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Abstract— In this paper, an innovative Euler-
based equation solver is developed based on the 
finite volume, total variation, diminishing method 
(FV-TVD). It is a combination of Van-Leer and HLL 
limiters, combined with the second order Runge-
Kutta Heun's method. The new solver can capture 
compressible shock waves accurately. Validation 
of the algorithm and the implemented software is 
performed using the well-known Sod shock tube 
test case, one of the few methods that there is an 
analytical solution, demonstrating the ability of 
the algorithm to capture the shocks of density, 
velocity, energy, and pressure. Direct 
comparisons between simulated and theoretical 
shock tube results are calculated.   

Keywords—Finite Volume; Total Variation 
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I.  INTRODUCTION 

KYAMOS objective is to develop disruptive 
engineering multiphysics software for scientists, 
academics, researchers, engineers, and non-
engineers to develop and optimize engineering 
systems and devices within the Computer Aided 
Engineering (CAE) industry. To establish KYAMOS 
LIMITED as a competitive, innovative multiphysics 
software company at an international level for 
computational excellence in speed and accuracy, it 
needs to offer disruptive technologies that will 
outperform its competitors. We have recently built a 
state-of-the-art finite volume method that solves the 
convection-diffusion equation using an innovative 
combination of Superbee and Van Leer limiters for 
compressible flows based on the Total Variation 
Diminishing (TVD) scheme. The TVD scheme can 
capture Gaussian and cubic waves motion ideally, 
after 10,000 time steps in linear wave propagation [1]. 
In this paper, we wish to develop it into a fully 
compressible Euler based solver that can solve non-
linear phenomena, accurately. Hence, in this paper, a 
proprietary multiphysics solution using the Finite 
Volume, TVD (FV-TVD) method has been developed 
to provide meaningful simulations regarding highly 
compressible flows. 
Specifically, the mathematical formulation for solving 
FV-TVD equations in compressible flows is first 
developed and translated to computer simulation 
software. To test whether the software works in 
simulating compressible flow propagation, we have 

tested the software using the well-known benchmark 
compressible flow test case of the Sod shock tube. 
The  
Sod shock tube test case is one of the few 
compressible problems in computational fluid 
dynamics where there is an analytical solution.  
The different elements of the method have been tested 
such as the core code, the treatment of initial and 
boundary conditions, and its ability to capture 
compressible flows.  
The main drive behind this work is that FV-TVD 
solvers have recently gained increased attention and 
many papers are published regarding the capabilities 
of this method and even used from our competitors 
(open source OPENFOAM and proprietary ANSYS), 
when compared to the traditional Finite Difference, 
Finite Element and Finite Volume methods. We wish to 
test this technology on cloud-based distributed GPU 
computing that will unleash its real capabilities through 
CUDA aware MPI and deep learning techniques and 
apply it in practical simulations such as the 
compressible behavior of automotives, rockets, 
airplanes, etc. 

II. FINITE VOLUME 

The macroscopic simulation world encompasses 
the solution of three types of partial differential 
equations: (a) parabolic, (b) elliptic, and (c) hyperbolic. 
There are mainly three widely known methods for the 
solution of the above equations which are the finite 
difference, finite element, and finite volume methods, 
each one with its advantages and disadvantages. 
Generally, at KYAMOS, we utilize state-of-the-art 
method from a commercialization perspective, i.e., the 
finite element method which is the most accurate 
method for the simulation of elliptic field problems and 
the finite volume, the prevailed method for the 
simulation of fluid flow problems due to its 
conservative nature. Finite difference is considered as 
an inferior alternative to the above methods, well-
known nevertheless for its simplicity, but nevertheless, 
non-state-of-the-art, in most of the simulation cases. 
The FV methods provide an attractive alternative 
which is generally applicable to transient flows due to 
their conservative nature, which makes them ideal for 
fluid flow simulations. They are based on a continuum 
assumption of the macroscopic fluid properties and 
can be partitioned easily, without the need for the 
solution of matrices which are ill-conditioned (depends 
on scheme) and it is ideal for parallelization, especially 
on the GPUs. 
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Regarding fluid flow simulations, a new innovative 
state-of-the-art approach for capturing shocks is the 
Godunov type method that encompasses the Total 
Variation Diminishing (TVD) scheme. We have 
recently developed such a scheme that could 
potentially outstrip our competitors, which either use 
non-efficient shock capturing schemes in the finite 
element or finite volume basis.  
We would like to utilize this state of the art, FV-TVD 
scheme which is able to capture in a conservative way 
shock waves with no oscillations and numerical 
diffusion and utilize it in compressible flow simulations. 
We can capture both the propagation of the shock, as 
well as the rarefraction wave in near ideal conditions, 
since after many time steps, there is considerable 
agreement between analytical and simulated results. 
We also believe that we can further improve our 
algorithm to achieve much better overall agreement 
between analytical and numerical results by deploying 
an innovative interpolation scheme between the above 
two limiters.    
We expect that the highly accurate compressible flow 
software to be developed will be competitive against 
our industrial competitors and will outstrip them by 
utilizing a newly developed promising technique, an 
alternative to other techniques out there.  
We do not expect that we can compete with 
multimillion-dollar companies in terms of software 
modules and variety of solutions, at least in the 
beginning; however, we believe that we can give a 
formidable alterative to a few specific areas such as 
compressible flow simulations, until KYAMOS has the 
resources to expand at the next level, by offering 
broader simulation solutions for a number of industries.  
 

III. LIRERATURE REVIEW ON THE FV-TVD 

Various projects were conducted to better understand 
the effect of flux limiters on reduced total variation 
(TVD) schemes under different circumstances. In this 
paper [2], the authors explore a kind of higher-order 
Runge-Kutta time discretization with reduced total 
variation (TVD) initialized in Shu & Osher (1988), 
which is suitable for solving conservation laws with 
stable spatial discretizations. The authors illustrate 
through numerical examples that a non-TVD, but 
linearly stable Runge-Kutta time discretization scheme, 
can produce oscillations, even for a TVD spatial 
discretization. This verifies the fact that TVD Runge-
Kutta methods are necessary to minimize oscillations. 
The authors then explore the effects of second, third 
and fourth orders and low-storage Runge-Kutta 
methods.  
In addition, a study conducted in 2019 [3], investigates 
the total variation diminishing (TVD) scheme for multi-
species transport with first-order reaction network in 
multi-dimensional space. The partial differential 
equations describing this multispecies transport with 
chain reactions in the form of a coupled system are 
presented. The system is then solved by a TVD 
scheme with different limiters. Finally, the necessary 
criteria for the scheme to be TVD qualified are derived. 

In 2022, S. A. Alimuddin et al. suggest that the choice 
of limiters has a significant impact on the behavior of 
the Davis-Yee and Harten-Yee TVD schemes [4]. The 
authors performed a series of simulations using 
various test cases, including the 1D advection 
equation, the shock tube problem, and the two-
dimensional lid-driven cavity flow. The study concludes 
that the minmod limiter produces the most accurate 
and stable results for both the Davis-Yee and Harten-
Yee schemes and reduces the spurious oscillations 
that can occur when using TVD schemes. On the other 
hand, the superbee limiter tends to produce inaccurate 
and unstable solutions, with oscillations in regions with 
steep gradients. Lastly, the van Leer limiter is found to 
be less accurate and less stable than the minmod 
limiter, but more accurate and stable than the 
superbee limiter. 
Another study was conducted in 2022, S. Kaewta et al. 
focused on “a comparison of TVD limiter functions 
for a convection–diffusion–reaction equation and Euler 
equations on triangular grids” [5]. To test the accuracy 
and stability of the limiters, several pure convection 
and convection–diffusion–reaction problems were 
solved on both structured and unstructured triangular 
grids. From this study, it was found that the limiters 
applied to solve Euler equations yield great results for 
both linear and nonlinear problems. During the same 
year, L. Bessone et al. [6] successfully implemented 
Eulerian TVD methods and applied parallelization 
strategies based entirely on GPU to generate 
exponentially correlated log-normally distributed 
permeability fields in C++/CUDA. The authors consider 
pure advection, advection-diffusion, and advection-
dispersion. The results of this study suggest that the 
algorithms can efficiently work in computational 
domains of up to 134.5 million cells in a single GPU. 
Additionally, in 2021, L. Krivodonova and A. Smirnov 
focused “on the TVD property of second-order 
methods for 2D scalar conservation laws” [7]. In this 
paper, the authors utilized the second-order 
discontinuous Galerkin method to numerically prove 
that limited solutions of two-dimensional hyperbolic 
equations are TVD in means when total variation is 
computed using a definition arising from a full 
discretization of the semi-discrete Raviart-Thomas TV. 
In another study of 2019, Ali et al. investigated “Finite 
Volume TVD Scheme for a Nonlinear Gas Transport 
Model in Shale Rocks” [8]. The authors developed a 
conservative finite volume TVD scheme to obtain the 
numerical solutions of the gas transport model. In 
order to determine the numerical solutions to a 
nonlinear gas transport model, the numerical model is 
applied to a time-dependent advection-diffusion 
equation.  
Recent research on the “Comparison of Errors Caused 
by Flux Limiters on the Numerical Solution of 
Advection-Diffusion Problem” was conducted by A. 
Tasri [9]. This article proposes a method for applying 
one-dimensional limiters to two-dimensional 
unstructured mesh and discusses the errors caused by 
various flux limiters in advection-diffusion flow 
solutions. The results suggest that there was a higher 
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calculation error of second-order finite volume with a 
flux limiter than the one without a limiter. On the other 
hand, the error of second-order finite volume without a 
flux limiter was higher than the error of third-order with 
a flux limiter. Summing up, in this article, 
Venkatakrishnan’s flux limiter was found to produce 
the highest error, followed by Van Leer’s limiter, 
EULER and SMART limiter. 
There are also many projects that went beyond TVD 
and proposed different or more complex flux schemes. 
A research paper, titled “Capturing of Shock Wave of 
Supersonic Flow over the Bump Channel with TVD, 
ACM and Jameson Methods”, written by M. Yadegari 
and M.H. Jahdi in 2021 [10] introduced a method 
based on the characteristic variables (Riemann 
solution) and controlled the diffusion term in the classic 
methods to capture the shock waves. The authors 
used a non-orthogonal mesh with collocated finite 
volume formulation, a method based on the density-
based algorithm, to solve the compressible Euler 
equations. The study corroborates that the ACM and 
TVD methods achieved a higher resolution of the 
shock waves than the Jameson method. Additionally, 
these two methods improved the quality of shock 
waves capturing all flows at the discontinuities, and the 
computational time and convergence of the supersonic 
flows.  
In 2019, R. Lochab and V. Kumar presented a 
numerical formulation of shallow water equations 
(SWEs) using a fuzzy logic-based flux limiting scheme 
[11]. The dam-break problem with flat bottom 
topography was implemented to test the effectiveness 
and accuracy of the proposed scheme. The authors 
suggest that the proposed high-resolution (HR) 
method is non-oscillatory, conservative, and suitable 
for shallow water models. The results presented good 
agreement with analytical solutions and the proposed 
scheme was able to capture both smooth and 
discontinuous profiles, leading to better oscillation-free 
results. 
Furthermore, S. Tang and M. Li authored a paper of 
“Construction and application of several new 
symmetrical flux limiters for hyperbolic conservation 
law”, focusing on combining the classical van Albada, 
van Leer, and PR-κ limiters with the MAX function to 
create three symmetrical limiter functions [12]. The 
constructed limiters were found to produce more 
accurate results than classical limiters. It is suggested 
that the Monotonic Upstream-centered Scheme for 
Conservation Laws (MUSCL scheme) along with the 
proposed limiters satisfies the conditions for quadratic 
convergence in smooth regions. The MUSCL scheme 
equipped with classic limiters corresponding to both 
smooth and discontinuous solutions was found to 
exhibit lower resolution and higher dissipation than the 
scheme equipped with the new symmetrical limiters. 
A recent study by I. F. Ismail et al. [13] focuses on 
developing first-order Flux Vector Splitting (FVS) 
schemes and extending the solution capabilities to flow 
with two shocks, like the Woodward-Collela blast wave 
problem. The execution of three FVS schemes, 
Steger-Warming, Van Leer, and Liou-Steffen, resulted 

in different flow patterns with respect to each test 
case's extremities. The Steger-Warming scheme was 
found to produce the largest dissipation over one-
dimensional test cases. The most accurate for 
capturing shocks, with very few overshoots and 
undershoots, was the Liou-Steffen scheme. The 
outcomes of this scheme showed oblique shock waves 
at the compression corners and expansion waves at 
the expansion corners. Lastly, the results implied that 
bow shocks can be simulated using the blunt-body 
geometry and one- and two-dimensional results 
confirm the shock-capturing ability of these schemes. 
Lastly, Osman ÜNAL modified TCDF to propose a 
novel flux limiter in 2022, as presented in the paper 
“Numerical Simulation of Convection-Diffusion 
Equation Using a Novel Flux Limiter” [14]. The results 
of this study showed that the modified TCDF flux 
limiter function worked at a Courant number lower than 
one without any abnormal oscillation, in contrast to the 
previously improved TCDF flux limiter. This study also 
aimed to present a numerical simulator for solution of 
convection-diffusion equation, for any grid dimension 
or any space or time interval. 
 

IV. NAVIER–STOKES AND EULER EQUATIONS 

The Euler equations are special partial differential 
equations set of Navier–Stokes equations (NS), where 
the viscosity and conductivity terms are zero. They 
can be used for compressible and incompressible 
flows. By considering the conservation form of the 
Navier–Stokes continuity equation:  

 

𝜕𝜌

𝜕𝑡
+ ∇. (𝜌𝑢) = 0 

(1) 

 
For two-dimensions, eq (1) can be expanded as 
follows: 

 

𝜕𝜌

𝜕𝑡
+
𝜕𝜌𝑢𝑥
𝜕𝑥

+
𝜕𝜌𝑢𝑦
𝜕𝑦

= 0 

 

(2) 

, where ρ represents the density, u is the velocity, 𝑢𝑥 
and 𝑢𝑦 are the components of the velocity vector. 

The continuity equation will be the same for the Euler 
equation, since there are no viscosity and conductivity 
terms.  Considering the conservation form of the 
Navier–Stock momentum equation for compressible 
flows: 

𝜕𝜌𝑢

𝜕𝑡
+ 𝛻 ∙ (𝜌𝑢⨂𝑢) = −𝛻𝑃 +

1

3
𝜇𝛻(𝛻. 𝑢) + 𝜇𝛻2𝑢 + 𝜌𝑔 (3) 

where μ represents the kinematic viscosity, P is the 
pressure which represents the internal sources, and g 
is a vector that represents the body acceleration 
multiplied by the density, and the product represents 
the external force. If we set the viscosity term to zero, 
eq (3) becomes: 
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𝜕𝜌𝑢

𝜕𝑡
+ 𝛻 ∙ (𝜌𝑢⨂𝑢) + 𝛻𝑃 =  𝜌𝑔 

(4) 

 

For two-dimensions, eq (4) can be expanded: 

 

(

𝜕𝜌𝑢𝑥
𝜕𝑡
𝜕𝜌𝑢𝑦
𝜕𝑡

) + 

(

 

𝜕

𝜕𝑥
𝜕

𝜕𝑦)

 ∙ (𝜌 (
𝑢𝑥
𝑢𝑦
) ( 𝑢𝑥 𝑢𝑦)) +

(

 

𝜕𝑃

𝜕𝑥
𝜕𝑃

𝜕𝑦)

 =  𝜌 (
𝑔𝑥
𝑔𝑦
) → 

(5) 

       

(

𝜕𝜌𝑢𝑥
𝜕𝑡
𝜕𝜌𝑢𝑦
𝜕𝑡

) + 

(

 

𝜕

𝜕𝑥
𝜕

𝜕𝑦)

 ∙ (𝜌 (
𝑢𝑥
𝑢𝑦
) ( 𝑢𝑥 𝑢𝑦)) +

(

 

𝜕𝑃

𝜕𝑥
𝜕𝑃

𝜕𝑦)

 =  𝜌 (
𝑔𝑥
𝑔𝑦
) → 

(6) 

 

(

𝜕𝜌𝑢𝑥
𝜕𝑡
𝜕𝜌𝑢𝑦
𝜕𝑡

) + 

(

 

𝜕

𝜕𝑥
𝜕

𝜕𝑦)

 ∙ (𝜌 (
𝑢𝑥𝑢𝑥 𝑢𝑥𝑢𝑦
𝑢𝑥𝑢𝑦 𝑢𝑦𝑢𝑦

)) +

(

 

𝜕𝑃

𝜕𝑥
𝜕𝑃

𝜕𝑦)

 =  𝜌 (
𝑔𝑥
𝑔𝑦
) → 

 

(7) 

(

𝜕𝜌𝑢𝑥
𝜕𝑡
𝜕𝜌𝑢𝑦

𝜕𝑡

) + 

(

 
 

𝜕𝜌𝑢𝑥𝑢𝑥
𝜕𝑥

+
𝜕𝜌𝑢𝑥𝑢𝑦

𝜕𝑦
 

𝜕𝜌𝑢𝑥𝑢𝑦

𝜕𝑥
+
𝜕𝜌𝑢𝑦𝑢𝑦

𝜕𝑦 )

 
 
+

(

 

𝜕𝑃

𝜕𝑥
𝜕𝑃

𝜕𝑦)

 =  𝜌 (
𝑔𝑥
𝑔𝑦
) → 

 

(8) 

 

(

𝜕𝜌𝑢𝑥
𝜕𝑡
𝜕𝜌𝑢𝑦

𝜕𝑡

) + 

(

 
 

𝜕𝜌 𝑢𝑥
2

𝜕𝑥
+
𝜕𝜌𝑢𝑥𝑢𝑦

𝜕𝑦
 

𝜕𝜌𝑢𝑥𝑢𝑦

𝜕𝑥
+
𝜕𝜌𝑢𝑦

2

𝜕𝑦 )

 
 
+

(

 

𝜕𝑃

𝜕𝑥
𝜕𝑃

𝜕𝑦)

 =  𝜌 (
𝑔𝑥
𝑔𝑦
) 

(9) 

 

, where 𝑔𝑥 and 𝑔𝑦 are the components of the gravity 

vector. 

Eq (9) is the conservation form of the Euler 
momentum equation.  

The energy equation of the Euler equation without the 
force term becomes:  

𝜕𝐸

𝜕𝑡
+ 𝛻 ∙ ((𝐸 + 𝑃)𝑢) = 0 

(40) 

 

𝜕𝐸

𝜕𝑡
+

(

 

𝜕

𝜕𝑥
𝜕

𝜕𝑦)

 ∙ ((𝐸 + 𝑃) (
𝑢𝑥
𝑢𝑦
)) = 0 

(51) 

 

𝜕𝐸

𝜕𝑡
+
𝜕(𝐸 + 𝑃)𝑢𝑥

𝜕𝑥
+
𝜕(𝐸 + 𝑃)𝑢𝑦

𝜕𝑦
= 0 

(62) 

 

Generally, the Euler equations in two-dimensions 
compressible flows can be written as: 

𝜕𝑈

𝜕𝑡
+
𝜕𝐹𝑥
𝜕𝑥
+
𝜕𝐹𝑦
𝜕𝑦

= 𝐾 
(73) 

 

, where U represents the conservative variables: 

𝑈 = (

𝜌
𝜌𝑢𝑥
𝜌𝑢𝑦
𝐸

) 

(84) 

𝐹𝑥 and 𝐹𝑦 represent the flux variables: 

𝐹𝑥  = (

𝜌𝑢𝑥
𝜌𝑢𝑥

2 + 𝑝
𝜌𝑢𝑥𝑢𝑦

(𝐸 + 𝑃)𝑢𝑥

) , 𝐹𝑦  =

(

 

𝜌𝑢𝑦
𝜌𝑢𝑥𝑢𝑦

𝜌𝑢𝑦
2 + 𝑝

(𝐸 + 𝑃)𝑢𝑦)

  

(95) 

 

The source term K becomes:  

𝐾 = (

0
𝜌𝑔𝑥
𝜌𝑔𝑦
0

) 

(106) 

 

If we neglect the gravitational force, there are five 
primitive variables and four conservation equations. In 
order to close the system of equations, we need an 
additional equation, which is the equation of state: 

𝐸 =
𝑃

𝛾 − 1
+
𝜌𝑢2

2
 

(117) 

 

, where γ represents the ratio of specific heats, which 
in this paper is taken as 1.4, the specific heat of air. 

 

V. MATHEMATICAL FORMULATION OF FINITE VOLUME 

METHOD (FVM) 

The starting point of the finite volume method is the 
integral form of the conservation form of partial 
differential equations. Therefore, the Euler equations 
can be rewritten by neglecting the term of the 
gravitational force in integral form as follows: 

𝜕𝑈

𝜕𝑡
+
𝜕𝐹𝑥
𝜕𝑥
+
𝜕𝐹𝑦
𝜕𝑦

= 0 → 
(128) 

𝜕𝑈

𝜕𝑡
+ 𝛻 ∙ 𝐹 = 0 → 

(139) 

 

∫
𝜕𝑈

𝜕𝑡
𝑑𝑉  + ∫𝛻 ∙ 𝐹𝑑𝑉 = 0 

(20) 

, where V represents the volume of the cell. The 
integration in the finite volume method is based on the 
control volume of the unit cell, so the domain will be 
discretized into discrete control volumes. Each control 
volume will have a centroid, which represents the 
values of the primitive variables, and boundary, which 
represents the values of the fluxes. The cell center is 
commonly indexed as i, while the faces are indexed 
as i+1/2 and i-1/2. Now we can integrate over the 
control volume, with eq (20) becoming: 

∫
𝜕 𝑈𝑖
𝜕𝑡

𝑑𝑉𝑖

𝑖+
1
2
 

𝑖−
1
2
 

 + ∫ 𝛻 ∙ 𝐹 𝑑𝑉𝑖

𝑖+1

𝑖−
1
2
 

= 0 

(21) 

For the time derivative, the average value of the 
primitive variables is assumed to be calculated at the 

http://www.jmest.org/


Journal of Multidisciplinary Engineering Science and Technology (JMEST) 

ISSN: 2458-9403 

Vol. 10 Issue 4, April - 2023  

www.jmest.org 

JMESTN42354179 15898 

center of control volume, and by using the mean value 
theory: 

�̅�𝑖 =
1

𝑉𝑖
∫ 𝑈𝑖𝑑𝑉𝑖
𝑉𝑖

→ 
(22) 

By inserting the time derivative on both sides of eq 
(22), eq (22) becomes: 

𝜕 

𝜕𝑡
�̅�𝑖 =

𝜕 

𝜕𝑡

1

𝑉𝑖
∫ 𝑈𝑖𝑑𝑉𝑖
𝑉𝑖

→  
(23) 

 

𝜕�̅�𝑖 

𝜕𝑡
=
1

𝑉𝑖
∫
𝜕𝑈𝑖 

𝜕𝑡
𝑑𝑉𝑖

𝑉𝑖

  
(24) 

By using the divergence theory, the term of the flux 
can be converted into integral surfaces: 

 ∫ 𝛻 ∙ 𝐹 𝑑𝑉𝑖

𝑖+
1
2
 

𝑖−
1
2
 

= ∮ 𝐹. 𝑛 𝑑𝑆
𝑆𝑖

 

(25) 

, where S in a three-dimensional illustration 
represents the total surface area, in a two-dimensional 
illustration represents the length of the edges, and n is 
the unit vector normal to the surface pointing outward 
of the surface. The mean value theorem can be used 
to approximate the surface integral, with eq (25) 
becoming: 

∮𝐹. 𝑛 𝑑𝑆 = ∑ �̅�𝑓 ∙ 𝑛𝑓
𝑓1,𝑓2….

𝑖

𝑑𝑆𝑓 
(26) 

, where f represents the faces of the two-dimensional 

control volume, and �̅�𝑓 is the average value of the flux. 

The number of the faces will depend on the type of 
the mesh that will be used. Combining the above 
equations, we get: 

𝜕�̅�𝑖 

𝜕𝑡
𝑉𝑖  +  ∑ �̅�𝑓 ∙ 𝑛𝑓 𝑑𝑆𝑓

𝑓1,𝑓2….

= 0 
(27) 

 

𝜕�̅�𝑖 

𝜕𝑡
= −

1

𝑉𝑖
∑ �̅�𝑓 ∙ 𝑛𝑓 𝑑𝑆𝑓
𝑓1,𝑓2….

  
(28) 

 

Eq (28) can be approximated using the second order 
Runge-Kutta Heun's method. The value of the slope 
(gradient) is used at the initial value of the 
conservative values and to=0 to extrapolate the values 
of the conservative values at one time step. Then, the 
resultant values are required to evaluate the slope at 
one time step, by averaging the values of the slope. 
The estimation of the new values can be defined as 
follows: 

 𝐾1 = −
1

𝑉𝑖
∑ �̅�𝑓

𝑡0 ∙ 𝑛𝑓 𝑑𝑆𝑓
𝑓1,𝑓2….

 
(29) 

 

𝐾2 = −
1

𝑉𝑖
∑ �̅�𝑓

𝑡1(�̅�𝑖
𝑡0 + ℎ𝐾1) ∙ 𝑛𝑓 𝑑𝑆𝑓

𝑓1,𝑓2….

 
(30) 

 

�̅�𝑖
𝑡1 = �̅�𝑖

𝑡0 + ℎ
(𝐾1 + 𝐾2)

2
→ 

(31) 

 

�̅�𝑖
𝑡𝑛+1 = �̅�𝑖

𝑡𝑛 + ℎ
(𝐾1 + 𝐾2)

2
 

(32) 

, where 𝐾1 represents the slop at 𝑡𝑜, 𝐾2 represents the 

slope at one time step,  �̅�𝑓
𝑡0 represents the flux at 𝑡𝑜, 

non-negative integers, �̅�𝑓
𝑡1(�̅�𝑖

𝑡0 + ℎ𝐾1) represents the 

flux at one time step and �̅�𝑖
𝑡0 + ℎ𝐾1, and h represents 

the time step equal to 𝛥𝑡. 

VI. RESULTS OF FV-TVD SIMUATIONS 

A. Introduction 

In this section, simulated results using the 
innovative FV-TVD method are compared to analytical 
solutions regarding the Sod shock tube problem. Error 
calculations are also included which show the 
accuracy of the proposed method in capturing the 
shocks. 
In the Sod shock tube test case, we observe five 
distinct regions, as a result of the propagation of a 
shock wave in a compressible gas flow problem. The 
five distinct regions are: 
1. Undisturbed left ambient region: It is defined as the 
initial high-pressure region of the compressible gas 
that is not affected by the shock wave or expansion 
fan wave. 
2. Shocked left region: It is defined as the region 
which resides between the shock wave and the 
contact discontinuity, where the gas is compressed by 
the advancing shock wave. 
3. Contact discontinuity: The contact discontinuity is 
defined as a thin region which separates the shocked 
left and right gas sides. In the case of pressure and of 
velocity, the profile is continuous, whereas the density 
usually exhibits discontinuous behavior. 
4. Shocked right region: This is the region between 
the contact discontinuity and the head of the 
expansion fan, where the gas has been accelerated 
and rarefied by the expansion fan. 
5. Undisturbed right ambient region: It is defined as 
the initial high-pressure region on the right of the 
compressible gas that is not affected by the shock 
wave or expansion fan wave. 
 

B. Results and discussion 

Fig. 1 presents the fluid pressure propagation 
through the Sod shock tube at time 0.2 s in two-
dimensions.  The graph shows that the results are 
invariant in the y-direction, as expected, with the 
pressure remaining unchanged. This also shows that 
the boundary conditions being implemented were of 
the correct nature. The boundary conditions used for 
the simulation of the Sod shock tube were the 
Neumann boundary conditions on the top and bottom 
surfaces. Similar boundary conditions were also 
implemented at the left and right boundary of the tube, 
since the simulations were stopped prior to the shock 
and rarefraction wave heating the boundary. In such a 
case, one will need to deploy appropriate boundary 
conditions, i.e., for example if indeed is a closed tube, 
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no-slip boundary conditions should be applied at the 
left, right, top and bottom boundaries and this would 
affect the propagation of the shock from the beginning 
of the simulation, since a layer of low velocity would 
occur on the top and bottom surfaces during the 
rarefraction and shock wave propagation.    
 
 

 
Fig. 2 presents the simulated fluid density propagation 
through the Sod shock tube at time 0.2 s. Similarly to 
the pressure, the fluid density in the y-direction 
exhibits uniformity, as expected. Additionally, the 
density in contrast to the pressure exhibits an 
additional plateau, as a result of the contact 
discontinuity, which creates an extra region, 
separating the left and right shock wave regions.   
 
 

 
Fig. 3 shows the velocity propagation through the Sod 
shock tube at time 0.2 s. The velocity shows a similar 
profile with the pressure where there is no change 
across the contact discontinuity. The velocity values of 
the wave are all positive as expected and are less 
abrupt at the boundary between the undisturbed left 

region with the shocked left region, when compared to 
the boundary between the shocked right region and 
the undistracted right region. Again, the velocity does 
not show variation in the y-direction as expected, 
similarly to the density and the pressure profiles.  
 

 
To conclude, the FV-TVD algorithm in its two-
dimensional representation seems to accurately 
predict the fluid flow in a Sod shock tube after 
comparing the results with expected values.  
Fig. 4 shows the simulated fluid pressure propagation 
profile through the Sod shock tube (red line) 
compared with the exact solution (blue) at 0.2 s. Fig. 4 
shows that there is a close relationship between the 
analytical and numerical results, validating the 
performance of our FV-TVD code. The results, as 
expected, struggle slightly to capture the 
discontinuities in general.  
 

 
Fig. 5 shows the simulated fluid density propagation 
profile through the Sod shock tube (red line) 
compared with the exact solution (blue) at 0.2 s. Fig. 5 
shows that there is a close relationship between the 
analytical and numerical results, validating the 
performance of our FV-TVD code. The results, as 
expected, struggle slightly to capture the discontinuity 
in general. The largest error occurs at the 
discontinuity boundary, as expected.   

 

 

Fig. 1 Simulated fluid pressure propagation through the Sod shock 
tube at time 0.2 s. 

 
Fig. 2 Simulated fluid density propagation through the Sod shock 

tube at 0.2s. 

 
Fig. 3 Simulated fluid velocity propagation through the Sod shock 

tube at 0.2s. 

 
Fig.4 Simulated fluid pressure propagation profile through the Sod 

shock tube (red) compared with the exact solution (blue) at 0.2 s. 
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Fig. 6 shows the simulated fluid velocity propagation 
profile through the Sod shock tube (red line) 
compared with the exact solution (blue) at 0.2 s. Fig. 6 
shows that there is a close relationship between the 
analytical and numerical results. There is a slight 
difference in the region between the undisturbed left 
region and the left shock ware region boundary. The 
results, in the other two discontinuity boundary exhibit 
more accurate results.   
 

 

VII. CONCLUSIONS 

In this paper, we demonstrate the implementation of 
an innovative FV-TVD scheme by validating it against 
the analytical solution in the Sod shock tube test case. 
The results evidently show very good agreement with 
the analytical solution and demonstrate the potential 
of the solver to be used for commercial purposes by 
embedding the solver in the KYAMOS software. 
Further work should include the extension of the 
solver in thee-dimensions, as well as the deployment 
in a distributed environment, and most importantly to 
be included within the Graphical User Interface (GUI) 
of KYAMOS software as a module for simulating 
compressible fluid flows. 
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