
Journal of Multidisciplinary Engineering Science and Technology (JMEST) 

ISSN: 2458-9403 

Vol. 10 Issue 4, April - 2023  

www.jmest.org 

JMESTN42354177 15881 

KYAMOS Software – Artificial Intelligence  
prediction of compressible fluid flows   

 

1,2
Antonis P. Papadakis, 

1
Aimilios Ioannou, 

1
Sofia Nikolaidou and 

1,2
Wasif Almady 

KYAMOS LTD, 37 Polyneikis Street, Strovolos, 2047, Nicosia, Cyprus 
Frederick University, 7. Y. Frederickou, 1036, Palouriotissa, Nicosia, Cyprus 

 

Abstract— In this paper, the authors utilize a 
novel Finite Volume, Total Variation Diminishing 
(FV-TVD) scheme to firstly simulate a shock wave 
propagation inside the Sod shock tube. The 
simulation results are automated such that 
multiple number of initial pressures and densities 
are generated as initial conditions randomly, and 
multiple results are saved to be used as dataset 
for deep learning training purposes. Secondly, a 
state-of-the-art UNET architecture model is 
developed in python using PyTorch that is used to 
predict the propagation of the shock, and 
specifically density, pressure, and velocity. The 
UNET model is trained and tested using a number 
of filters during the encoding and decoding 
process.  It is shown that the AI predicted results 
are in very good agreement with the FV-TVD, 
depicting that the UNET architecture can 
successfully and accurately predict the fluid 
behavior in compressible flows with shocks. It 
was also found that the AI UNET model was able 
to produce reasonable results with only 100 
epochs, which shows the ability of the UNET 
model to capture the fluid flow dynamics. 

Keywords—Finite Volume, Artificial 
Intelligence, UNET; Shock Waves; Compressible 
Flows; 

I.  INTRODUCTION 

A. Scope 

In this paper, we discuss the computational fluid 
dynamics industry, and how it is related to artificial 
intelligence (AI). For this purpose, the general theory 
behind AI is discussed and the importance of tuning 
hyperparameters is highlighted. Specific attention is 
given to the UNET model and how it can be applied to 
the CFD industry for fluid flow prediction. A literature 
review on state-of-the-art UNET algorithms follows, 
with results from a trained and tested UNET model. 
Finally, conclusions are drawn.  

B. CFD 

In Computational Fluid Dynamics (CFD) one needs 
to solve the appropriate set of equations to 
characterize the flows under consideration. Depending 
on the type of flow, one can use different methods and 
techniques, each with its strengths and weaknesses, 
to accurately capture fluid flow. Many methods are 
most suited for specific types of flow; hence the choice 
of method will greatly affect the result. For example, it 

is well documented that in terms of field simulations, 
finite element techniques perform well, especially near 
sharp corners, when used in combination with non-
regular elements such as triangles in two-dimensions 
and tetrahedrals in three-dimensions. Another example 
is the Lattice Boltzmann (LB) method, which performs 
well for incompressible flows, porous media, and 
turbulence due to its ability to treat boundary 
conditions effectively, accurately, and efficiently. 
Another example is the Finite Volume (FV) method 
which guarantees conservation of flux and performs 
well in compressible-flow scenarios.  
Once a model is chosen, other factors will affect the 
stability and accuracy of the results, such as the 
discretization method used to solve a problem. In all 
methods, there is a time-evolving geometry and flow, 
hence one needs to discretize the spatial and temporal 
dimensions, to solve the differential equations that 
dictate the flow. Differential equations in fluid flows 
usually include macroscopic variables such as density, 
velocity, pressure, and energy, which are calculated in 
a spatiotemporal evolution.  
The results are obtained in files at regular intervals, for 
all grid points, hence a time evolution of the 
macroscopic quantities can be obtained. In CFD, there 
are primitive variables and conserved quantities. 
Primitive variables, as mentioned above, are individual 
variables that measure a specific quantity. Conserved 
quantities are momentum (instead of velocity) and 
energy (instead of pressure). 
There are various types of boundary conditions, 
however the most widely used are the Dirichlet 
boundary conditions, which set a fixed value of a 
quantity on the boundary, the Neumann boundary 
condition which guarantees that the partial derivate of 
a quantity normal to the boundary will be constant, the 
no-slip boundary condition which sets the velocities of 
the flow in all directions to zero and is usually applied 
to solid surfaces, and the outflow boundary condition 
which forces zero gradient normal to the boundary to 
guarantee outflow behavior. Each boundary condition 
can be implemented in a different way in each of the 
methods being developed such as within the finite 
difference, finite element, finite volume, or Lattice 
Boltzmann methods, depending on the mathematical 
formulation of each method. 
To model fluid flows, there are different types of 
equations that need to be solved.  For example, in the 
case of inviscid flows, one only needs to solve the 
Euler equations, which are the Navier-Stokes 
equations, without the presence of any viscous terms. 
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In problems where viscosity does not affect the flow, 
one does not need to solve the Navier-Stokes, but only 
the simplified form- the Euler equations. For this 
purpose, within KYAMOS software, in the Graphical 
User Interface, the user is asked to choose the type of 
flow to be analyzed and hence choose beforehand the 
right solver model to run their simulations. The fact that 
one needs to specify the type of simulation model 
allows the deployment of dedicated and optimized 
solvers, specific to the type of flow. In contrast, a 
generic model would need to include multiple methods, 
making the solution setup procedure non-optimal and 
ineffective.  
In every simulation, initial conditions are always 
necessary to dictate the initial behavior of the flow. 
These initial conditions can drastically influence the 
state of the system at later times, and together with the 
boundary conditions, will determine the overall 
behavior of the flow.   

In CFD simulations, one can use regular grids, which 
makes the location of centroids, faces and volumes 
easier to determine, however it suffers from the ability 
to reconstruct sharp corners and surfaces. On the 
contrary, one can use non-regular meshes which 
allows the capturing of non-uniform obstacles easier, 
but includes a randomness in mesh-connectivity and 
centroid, face and volume recognitions. Each method 
has its advantages and disadvantages. There is no 
ideal way to perform simulations as there is always 
dependency on the geometry in question and the type 
of flow. In case there are sharp corners that affect the 
flow, non-uniform grids may be a wiser option, and 
where smooth surfaces exist, the regular grid may be 
the most preferred method. 

C. Introduction to AI 

To predict fluid flows, one can solve the differential 
equations for the problem in question. However, that 
usually takes long waiting times to obtain the results. 
In some cases, it is imperative that results are 
obtained instantly so that immediate action can be 
taken, or even changes to the input of the simulation 
that can affect the results. Even though Graphical 
Processing Units (GPUs) and Central Processing Units 
(CPUs) are becoming increasingly faster, we are 
currently unable to provide real live simulations for 
medium-sized problems, let alone for large scale 
problems. To be able to achieve real live simulations, 
we need a groundbreaking alternative method, and 
this can be achieved using AI.  
AI allows the pretraining of a model with various 
conditions beforehand and once the model is ready 
and available, it can be used by several users to run 
under multiple changed parameters. One prerequisite 
is that during the training of the model, these variations 
were indeed considered and thus included in the 
training procedure. 

 

II. AI THEORY 

A. Introduction 

A deep learning AI model is usually trained by 
going through two distinct phases, the training phase, 
and the testing phase. Usually, the pretrained cases 
are 70% and above, with the validation cases ranging 
from 30% down to 10%. During the training, one must 
deal with learning rates which dictate the speed at 
which the artificial intelligence network is learning. A 
very high learning rate will try to quickly balance, 
however may also cause instabilities and deviations 
from the solution due to the large steps involved with 
optimization towards finding the optimal solution. On 
the other hand, a very low learning rate, which is ideal, 
will result in long waiting times due to the multitude of 
steps that need to be executed, and will sometimes 
make the training process unproductive. Hence 
appropriate learning rates must be chosen for each AI 
model to be trained such that it quickly reaches the 
optimized solution, without compromising the stability 
of the result. AI usually includes neurons that possess 
a weight and a bias, and these weights and biases 
need to be trained in a manner such that they produce 
the desired result.  
A neural network consists of layers that have a specific 
purpose, with each layer having several neurons that 
have a specific purpose to achieve. There is no golden 
rule on how many layers are necessary and how many 
neurons on each layer must be included to achieve the 
desired result. Hence a trial-and-error design is 
necessary to find the minimum required neural network 
that can produce the predicted results. Each neuron in 
the layer needs to be trained by adjusting its weight 
and bias, and this is achieved by using a forward-
backward propagation error correction. Specifically, a 
random guess is brought forward, and a prediction is 
made according to the current random weights and 
biases and interconnections of the neurons. The 
predicted result, which in the beginning will be highly 
deviated from the actual result is compared with the 
actual solution, which is readily available from already 
obtained numerical simulations; in this case CFD 
simulations. Hence, a direct comparison between the 
predicted and the actual results is made and the 
difference between the two results is calculated. The 
ultimate task is to have this model produce ideally a 
zero error. The error uses an optimizer to calculate the 
error.  
The error is backward propagated through simple 
mathematics and changes the weights and biases of 
neurons, setting them a step closer to the optimized 
solution. To calculate the error, the best widely used 
method is the Adams optimizer which is widely used in 
AI models. One needs to mention that the error 
corrector ensures that the backward correction is in the 
right direction towards the solution, and not deviating 
away from the solution. 

B. Hyperparameters 

The hyperparameters are parameters of a machine 
learning algorithm that are predetermined, prior to 
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training and affect greatly the performance and 
behavior of the training algorithm. Such 
hyperparameters can be the learning rate, batch size, 
number of epochs, regularization strength, and the 
architecture of the neural network, which includes the 
number of layers of the network, as well as the number 
of neurons being used in each of the layers. Since 
these hyperparameters have a great impact on the 
behavior and performance of the optimization 
algorithm, it is important to tune these parameters, and 
most times, this exercise is performed through trial and 
error. This process is called hyperparameter tuning 
and is achieved by systematically varying the 
hyperparameters and evaluating the performance 
using a validation dataset. This will inevitably involve 
multiple operations which are time consuming, 
however it is necessary for achieving the desired 
result. Each dataset will have its own optimized 
hyperparameters and there is no single solution for all 
problems. There is a need for better ways to be able to 
adjust these values and further research should be 
conducted on this topic, since it would greatly impact 
AI simulations. It is usually an iterative process, being 
time-consuming and computationally expensive, as it 
often involves training and evaluating multiple models 
with different hyperparameter configurations. However, 
hyperparameter tuning is a crucial step in building 
effective machine learning models and improves the 
performance of the algorithm and leads to more 
accurate predictions. 
 

C. Batches 

 
In order not to go back and forth in every sample 

with error correction, the trained model is split into 
batches. These are groups of results that are used to 
find an average error. After each batch, a backward 
correction is performed for the weights and the biases. 
Batches are subsets of the training dataset that are 
processed as one block during the training process. 
Instead of training the dataset for each sample by 
adjusting the weights and biases, which can be 
counterproductive, one can be more efficient by 
training the weights and biases at more irregular times, 
achieving more or less the same result, without the 
cost of frequently going back and forth adjusting the 
weights and biases. The batch size is a 
hyperparameter that will depend on the size and 
complexity of the dataset, the available hardware 
resources, as well as the complexity of the neural 
network architecture. A large batch size will result in 
faster training times, but may result in overfitting or 
memory issues, as the network may start to memorize 
the training set, rather than learning generalizable 
patterns. On the other hand, smaller batch sizes will 
result in slower training times, but more stable training 
and better generalization performance as the network 
is forced to learn from a more diverse set of examples 
in each batch. As a rule of thumb, it is always best to 
run as large batch sizes as possible, and to ensure 
that overfitting does not occur.  

D. Epochs 

In neural networks, epoch is defined as one 
complete iteration usage of the whole training dataset. 
Multiple epochs occur when the whole training dataset 
is used multiple times to train the model until the result 
is optimized. It can also be considered as a full pass 
through all the training dataset. The number of epochs 
will greatly affect the accuracy and stability of the 
predicted results and must be tuned accordingly such 
that we do not overtrain or undertrain the model. In this 
case, two scenarios may occur, those of underfitting or 
overfitting. Underfitting occurs when the number of 
epochs is far from the optimized and the weights and 
biases are not given enough chance to optimize 
themselves.  In the case of overfitting, by running 
many more epochs than required, the network may 
end up memorizing the training dataset and hence 
being unable to predict differentiable results on new 
data. To avoid overfitting or underfitting the data, it is 
important to monitor the performance of the network 
on a validation set during the training process and stop 
the training process when the performance on the 
validation set starts to degrade. Practically speaking, 
most of the time, the optimal number of epochs is 
obtained through trial and error. The ideal epoch 
number will be affected by the network architecture, 
the complexity and size of the dataset and the choice 
of the optimization algorithm to be used, as well as 
learning rates to achieve the best possible 
performance.    
 

III. UNET THEORY 

A. Introduction 

The UNET AI model was proposed by Olaf 
Ronneberger, Philipp Fischer, and Thomas Brox at the 
University of Freiburg in Germany in 2015. It is an 
image segmentation technique that partitions the 
image into multiple segments, with each segment 
corresponding to a different region of the image. It was 
used by the authors in medical imaging applications to 
segment anatomical structures or identify 
abnormalities within the body. The basis of UNET is a 
convolutional neural network, hence it consists of 
convolutional layers and no fully connected layers. 
This absence of fully connected layers allows the 
network to be trained fast and efficiently and can 
handle images of variable size. It consists of two main 
parts, the part of the encoder and the part of the 
decoder. The encoder processes the input image 
through a number of convolutional layers, with the sole 
purpose is to gradually decrease the spatial resolution 
of the image, while at the same time, increasing the 
number of feature maps. Hence, the output of the 
encoder encompasses a set of feature maps that can 
capture the high-level semantic information of the 
image, for example image features. Then the image is 
passed to the decoder, where it takes the feature 
maps and output of the encoder and uses up-sampling 
in various stages, such as to reconstruct the original 
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size of the input image, by using transposed 
convolutional layers. 
To allow the network to propagate fine-grained details 
from the encoder to the decoder, the decoder 
incorporates skip connections by concatenating the 
feature maps from the encoder with the corresponding 
feature maps from the decoder at each stage of the 
up-sampling process. This enables the decoder to 
refine the segmentation boundary based on the 
detailed information from the encoder, ensuring that no 
features have been lost during the encoding process. 
UNET has a unique ability to deal with small training 
datasets by using data augmentation, that involves 
applying various image transformations to the input 
image and the corresponding segmentation masks, 
such as rotations, flips, and scaling. This generates 
new samples of the original dataset, and it can learn 
more features of the images, where they wouldn’t be 
without this process. 
A Softmax activation function that is used in the output 
layer of the UNET network, produces a probability 
distribution over the different classes at each pixel 
location, which allows UNET to handle multi-class 
segmentation problems. This is another advantage of 
the UNET model, in cases when a pixel in the image 
belongs to several different types of classes, and not 
just one. Summarizing, UNET is a very versatile AI 
model which is highly effective in image segmentation. 
It is based fully on convolutional principles, avoiding 
fully connected layers. The utilization of skip 
connections enables it to learn robust features and 
refine the segmentation boundary based on detailed 
information from the input image. Its two main 
advantages are its ability to handle small datasets and 
multi-class segmentation problems. 
 

B. UNET in CFD 

Even though UNET has been used as a neural 
network architecture in a range of applications, it has 
also been used in Computational Fluid Dynamics 
(CFD) for simulating the fluid flow and heat transfer 
phenomena in various engineering applications. UNET 
has recently gained increased popularity due to its 
ability to segment and analyze complex geometries 
and predict the flow around structures efficiently in 
terms of speed and accuracy. 
As mentioned before, UNET’s ability to segment and 
extract important macroscopic features from two and 
three-dimensional simulations such as speeds, 
pressure, temperatures, energy, and velocities, 
emanates from its ability to handle large and complex 
datasets, as well as its flexibility in handling multi-class 
segmentation problems. Examples of sophisticated 
complex problem solving, is its ability to analyze 
complex flow structures, such as vortices, wakes and 
turbulent jets.  
To analyze these structures, the UNET model can be 
trained to segment the flow field into different regions 
based on the characteristics of the flow, such as 
velocity magnitude, direction, and vorticity. This can 
provide valuable insights into the dynamics of the flow 

and help identify areas of high turbulence or energy 
dissipation. 
UNET is also good in identifying hotspots or regions of 
high heat transfer in heat transfer phenomena, since 
they would appear as a feature on the image of a 
temperature distribution result, with direct application 
in the optimization and design of heat exchangers, 
combustion systems, etc. 
UNET overall is able to capture effectively complex 
flows and heat transfer phenomena by handling large 
and complex datasets, while at the same time handling 
multi-class segmentation problems and can be an 
ideal choice for CFD analyzing and optimizing 
phenomena. 
 

IV. LITERATURE REVIEW ON UNET 

The authors used supervised neural networks to 
predict two-dimensional velocities and pressure fields 
in laminar flows around arbitrary shapes. The 
aforesaid fields were obtained via a CFD solver for the 
Navier-Stokes equations. The data-trained U-net 
architectures were tested based on their predictive 
ability for unseen shapes, utilizing ad hoc error 
functions. The results do not show a clear advantage 
for predictions of field maps, but the U-nets do indeed 
produce reasonably accurate results [1].  
Vinuesa et al. [2] depict  that machine learning is  
rapidly becoming a core technology in scientific 
computing, and especially computational fluid 
dynamics. They discuss applications of AI to 
accelerate direct numerical simulations, to improve 
turbulence closure modeling and to develop enhanced 
reduced-order models. The emerging promising areas 
of machine learning are also discussed, and the 
potential limitations of AI are discussed as well, 
including the UNET model used by the authors of this 
paper.  
In another paper [3], the question “if, how and why an 
AI can learn about turbulence” is addresses by using 
the results of Direct Numerical Simulations (DNS) 
regarding turbulent channel flow and applying deep 
learning techniques. The analysis is focused on wall 
data, with the assumption that a multilayer nonlinear 
network can express the local heat flux normal to the 
wall by including pressure fluctuations and shear 
stresses, quantities based on which a prediction of the 
local heat flux is done via convolutional neural 
networks (CNNs). The authors find a very high 
correlation (0.980) between the DNS and CNN results. 
Similar correlation coefficients were observed even at 
Reynolds number three times larger than the trained 
Reynolds number of 180. During post training, the 
gradient maps of the network gave insight to essential 
inputs for correct predictions of the local heat flux, as 
well as for the spatial relationship of this quantity and 
nearby input fields. An investigation of the usefulness 
of the model to describe turbulence was also 
performed with some evidence that it may provide 
some insight. 
CFD simulations for engineering problems are 
computationally demanding and the most common 

http://www.jmest.org/


Journal of Multidisciplinary Engineering Science and Technology (JMEST) 

ISSN: 2458-9403 

Vol. 10 Issue 4, April - 2023  

www.jmest.org 

JMESTN42354177 15885 

deep learning methods are not precise enough. A 
novel deep U-shaped network-long short-term memory 
(U-Net-LSTM) framework is proposed for fast 
hydrodynamic prediction. The results agree with CFD 
simulations with good predictive ability. Comparison 
with traditional methods showed significantly lower 
errors and computational power demands are highly 
reduced, making the method attractive [4]. 
The authors propose a modified U-Net neural network 
architecture that utilizes multigrid methods (U-Net-
MG). Using this method, the work shows a reduction in 
the Root Mean Square Error (RMSE) between 20%-
70% compared to the unmodified U-Net model and an 
improved predicting ability of velocity and pressure 
fields in the case of canonical fluid dynamics for flows 
past a stationary cylinder, in 2 out-of-phase moving 
cylinders and past an oscillating airfoil. Both methods, 
however, have a lower than 1% RMSE [5]. 
High computational times and memory-demand of 
CFD solvers have pushed researchers towards neural 
network, deep learning algorithms, trained by CFD 
data. In this work, the authors modelled 
incompressible laminar flow around objects in two 
dimensions over generated interpolated grid feature 
data using a deep U-Net model. The results showed a 
good agreement between the CFD solver FEATool 
and the U-Net model, also showing accurate 
representation of the pressure and velocity fields for 
the tested shapes [6]. 
In this work, the Navier-Stokes equations are solved 
with direct numerical simulation, as well as a large-
eddy simulation to better model two-dimensional 
turbulence using deep learning. Referring to both 
simulation methods, a numerical method that has a ten 
times higher resolution and is forty to eighty times 
faster computationally, while maintaining the accuracy 
of common finite volume or finite difference methods is 
presented. Thus, as the authors suggest, this machine 
learning approach opens the door to large-scale 
modelling processes [7].  
This paper proposes a novel AI method that uses deep 
learning to model fluid flow both locally and globally, 
while incorporating velocity and pressure, as well as 
adjustable boundary conditions. The authors claim that 
their method -namely “CFDformer” performs better 
than U-Net and TransUNet methods and is able to 
represent pressures and velocities in flows different 
than the ones that were used to train the model [8]. 
In this work, the authors try to bypass the 
computational cost of CFD simulations by employing 
Convolutional Neural Networks (CNNs) as well as U-
Net. The model is trained offline with a very 
computationally demanding data processing. Post-
training evaluations of neural networks on scenarios 
used to train the model requires very low 
computational power. Fluid flow around shapes is 
explored where the error of the approximations is 
within 3% margin. Generalization of the model to new 
data yields good results with an average error of 10% 
margin [9]. 
The authors in this paper [10] try to predict steady fluid 
flows around numerus fixed cylinders using deep 

learning and machine learning. The model takes as 
input the cylinder arrangement and outputs the x- and 
y- components of the velocity fields. Testing the model 
shows accurate prediction of the flow when the 
scenario to be modelled has a similar number of 
cylinders as the ones used to train the model. When a 
scenario with smaller number of cylinders is tested, the 
model does not perform well. The authors suggest that 
this model can be generalized and performs well when 
a larger number of cylinders is used. 
In another work [11], the authors propose a network 
and training strategy through data augmentation. The 
procedure uses a symmetric expanding path for 
precise localization and a contracting path which 
captures context. The award-winning strategy 
outperforms existing best practices in the field of 
biomedicine by less-than-one-second segmentation of 
a 512x512 image on a modern GPU. 
In the context of geological data, this work [12] 
proposes a deep learning surrogate time-dependent 
model for to predict two-dimensional dynamic 
multiphase flow, which incorporates a residual U-net 
and an autoregressive procedure, with each step of 
the algorithm being dependent on the previous. The 
authors suggest that their model, while working with 
fewer parameters, can achieve similar or improved 
predictions with also fewer training data. 
As physics-based simulation in multiphase flows are 
computationally expensive, in this work [13], the 
authors have developed an efficient physics-
constrained deep learning model in 3D to tackle the 
issue. By utilizing the predictive abilities in spatial 
topology of U-Net, the model takes in the properties of 
the porous media, fluid properties and well controls to 
produce predictions of the spatio-temporal evolution of 
pressure and saturation. The three-dimensional 
problem is first reduced to two-dimensional to be more 
efficient by lowering computational costs. Calculations 
of well flow rate are done in a separate postprocessor 
model by considering the predicted values of the state 
variables. When contrasted to physics-based 
simulations, the proposed method is about 1,400 times 
faster with low average temporal errors for the 
predicted state variables; 0.27% for pressure and 
0.099% for saturation. Well flow rate has an error of 
less than 5%. The scheme copes with high fidelity fluid 
flows and can be used efficiently to model 
computationally expensive inverse problems.  
 

V. AI SIMULATED RESULTS 

In this section, the results are presented from the 
utilization of the UNET network developed to predict 
the shock propagation inside a shock tube. To achieve 
this, 5,000 images from 50 simulations were generated 
for each of the input and output parameters that are 
used to train the model. The AI predicted results are in 
very good agreement with the FV-TVD results. 
A direct comparison of the FV-TVD and the UNET is 
shown below in Fig. 1 and Fig. 2. They depict the 
density distribution of the shock wave inside the Sod 
shock tube at time t = 0.42 s, when the initial density 
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and rho are 0.919 kgm
-2

 on the left and 0.183 kgm
-2

 on 
the right of the diaphragm, and the pressure is 0.929 
Pa on the left and 0.166 Pa on the right of the 
diaphragm. Specifically, Fig. 1 shows the result 
obtained from an in-house innovative FV-TVD scheme 
developed by the authors, whereas Fig. 2 shows the 
predicted results from the UNET AI model. By 
conducting a direct comparison, it is shown that the 
UNET model developed is in very good agreement 
with the predicted FV-TVD results. Hence, we can 
confidently use AI predictions to calculate the density 
distribution in a Sod shock tube problem. The UNET 
model can be extended to work in various other 
conditions, for example time evolutions, as well as into 
other initial conditions, boundary conditions and under 
very different physics. What is important is that the 
UNET model has shown remarkable accuracy in 
predicting the fluid flow in this specific case.     
 

 
 

 
Fig. 3 below shows the error as a result of the 
difference in density between the FV-TVD and AI 
UNET models. It is shown that the error mostly occurs 
around the shock, where its maximum value is 0.16. 
This value of the error is very small and can be 
considered adequate for predicting simulations. By 
tuning the hyperparameters and feeding the model 
with a larger dataset, it is expected that more accurate 
results from the UNET model can be generated.    

 

Below in Fig. 4, we present the velocity distribution as 
a result of the Sod shock tube from the FV-TVD 
method. Additionally, in Fig. 5, for comparison 
purposes, we present the predicted results for the 
velocity based on the UNET AI model. It is shown that 
by comparing the two graphs, there is adequate 
agreement between them. Likewise with the density, 
the pressure also shows the larger differences around 
the shock.    

 

 
Below, in Fig. 6, the error as a result of the velocity 
difference between the FV-TVD and AI UNET models 
is presented. It is shown that the error mostly occurs 
around the shock, where its maximum value is 0.175. 
This value of the error is very small, as for the density 
and can be considered adequate for predicting 
simulations. Again, by fine tuning the 
hyperparameters and feeding the model with a larger 
dataset, it is expected that more accurate results from 
the UNET model can be generated.    
 

 
Below in Fig. 7, the pressure distribution emanating 
from the Sod shock tube from the FV-TVD method is 
presented. Additionally, in Fig. 8, for comparison 
purposes, we present the predicted results for the 
pressure distribution based on the UNET AI model. It 
is shown again that by comparing the two graphs, 
there is adequate agreement between them.  
 

 
Fig. 1 Density plot for the Sod shock wave tube using the FV-TVD method 

at time t = 0.42 s. 

 

 
Fig. 2. Density plot for the Sod shock wave tube using the UNET method at 

time t = 0.42 s. 

 

 
Fig. 3. Density error plot between AI-UNET predicted and real FV-

TVD simulations at time t = 0.42 s. 

 

 
Fig. 2 Velocity plot for the Sod shock wave tube using the FV-TVD 

method at time t = 0.42 s. 

 

 

 
Fig. 3. Velocity plot for the Sod shock wave tube using the UNET 

method at time t = 0.42 s. 

 

 

 
Fig. 4 Velocity error plot between AI-UNET predicted and real FV-

TVD simulations at time t = 0.42 s. 
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Finally, in Fig. 9 the error as a result of the difference 
in pressure between the FV-TVD and AI UNET 
models is presented. It is shown that the error mostly 
occurs around the shock, where its maximum value is 
0.06. This value of the error is the smallest out of the 
three distributions, which shows that the UNET AI 
model can capture the pressure distribution better 
than the density and velocity.   

 

VI. CONCLUSIONS 

In this paper, we provided a direct comparison 
between the results emanating from an innovative FV-
TVD scheme and an AI UNET model. A direct 
comparison is conducted between the results, 
calculating the error between expected and predicted 
results. It was shown that the AI UNET model is more 
than capable of capturing and predicting the results of 
fluid flows, i.e., of the density, velocity and pressure 
with the errors emanating to be acceptable for fluid 
flow simulations.  Further work should be conducted in 
investigating the effect of the hyperparameters such 
as of the learning rate, batch size, number of filters, 
and the number of the input datasets and number of 
epochs.  
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Fig. 5 Pressure plot for the Sod shock wave tube using the FV-TVD 

method at time t = 0.42 s. 

 
Fig. 6 . Pressure plot for the Sod shock wave tube using the UNET 

method at time t = 0.42 s. 

 

 
Fig. 7 Pressure error plot between AI-UNET predicted and real FV-

TVD simulations at time t = 0.42 s. 
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