (𝑆𝑆𝑆𝑆𝑆𝑆𝐿𝐿𝑅𝑅𝑅𝑅 ) and the noise figure (NF) as 
follows;  
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𝑆𝑆𝐿𝐿𝐿𝐿𝐿𝐿𝑃𝑃 =  −174 + 10 log10(𝐵𝐵𝐵𝐵)  + 𝑆𝑆𝑁𝑁 + 𝑆𝑆𝑆𝑆𝑆𝑆𝐿𝐿𝑅𝑅𝑅𝑅  
 (3) 

Hence,  
 𝑃𝑃𝑡𝑡𝑡𝑡 =  𝑃𝑃𝑟𝑟𝑡𝑡 − (𝐺𝐺𝑡𝑡𝑡𝑡 + 𝐺𝐺𝑟𝑟𝑡𝑡) + 𝐿𝐿𝑃𝑃𝑃𝑃𝑡𝑡ℎ       (4) 

    𝑃𝑃𝑡𝑡𝑡𝑡 =  𝐿𝐿𝐿𝐿 + 𝑆𝑆𝐿𝐿𝐿𝐿𝐿𝐿𝑃𝑃 − (𝐺𝐺𝑡𝑡𝑡𝑡 + 𝐺𝐺𝑟𝑟𝑡𝑡) + 𝐿𝐿𝑃𝑃𝑃𝑃𝑡𝑡ℎ  (5) 
In this paper, the Egli model is used to determine the 
pathloss, which is expressed as [58,59,60,61];  

𝐿𝐿𝑃𝑃𝑃𝑃𝑡𝑡ℎ = 𝑃𝑃𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿_𝑑𝑑𝑑𝑑𝑑𝑑 = 𝐺𝐺𝑡𝑡𝑡𝑡 + 𝐺𝐺𝑟𝑟𝑡𝑡 + 20𝐿𝐿𝐿𝐿𝐿𝐿 �(ℎ𝑡𝑡)(ℎ𝑟𝑟)
(𝑑𝑑)2

�  +

20𝐿𝐿𝐿𝐿𝐿𝐿 �40
𝑓𝑓
�   (6) 

Where ht and hr the transmitter antenna height and receiver 
antenna height  respectively, d represents the 
communication path length, and f is the frequency. For any 
given Bit Error Rate (BER) the operating signal to noise 
ratio, 𝑆𝑆𝑆𝑆𝑆𝑆𝑂𝑂𝑃𝑃𝐿𝐿 can be determined as follows; 

𝐵𝐵𝐵𝐵𝑆𝑆 = 1
2
�1 − 𝑒𝑒𝑒𝑒𝑒𝑒 ��log12(𝑆𝑆𝑆𝑆)

√2
� � 𝐵𝐵𝑏𝑏 𝑆𝑆𝑂𝑂� ���    (7) 

𝐵𝐵𝑏𝑏
𝑆𝑆𝑂𝑂� = 𝑒𝑒𝑟𝑟𝑓𝑓𝑒𝑒𝑒𝑒𝑒𝑒(1−2(𝑑𝑑𝐿𝐿𝐿𝐿))

�log12(𝑆𝑆𝐹𝐹)
√2

�
   (8) 

𝑆𝑆𝑆𝑆𝑆𝑆𝑂𝑂𝑃𝑃𝐿𝐿 =
10 𝑙𝑙𝐿𝐿𝐿𝐿 �𝐿𝐿𝑏𝑏 

𝑁𝑁0
� + 10 log10(𝑆𝑆𝑁𝑁) + 10 log10 �

4
4+𝑒𝑒

� −
10 log10(2𝑆𝑆𝑆𝑆)    (9) 

𝑆𝑆𝑆𝑆𝑆𝑆𝑂𝑂𝑃𝑃𝐿𝐿 = 10log�𝑒𝑒𝑟𝑟𝑓𝑓𝑒𝑒𝑒𝑒𝑒𝑒(1−2(𝑑𝑑𝐿𝐿𝐿𝐿))

�log12(𝑆𝑆𝐹𝐹)
√2

�
� + 10 log10(𝑆𝑆𝑁𝑁) +

10 log10 �
4

4+𝑒𝑒
� − 10 log10(2𝑆𝑆𝑆𝑆)  (10) 

The link margin,  𝐿𝐿𝐿𝐿 is given as; 
𝐿𝐿𝐿𝐿 = 𝑆𝑆𝑆𝑆𝑆𝑆𝑂𝑂𝑃𝑃𝐿𝐿 − 𝑆𝑆𝑆𝑆𝑆𝑆𝐿𝐿𝑅𝑅𝑅𝑅    (11) 

    𝑃𝑃𝑡𝑡𝑡𝑡 = 𝑆𝑆𝑆𝑆𝑆𝑆𝑂𝑂𝑃𝑃𝐿𝐿 − 𝑆𝑆𝑆𝑆𝑆𝑆𝐿𝐿𝑅𝑅𝑅𝑅 + 𝑆𝑆𝐿𝐿𝐿𝐿𝐿𝐿𝑃𝑃 − (𝐺𝐺𝑡𝑡𝑡𝑡 + 𝐺𝐺𝑟𝑟𝑡𝑡) +
𝐿𝐿𝑃𝑃𝑃𝑃𝑡𝑡ℎ (12) 

 
3. Results and discussions 

The operating signal to noise ratio,  SNRopr and link 
margin were first determined for different BER. Next, the 
required transmitter power was computed for different 
communication ranges. The results for the operating signal 
to noise ratio,  SNRopr and link margin  for BER = 1E-15 
and spreading factors which ranges from  7 to 12 are 
presented in Table 1 as well as in Figure 1.  The results 
presented  in Table 1 and  Figure 1 show that for SF of 7, 
the operating signal to noise ratio,  SNRopr = -3.52935 dBm 
whereas the required signal to noise ratio for the SF of 7 is 
-7.5 dBm , hence, the link margin is 3.97 dBm. This means 
that the operating signal to noise ratio is 3.97 dBm above 
the minimum required noise ratio for the SF of 7.  The 
results also show that for the  BER = 1E-15, the operating 
signal to noise ratio,  SNRopr and link margin decrease  
with SF, with SF of 12 having the lowest value.  

Table 2 The operating signal to noise ratio,  SNRopr and link margin  for BER =1E-15 and spreading factors which ranges 
from  7 to 12 

SF Operating SNRopr (dBm) for BER =1E-15 Link Margin (dBm) for BER =1E-15 

7 -3.52935 3.97 

8 -6.24797 3.75 

9 -8.98602 3.51 

10 -11.7422 3.26 

11 -14.5147 2.99 

12 -17.3019 2.70 
 

 
Figure 1   The operating signal to noise ratio,  SNRopr and link margin  for BER =1E-15 and spreading factors which ranges 

from  7 to 12 
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The Egli propagation loss model was used in computing the 
required transmitter power for BER = 1E-15 with 
communication range from 2 km to 12 km and the results 
are given in Table 2 and Figure 2.  The results show that   
SF of 7 has the highest required transmitter power for each 
communication range while SF=12 has the least required 
transmitter power. According to the datasheet of the LoRa 
transceiver,  the maximum transmitter power permitted is 
20 dBm. Hence, for the SF =7 , the transmitter power for 

different communication range, d is shown in Figure 3. The 
results show that with BER = 1E-15 , the SF = 7 LoRa 
transceiver cannot exceed 6.1 km communication range. 
Also, for the SF =12, the transmitter power for different 
communication range, d is shown in Figure 4. The results 
show that with BER = 1E-15, the SF = 12 LoRa transceiver 
cannot exceed 13.5 km communication range with the 
given propagation loss. 

Table 2 The results of the required transmitter power for BER = 1E-15 with communication range from 2 km to 12 km 

SF 

Required 
Transmitter 

Power (dBm) for d 
= 2 km and BER 

=1E-15 

Required 
Transmitter 

Power (dBm) for d 
= 3 km km and 

BER =1E-15 

Required 
Transmitter 

Power (dBm) for d 
= 6 km km and 

BER =1E-15 

Required 
Transmitter 

Power (dBm) for d 
= 9 km km and 

BER =1E-15 

Required Transmitter 
Power (dBm) for d = 12 
km km and BER =1E-15 

7 0.6 7.7 19.7 26.8 31.8 

8 -2.1 5.0 17.0 24.1 29.1 

9 -4.8 2.2 14.3 21.3 26.3 

10 -7.6 -0.5 11.5 18.6 23.6 

11 -10.3 -3.3 8.7 15.8 20.8 

12 -13.1 -6.1 6.0 13.0 18.0 
 

 
Figure  2 The required transmitter power for BER = 1E-15 with communication range from 2 km to 12 km 
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Figure 3  The transmitter power for different communication range, d for SF =7  

 

 
Figure 4  The transmitter power for different communication range, d for SF =12 

 
Similarly, the results for the operating signal to noise ratio,  
SNRopr and link margin  for BER = 1E-12 and spreading 
factors ranging from  7 to 12 are given in Table 3 while the 
required transmitter power for BER = 1E-152 with 
communication range from 2 km to 12 km are given in 
Table 4. The results show that for SF of 7, the operating 
signal to noise ratio,  SNRopr = -4.05602 dBm whereas the 
required signal to noise ratio for the SF of 7 is -7.5 , hence, 

the link margin is 3.44 dBm. This means that the operating 
signal to noise ratio is 3.44 dBm above the minimum 
required noise ratio for the SF of 7.  The results also show 
that for the  BER = 1E-12, the operating signal to noise 
ratio,  SNRopr and link margin decrease  with SF, with SF of 
12 having the lowest value.    

Table 3 The results for the operating signal to noise ratio,  SNRopr and link margin  for BER = 1E-12 and spreading factors 
ranging from  7 to 12 

SF 

Operating 
SNRopr 

(dBm) for 
BER =1E-

12 

Link 
Margin 
(dBm) 

for BER 
=1E-12 

7 -4.05602 3.44 

8 -6.77464 3.23 
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9 -9.51269 2.99 

10 -12.2688 2.73 

11 -15.0413 2.46 

12 -17.8286 2.17 
 

Table 4 The results for the required transmitter power for BER = 1E-152 with communication range from 2 km to 12 km 

SF 

Required 
Transmitter 

Power 
(dBm) for d 
= 2 km and 
BER =1E-12 

Required 
Transmitter 

Power 
(dBm) for d 
= 3 km km 
and BER 
=1E-12 

Required 
Transmitter 

Power 
(dBm) for d 
= 6 km km 
and BER 
=1E-12 

Required 
Transmitter 

Power 
(dBm) for d 
= 9 km km 
and BER 
=1E-12 

Required 
Transmitter 

Power 
(dBm) for d 
= 12 km km 

and BER 
=1E-12 

7 0.1 7.2 19.2 26.2 31.2 

8 -2.6 4.4 16.5 23.5 28.5 

9 -5.3 1.7 13.7 20.8 25.8 

10 -8.1 -1.0 11.0 18.0 23.0 

11 -10.9 -3.8 8.2 15.3 20.3 

12 -13.7 -6.6 5.4 12.5 17.5 
 

In addition,  the graph for the operating signal to noise 
ratio,  SNRopr for BER = 1E-6, 1E-12,  and 1E-15  and 
spreading factors which ranges from  7 to 12 are presented 
in Figure 5. The results presented in Figure 5 show that the 
BER  =1E-15   has the highest range of values for SNRopr 
while the BER  =1E-6   has the lowest range of values for 
SNRopr. Again, the graph for the link margin for BER = 1E-
6, 1E-12,  and 1E-15  and spreading factors ranges from  7 
to 12 are presented in Figure 6. The results presented in 
Figure 6 show that the BER  =1E-15   has the highest range 
of values for link margin while the BER  =1E-6   has the 
lowest range of values for link margin. Furthermore,  the 
graph for the required transmitter power for BER = 1E-6, 
1E-12,  and 1E-15  and spreading factors ranging from  7 
and 10 are given in Figure 7. The results show that the 
required transmitter power increases with decrease in BER 

and also the required transmitter power for SF =7 is higher 
than that for SF = 10.  
Further analysis of the maximum communication range of 
the LoRa transceiver for BER =1 E -15  for SF of 7 to 12 gave 
the results shown in Table 5 as well as in Figure 8.  The 
results presented in Figure 8 indicates that the maximum 
communication range, dmax (km) for BER =1 E -15  
increases exponentially with the spreading factor, from a 
value of  6.093 km at SF = 7 to a value of 13.461 km at SF = 
12. The model for estimating the maximum 
communication range, dmax (km) for BER =1 E -15  is 
obtained from Figure 8 as; 

dmax = 2.0022e0.1587(SF        (13) 
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Figure 5 ,  The graph for the operating signal to noise ratio,  SNRopr for BER = 1E-6, 1E-12,  and 1E-15  and spreading factors 
ranging from  7 to 12 

 

 
Figure 6 The graph for the link margin for BER = 1E-6, 1E-12,  and 1E-15  and spreading factors ranging from  7 to 12 

 
 

 
Figure 7 The graph for the required transmitter power for BER = 1E-6, 1E-12,  and 1E-15  and spreading factors ranging from  

7 and 10 
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SF Maximum Communication Range , dmax (km) for BER =1 E -15 

7 6.093 

8 7.115 

9 8.346 

10 9.76 

11 11.473 

12 13.461 
 

 
Figure 8 The maximum communication range, dmax (km) for BER =1 E -15  for SF of 7 to 12 

 
4. Conclusion 

An approach for assessing the required transmitter power 
for LoRa transceiver used in wireless sensor network is 
presented. The study determined the required transmitter 
power for the LoRa transceiver for different bit error rare 
(BER) and different communication ranges. The analysis 
was repeated for six different spreading factor settings of 
the LoRa transceiver. The Egli propagation loss model was 
used for the computation of the propagation loss for any 
given communication range. The BER value was first used 
to determine the operating signal to noise ratio and then the 
link margin. Thereafter, the Eglis model was employed to 
determine the the propagation loss for the different 
communication ranges considered in the study. Eventually, 
for each communication range the required transmitted 
power for the LoRa transceiver was determined. Also, the 
maximum communication range that can be realised with 
any given s factor setting of the LoRa transceiver was also 
determined. In all, the required transmitter power increases 
as BER decreases.  Also, the required transmitter power 
increases as BER SF decreases. 
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