
Journal of Multidisciplinary Engineering Science and Technology (JMEST)

ISSN: 2458-9403

Vol. 10 Issue 4, April - 2023

www.jmest.org

JMESTN42354177 15881

KYAMOS Software – Artificial Intelligence
prediction of compressible fluid flows

1,2
Antonis P. Papadakis,

1
Aimilios Ioannou,

1
Sofia Nikolaidou and

1,2
Wasif Almady

KYAMOS LTD, 37 Polyneikis Street, Strovolos, 2047, Nicosia, Cyprus
Frederick University, 7. Y. Frederickou, 1036, Palouriotissa, Nicosia, Cyprus

Abstract— In this paper, the authors utilize a
novel Finite Volume, Total Variation Diminishing
(FV-TVD) scheme to firstly simulate a shock wave
propagation inside the Sod shock tube. The
simulation results are automated such that
multiple number of initial pressures and densities
are generated as initial conditions randomly, and
multiple results are saved to be used as dataset
for deep learning training purposes. Secondly, a
state-of-the-art UNET architecture model is
developed in python using PyTorch that is used to
predict the propagation of the shock, and
specifically density, pressure, and velocity. The
UNET model is trained and tested using a number
of filters during the encoding and decoding
process. It is shown that the AI predicted results
are in very good agreement with the FV-TVD,
depicting that the UNET architecture can
successfully and accurately predict the fluid
behavior in compressible flows with shocks. It
was also found that the AI UNET model was able
to produce reasonable results with only 100
epochs, which shows the ability of the UNET
model to capture the fluid flow dynamics.

Keywords—Finite Volume, Artificial
Intelligence, UNET; Shock Waves; Compressible
Flows;

I. INTRODUCTION

A. Scope

In this paper, we discuss the computational fluid
dynamics industry, and how it is related to artificial
intelligence (AI). For this purpose, the general theory
behind AI is discussed and the importance of tuning
hyperparameters is highlighted. Specific attention is
given to the UNET model and how it can be applied to
the CFD industry for fluid flow prediction. A literature
review on state-of-the-art UNET algorithms follows,
with results from a trained and tested UNET model.
Finally, conclusions are drawn.

B. CFD

In Computational Fluid Dynamics (CFD) one needs
to solve the appropriate set of equations to
characterize the flows under consideration. Depending
on the type of flow, one can use different methods and
techniques, each with its strengths and weaknesses,
to accurately capture fluid flow. Many methods are
most suited for specific types of flow; hence the choice
of method will greatly affect the result. For example, it

is well documented that in terms of field simulations,
finite element techniques perform well, especially near
sharp corners, when used in combination with non-
regular elements such as triangles in two-dimensions
and tetrahedrals in three-dimensions. Another example
is the Lattice Boltzmann (LB) method, which performs
well for incompressible flows, porous media, and
turbulence due to its ability to treat boundary
conditions effectively, accurately, and efficiently.
Another example is the Finite Volume (FV) method
which guarantees conservation of flux and performs
well in compressible-flow scenarios.
Once a model is chosen, other factors will affect the
stability and accuracy of the results, such as the
discretization method used to solve a problem. In all
methods, there is a time-evolving geometry and flow,
hence one needs to discretize the spatial and temporal
dimensions, to solve the differential equations that
dictate the flow. Differential equations in fluid flows
usually include macroscopic variables such as density,
velocity, pressure, and energy, which are calculated in
a spatiotemporal evolution.
The results are obtained in files at regular intervals, for
all grid points, hence a time evolution of the
macroscopic quantities can be obtained. In CFD, there
are primitive variables and conserved quantities.
Primitive variables, as mentioned above, are individual
variables that measure a specific quantity. Conserved
quantities are momentum (instead of velocity) and
energy (instead of pressure).
There are various types of boundary conditions,
however the most widely used are the Dirichlet
boundary conditions, which set a fixed value of a
quantity on the boundary, the Neumann boundary
condition which guarantees that the partial derivate of
a quantity normal to the boundary will be constant, the
no-slip boundary condition which sets the velocities of
the flow in all directions to zero and is usually applied
to solid surfaces, and the outflow boundary condition
which forces zero gradient normal to the boundary to
guarantee outflow behavior. Each boundary condition
can be implemented in a different way in each of the
methods being developed such as within the finite
difference, finite element, finite volume, or Lattice
Boltzmann methods, depending on the mathematical
formulation of each method.
To model fluid flows, there are different types of
equations that need to be solved. For example, in the
case of inviscid flows, one only needs to solve the
Euler equations, which are the Navier-Stokes
equations, without the presence of any viscous terms.

http://www.jmest.org/

Journal of Multidisciplinary Engineering Science and Technology (JMEST)

ISSN: 2458-9403

Vol. 10 Issue 4, April - 2023

www.jmest.org

JMESTN42354177 15882

In problems where viscosity does not affect the flow,
one does not need to solve the Navier-Stokes, but only
the simplified form- the Euler equations. For this
purpose, within KYAMOS software, in the Graphical
User Interface, the user is asked to choose the type of
flow to be analyzed and hence choose beforehand the
right solver model to run their simulations. The fact that
one needs to specify the type of simulation model
allows the deployment of dedicated and optimized
solvers, specific to the type of flow. In contrast, a
generic model would need to include multiple methods,
making the solution setup procedure non-optimal and
ineffective.
In every simulation, initial conditions are always
necessary to dictate the initial behavior of the flow.
These initial conditions can drastically influence the
state of the system at later times, and together with the
boundary conditions, will determine the overall
behavior of the flow.

In CFD simulations, one can use regular grids, which
makes the location of centroids, faces and volumes
easier to determine, however it suffers from the ability
to reconstruct sharp corners and surfaces. On the
contrary, one can use non-regular meshes which
allows the capturing of non-uniform obstacles easier,
but includes a randomness in mesh-connectivity and
centroid, face and volume recognitions. Each method
has its advantages and disadvantages. There is no
ideal way to perform simulations as there is always
dependency on the geometry in question and the type
of flow. In case there are sharp corners that affect the
flow, non-uniform grids may be a wiser option, and
where smooth surfaces exist, the regular grid may be
the most preferred method.

C. Introduction to AI

To predict fluid flows, one can solve the differential
equations for the problem in question. However, that
usually takes long waiting times to obtain the results.
In some cases, it is imperative that results are
obtained instantly so that immediate action can be
taken, or even changes to the input of the simulation
that can affect the results. Even though Graphical
Processing Units (GPUs) and Central Processing Units
(CPUs) are becoming increasingly faster, we are
currently unable to provide real live simulations for
medium-sized problems, let alone for large scale
problems. To be able to achieve real live simulations,
we need a groundbreaking alternative method, and
this can be achieved using AI.
AI allows the pretraining of a model with various
conditions beforehand and once the model is ready
and available, it can be used by several users to run
under multiple changed parameters. One prerequisite
is that during the training of the model, these variations
were indeed considered and thus included in the
training procedure.

II. AI THEORY

A. Introduction

A deep learning AI model is usually trained by
going through two distinct phases, the training phase,
and the testing phase. Usually, the pretrained cases
are 70% and above, with the validation cases ranging
from 30% down to 10%. During the training, one must
deal with learning rates which dictate the speed at
which the artificial intelligence network is learning. A
very high learning rate will try to quickly balance,
however may also cause instabilities and deviations
from the solution due to the large steps involved with
optimization towards finding the optimal solution. On
the other hand, a very low learning rate, which is ideal,
will result in long waiting times due to the multitude of
steps that need to be executed, and will sometimes
make the training process unproductive. Hence
appropriate learning rates must be chosen for each AI
model to be trained such that it quickly reaches the
optimized solution, without compromising the stability
of the result. AI usually includes neurons that possess
a weight and a bias, and these weights and biases
need to be trained in a manner such that they produce
the desired result.
A neural network consists of layers that have a specific
purpose, with each layer having several neurons that
have a specific purpose to achieve. There is no golden
rule on how many layers are necessary and how many
neurons on each layer must be included to achieve the
desired result. Hence a trial-and-error design is
necessary to find the minimum required neural network
that can produce the predicted results. Each neuron in
the layer needs to be trained by adjusting its weight
and bias, and this is achieved by using a forward-
backward propagation error correction. Specifically, a
random guess is brought forward, and a prediction is
made according to the current random weights and
biases and interconnections of the neurons. The
predicted result, which in the beginning will be highly
deviated from the actual result is compared with the
actual solution, which is readily available from already
obtained numerical simulations; in this case CFD
simulations. Hence, a direct comparison between the
predicted and the actual results is made and the
difference between the two results is calculated. The
ultimate task is to have this model produce ideally a
zero error. The error uses an optimizer to calculate the
error.
The error is backward propagated through simple
mathematics and changes the weights and biases of
neurons, setting them a step closer to the optimized
solution. To calculate the error, the best widely used
method is the Adams optimizer which is widely used in
AI models. One needs to mention that the error
corrector ensures that the backward correction is in the
right direction towards the solution, and not deviating
away from the solution.

B. Hyperparameters

The hyperparameters are parameters of a machine
learning algorithm that are predetermined, prior to

http://www.jmest.org/

Journal of Multidisciplinary Engineering Science and Technology (JMEST)

ISSN: 2458-9403

Vol. 10 Issue 4, April - 2023

www.jmest.org

JMESTN42354177 15883

training and affect greatly the performance and
behavior of the training algorithm. Such
hyperparameters can be the learning rate, batch size,
number of epochs, regularization strength, and the
architecture of the neural network, which includes the
number of layers of the network, as well as the number
of neurons being used in each of the layers. Since
these hyperparameters have a great impact on the
behavior and performance of the optimization
algorithm, it is important to tune these parameters, and
most times, this exercise is performed through trial and
error. This process is called hyperparameter tuning
and is achieved by systematically varying the
hyperparameters and evaluating the performance
using a validation dataset. This will inevitably involve
multiple operations which are time consuming,
however it is necessary for achieving the desired
result. Each dataset will have its own optimized
hyperparameters and there is no single solution for all
problems. There is a need for better ways to be able to
adjust these values and further research should be
conducted on this topic, since it would greatly impact
AI simulations. It is usually an iterative process, being
time-consuming and computationally expensive, as it
often involves training and evaluating multiple models
with different hyperparameter configurations. However,
hyperparameter tuning is a crucial step in building
effective machine learning models and improves the
performance of the algorithm and leads to more
accurate predictions.

C. Batches

In order not to go back and forth in every sample

with error correction, the trained model is split into
batches. These are groups of results that are used to
find an average error. After each batch, a backward
correction is performed for the weights and the biases.
Batches are subsets of the training dataset that are
processed as one block during the training process.
Instead of training the dataset for each sample by
adjusting the weights and biases, which can be
counterproductive, one can be more efficient by
training the weights and biases at more irregular times,
achieving more or less the same result, without the
cost of frequently going back and forth adjusting the
weights and biases. The batch size is a
hyperparameter that will depend on the size and
complexity of the dataset, the available hardware
resources, as well as the complexity of the neural
network architecture. A large batch size will result in
faster training times, but may result in overfitting or
memory issues, as the network may start to memorize
the training set, rather than learning generalizable
patterns. On the other hand, smaller batch sizes will
result in slower training times, but more stable training
and better generalization performance as the network
is forced to learn from a more diverse set of examples
in each batch. As a rule of thumb, it is always best to
run as large batch sizes as possible, and to ensure
that overfitting does not occur.

D. Epochs

In neural networks, epoch is defined as one
complete iteration usage of the whole training dataset.
Multiple epochs occur when the whole training dataset
is used multiple times to train the model until the result
is optimized. It can also be considered as a full pass
through all the training dataset. The number of epochs
will greatly affect the accuracy and stability of the
predicted results and must be tuned accordingly such
that we do not overtrain or undertrain the model. In this
case, two scenarios may occur, those of underfitting or
overfitting. Underfitting occurs when the number of
epochs is far from the optimized and the weights and
biases are not given enough chance to optimize
themselves. In the case of overfitting, by running
many more epochs than required, the network may
end up memorizing the training dataset and hence
being unable to predict differentiable results on new
data. To avoid overfitting or underfitting the data, it is
important to monitor the performance of the network
on a validation set during the training process and stop
the training process when the performance on the
validation set starts to degrade. Practically speaking,
most of the time, the optimal number of epochs is
obtained through trial and error. The ideal epoch
number will be affected by the network architecture,
the complexity and size of the dataset and the choice
of the optimization algorithm to be used, as well as
learning rates to achieve the best possible
performance.

III. UNET THEORY

A. Introduction

The UNET AI model was proposed by Olaf
Ronneberger, Philipp Fischer, and Thomas Brox at the
University of Freiburg in Germany in 2015. It is an
image segmentation technique that partitions the
image into multiple segments, with each segment
corresponding to a different region of the image. It was
used by the authors in medical imaging applications to
segment anatomical structures or identify
abnormalities within the body. The basis of UNET is a
convolutional neural network, hence it consists of
convolutional layers and no fully connected layers.
This absence of fully connected layers allows the
network to be trained fast and efficiently and can
handle images of variable size. It consists of two main
parts, the part of the encoder and the part of the
decoder. The encoder processes the input image
through a number of convolutional layers, with the sole
purpose is to gradually decrease the spatial resolution
of the image, while at the same time, increasing the
number of feature maps. Hence, the output of the
encoder encompasses a set of feature maps that can
capture the high-level semantic information of the
image, for example image features. Then the image is
passed to the decoder, where it takes the feature
maps and output of the encoder and uses up-sampling
in various stages, such as to reconstruct the original

http://www.jmest.org/

Journal of Multidisciplinary Engineering Science and Technology (JMEST)

ISSN: 2458-9403

Vol. 10 Issue 4, April - 2023

www.jmest.org

JMESTN42354177 15884

size of the input image, by using transposed
convolutional layers.
To allow the network to propagate fine-grained details
from the encoder to the decoder, the decoder
incorporates skip connections by concatenating the
feature maps from the encoder with the corresponding
feature maps from the decoder at each stage of the
up-sampling process. This enables the decoder to
refine the segmentation boundary based on the
detailed information from the encoder, ensuring that no
features have been lost during the encoding process.
UNET has a unique ability to deal with small training
datasets by using data augmentation, that involves
applying various image transformations to the input
image and the corresponding segmentation masks,
such as rotations, flips, and scaling. This generates
new samples of the original dataset, and it can learn
more features of the images, where they wouldn’t be
without this process.
A Softmax activation function that is used in the output
layer of the UNET network, produces a probability
distribution over the different classes at each pixel
location, which allows UNET to handle multi-class
segmentation problems. This is another advantage of
the UNET model, in cases when a pixel in the image
belongs to several different types of classes, and not
just one. Summarizing, UNET is a very versatile AI
model which is highly effective in image segmentation.
It is based fully on convolutional principles, avoiding
fully connected layers. The utilization of skip
connections enables it to learn robust features and
refine the segmentation boundary based on detailed
information from the input image. Its two main
advantages are its ability to handle small datasets and
multi-class segmentation problems.

B. UNET in CFD

Even though UNET has been used as a neural
network architecture in a range of applications, it has
also been used in Computational Fluid Dynamics
(CFD) for simulating the fluid flow and heat transfer
phenomena in various engineering applications. UNET
has recently gained increased popularity due to its
ability to segment and analyze complex geometries
and predict the flow around structures efficiently in
terms of speed and accuracy.
As mentioned before, UNET’s ability to segment and
extract important macroscopic features from two and
three-dimensional simulations such as speeds,
pressure, temperatures, energy, and velocities,
emanates from its ability to handle large and complex
datasets, as well as its flexibility in handling multi-class
segmentation problems. Examples of sophisticated
complex problem solving, is its ability to analyze
complex flow structures, such as vortices, wakes and
turbulent jets.
To analyze these structures, the UNET model can be
trained to segment the flow field into different regions
based on the characteristics of the flow, such as
velocity magnitude, direction, and vorticity. This can
provide valuable insights into the dynamics of the flow

and help identify areas of high turbulence or energy
dissipation.
UNET is also good in identifying hotspots or regions of
high heat transfer in heat transfer phenomena, since
they would appear as a feature on the image of a
temperature distribution result, with direct application
in the optimization and design of heat exchangers,
combustion systems, etc.
UNET overall is able to capture effectively complex
flows and heat transfer phenomena by handling large
and complex datasets, while at the same time handling
multi-class segmentation problems and can be an
ideal choice for CFD analyzing and optimizing
phenomena.

IV. LITERATURE REVIEW ON UNET

The authors used supervised neural networks to
predict two-dimensional velocities and pressure fields
in laminar flows around arbitrary shapes. The
aforesaid fields were obtained via a CFD solver for the
Navier-Stokes equations. The data-trained U-net
architectures were tested based on their predictive
ability for unseen shapes, utilizing ad hoc error
functions. The results do not show a clear advantage
for predictions of field maps, but the U-nets do indeed
produce reasonably accurate results [1].
Vinuesa et al. [2] depict that machine learning is
rapidly becoming a core technology in scientific
computing, and especially computational fluid
dynamics. They discuss applications of AI to
accelerate direct numerical simulations, to improve
turbulence closure modeling and to develop enhanced
reduced-order models. The emerging promising areas
of machine learning are also discussed, and the
potential limitations of AI are discussed as well,
including the UNET model used by the authors of this
paper.
In another paper [3], the question “if, how and why an
AI can learn about turbulence” is addresses by using
the results of Direct Numerical Simulations (DNS)
regarding turbulent channel flow and applying deep
learning techniques. The analysis is focused on wall
data, with the assumption that a multilayer nonlinear
network can express the local heat flux normal to the
wall by including pressure fluctuations and shear
stresses, quantities based on which a prediction of the
local heat flux is done via convolutional neural
networks (CNNs). The authors find a very high
correlation (0.980) between the DNS and CNN results.
Similar correlation coefficients were observed even at
Reynolds number three times larger than the trained
Reynolds number of 180. During post training, the
gradient maps of the network gave insight to essential
inputs for correct predictions of the local heat flux, as
well as for the spatial relationship of this quantity and
nearby input fields. An investigation of the usefulness
of the model to describe turbulence was also
performed with some evidence that it may provide
some insight.
CFD simulations for engineering problems are
computationally demanding and the most common

http://www.jmest.org/

Journal of Multidisciplinary Engineering Science and Technology (JMEST)

ISSN: 2458-9403

Vol. 10 Issue 4, April - 2023

www.jmest.org

JMESTN42354177 15885

deep learning methods are not precise enough. A
novel deep U-shaped network-long short-term memory
(U-Net-LSTM) framework is proposed for fast
hydrodynamic prediction. The results agree with CFD
simulations with good predictive ability. Comparison
with traditional methods showed significantly lower
errors and computational power demands are highly
reduced, making the method attractive [4].
The authors propose a modified U-Net neural network
architecture that utilizes multigrid methods (U-Net-
MG). Using this method, the work shows a reduction in
the Root Mean Square Error (RMSE) between 20%-
70% compared to the unmodified U-Net model and an
improved predicting ability of velocity and pressure
fields in the case of canonical fluid dynamics for flows
past a stationary cylinder, in 2 out-of-phase moving
cylinders and past an oscillating airfoil. Both methods,
however, have a lower than 1% RMSE [5].
High computational times and memory-demand of
CFD solvers have pushed researchers towards neural
network, deep learning algorithms, trained by CFD
data. In this work, the authors modelled
incompressible laminar flow around objects in two
dimensions over generated interpolated grid feature
data using a deep U-Net model. The results showed a
good agreement between the CFD solver FEATool
and the U-Net model, also showing accurate
representation of the pressure and velocity fields for
the tested shapes [6].
In this work, the Navier-Stokes equations are solved
with direct numerical simulation, as well as a large-
eddy simulation to better model two-dimensional
turbulence using deep learning. Referring to both
simulation methods, a numerical method that has a ten
times higher resolution and is forty to eighty times
faster computationally, while maintaining the accuracy
of common finite volume or finite difference methods is
presented. Thus, as the authors suggest, this machine
learning approach opens the door to large-scale
modelling processes [7].
This paper proposes a novel AI method that uses deep
learning to model fluid flow both locally and globally,
while incorporating velocity and pressure, as well as
adjustable boundary conditions. The authors claim that
their method -namely “CFDformer” performs better
than U-Net and TransUNet methods and is able to
represent pressures and velocities in flows different
than the ones that were used to train the model [8].
In this work, the authors try to bypass the
computational cost of CFD simulations by employing
Convolutional Neural Networks (CNNs) as well as U-
Net. The model is trained offline with a very
computationally demanding data processing. Post-
training evaluations of neural networks on scenarios
used to train the model requires very low
computational power. Fluid flow around shapes is
explored where the error of the approximations is
within 3% margin. Generalization of the model to new
data yields good results with an average error of 10%
margin [9].
The authors in this paper [10] try to predict steady fluid
flows around numerus fixed cylinders using deep

learning and machine learning. The model takes as
input the cylinder arrangement and outputs the x- and
y- components of the velocity fields. Testing the model
shows accurate prediction of the flow when the
scenario to be modelled has a similar number of
cylinders as the ones used to train the model. When a
scenario with smaller number of cylinders is tested, the
model does not perform well. The authors suggest that
this model can be generalized and performs well when
a larger number of cylinders is used.
In another work [11], the authors propose a network
and training strategy through data augmentation. The
procedure uses a symmetric expanding path for
precise localization and a contracting path which
captures context. The award-winning strategy
outperforms existing best practices in the field of
biomedicine by less-than-one-second segmentation of
a 512x512 image on a modern GPU.
In the context of geological data, this work [12]
proposes a deep learning surrogate time-dependent
model for to predict two-dimensional dynamic
multiphase flow, which incorporates a residual U-net
and an autoregressive procedure, with each step of
the algorithm being dependent on the previous. The
authors suggest that their model, while working with
fewer parameters, can achieve similar or improved
predictions with also fewer training data.
As physics-based simulation in multiphase flows are
computationally expensive, in this work [13], the
authors have developed an efficient physics-
constrained deep learning model in 3D to tackle the
issue. By utilizing the predictive abilities in spatial
topology of U-Net, the model takes in the properties of
the porous media, fluid properties and well controls to
produce predictions of the spatio-temporal evolution of
pressure and saturation. The three-dimensional
problem is first reduced to two-dimensional to be more
efficient by lowering computational costs. Calculations
of well flow rate are done in a separate postprocessor
model by considering the predicted values of the state
variables. When contrasted to physics-based
simulations, the proposed method is about 1,400 times
faster with low average temporal errors for the
predicted state variables; 0.27% for pressure and
0.099% for saturation. Well flow rate has an error of
less than 5%. The scheme copes with high fidelity fluid
flows and can be used efficiently to model
computationally expensive inverse problems.

V. AI SIMULATED RESULTS

In this section, the results are presented from the
utilization of the UNET network developed to predict
the shock propagation inside a shock tube. To achieve
this, 5,000 images from 50 simulations were generated
for each of the input and output parameters that are
used to train the model. The AI predicted results are in
very good agreement with the FV-TVD results.
A direct comparison of the FV-TVD and the UNET is
shown below in Fig. 1 and Fig. 2. They depict the
density distribution of the shock wave inside the Sod
shock tube at time t = 0.42 s, when the initial density

http://www.jmest.org/

Journal of Multidisciplinary Engineering Science and Technology (JMEST)

ISSN: 2458-9403

Vol. 10 Issue 4, April - 2023

www.jmest.org

JMESTN42354177 15886

and rho are 0.919 kgm
-2

 on the left and 0.183 kgm
-2

 on
the right of the diaphragm, and the pressure is 0.929
Pa on the left and 0.166 Pa on the right of the
diaphragm. Specifically, Fig. 1 shows the result
obtained from an in-house innovative FV-TVD scheme
developed by the authors, whereas Fig. 2 shows the
predicted results from the UNET AI model. By
conducting a direct comparison, it is shown that the
UNET model developed is in very good agreement
with the predicted FV-TVD results. Hence, we can
confidently use AI predictions to calculate the density
distribution in a Sod shock tube problem. The UNET
model can be extended to work in various other
conditions, for example time evolutions, as well as into
other initial conditions, boundary conditions and under
very different physics. What is important is that the
UNET model has shown remarkable accuracy in
predicting the fluid flow in this specific case.

Fig. 3 below shows the error as a result of the
difference in density between the FV-TVD and AI
UNET models. It is shown that the error mostly occurs
around the shock, where its maximum value is 0.16.
This value of the error is very small and can be
considered adequate for predicting simulations. By
tuning the hyperparameters and feeding the model
with a larger dataset, it is expected that more accurate
results from the UNET model can be generated.

Below in Fig. 4, we present the velocity distribution as
a result of the Sod shock tube from the FV-TVD
method. Additionally, in Fig. 5, for comparison
purposes, we present the predicted results for the
velocity based on the UNET AI model. It is shown that
by comparing the two graphs, there is adequate
agreement between them. Likewise with the density,
the pressure also shows the larger differences around
the shock.

Below, in Fig. 6, the error as a result of the velocity
difference between the FV-TVD and AI UNET models
is presented. It is shown that the error mostly occurs
around the shock, where its maximum value is 0.175.
This value of the error is very small, as for the density
and can be considered adequate for predicting
simulations. Again, by fine tuning the
hyperparameters and feeding the model with a larger
dataset, it is expected that more accurate results from
the UNET model can be generated.

Below in Fig. 7, the pressure distribution emanating
from the Sod shock tube from the FV-TVD method is
presented. Additionally, in Fig. 8, for comparison
purposes, we present the predicted results for the
pressure distribution based on the UNET AI model. It
is shown again that by comparing the two graphs,
there is adequate agreement between them.

Fig. 1 Density plot for the Sod shock wave tube using the FV-TVD method

at time t = 0.42 s.

Fig. 2. Density plot for the Sod shock wave tube using the UNET method at

time t = 0.42 s.

Fig. 3. Density error plot between AI-UNET predicted and real FV-

TVD simulations at time t = 0.42 s.

Fig. 2 Velocity plot for the Sod shock wave tube using the FV-TVD

method at time t = 0.42 s.

Fig. 3. Velocity plot for the Sod shock wave tube using the UNET

method at time t = 0.42 s.

Fig. 4 Velocity error plot between AI-UNET predicted and real FV-

TVD simulations at time t = 0.42 s.

http://www.jmest.org/

Journal of Multidisciplinary Engineering Science and Technology (JMEST)

ISSN: 2458-9403

Vol. 10 Issue 4, April - 2023

www.jmest.org

JMESTN42354177 15887

Finally, in Fig. 9 the error as a result of the difference
in pressure between the FV-TVD and AI UNET
models is presented. It is shown that the error mostly
occurs around the shock, where its maximum value is
0.06. This value of the error is the smallest out of the
three distributions, which shows that the UNET AI
model can capture the pressure distribution better
than the density and velocity.

VI. CONCLUSIONS

In this paper, we provided a direct comparison
between the results emanating from an innovative FV-
TVD scheme and an AI UNET model. A direct
comparison is conducted between the results,
calculating the error between expected and predicted
results. It was shown that the AI UNET model is more
than capable of capturing and predicting the results of
fluid flows, i.e., of the density, velocity and pressure
with the errors emanating to be acceptable for fluid
flow simulations. Further work should be conducted in
investigating the effect of the hyperparameters such
as of the learning rate, batch size, number of filters,
and the number of the input datasets and number of
epochs.
 ACKNOWLEDGMENT

This work was co-funded by the European Regional

Development Fund of the European Union and the

Republic of Cyprus through the Research and Innovation

Foundation (Project: REALISATION-COMPRESSIBLE-

GPU-ΑΙ CONCEPT/0521/0045).

REFERENCES

[1] J. Chen, J. Viquerat, and E. Hachem, "U-net

architectures for fast prediction in fluid mechanics,"

2019.

[2] R. Vinuesa and S. L. Brunton, "Enhancing

computational fluid dynamics with machine learning,"

Nature Computational Science, vol. 2, no. 6, pp. 358-

366, 2022.

[3] J. Kim and C. Lee, "Prediction of turbulent heat transfer

using convolutional neural networks," Journal of Fluid

Mechanics, vol. 882, p. A18, 2019, Art. no. A18.

[4] Y. Hou, H. Li, H. Chen, W. Wei, J. Wang, and Y.

Huang, "A novel deep U-Net-LSTM framework for

time-sequenced hydrodynamics prediction of the

SUBOFF AFF-8," Engineering Applications of

Computational Fluid Mechanics, vol. 16, no. 1, pp. 630-

645, 2022/12/31 2022.

[5] Q. T. Le and C. Ooi, "Surrogate modeling of fluid

dynamics with a multigrid inspired neural network

architecture," Machine Learning with Applications, vol.

6, p. 100176, 2021/12/15/ 2021.

[6] T.-T.-H. Le, H. Kang, and H. Kim, "Towards

Incompressible Laminar Flow Estimation Based on

Interpolated Feature Generation and Deep Learning,"

Sustainability, vol. 14, no. 19, p. 11996, 2022.

[7] D. Kochkov, J. A. Smith, A. Alieva, Q. Wang, M. P.

Brenner, and S. Hoyer, "Machine learning–accelerated

computational fluid dynamics," Proceedings of the

National Academy of Sciences, vol. 118, no. 21, p.

e2101784118, 2021.

[8] H. Kang et al., "A new fluid flow approximation method

using a vision transformer and a U-shaped convolutional

neural network," AIP Advances, vol. 13, no. 2, p.

025233, 2023.

[9] M. Eichinger, A. Heinlein, and A. Klawonn, "Stationary

flow predictions using convolutional neural networks,"

in Numerical Mathematics and Advanced Applications

ENUMATH 2019: European Conference, Egmond aan

Zee, The Netherlands, September 30-October 4, 2020,

pp. 541-549: Springer.

[10] H. Ozaki and T. Aoyagi, "Prediction of steady flows

passing fixed cylinders using deep learning," Scientific

Reports, vol. 12, no. 1, p. 447, 2022/01/10 2022.

[11] O. Ronneberger, P. Fischer, and T. Brox, "U-net:

Convolutional networks for biomedical image

segmentation," in Medical Image Computing and

Computer-Assisted Intervention–MICCAI 2015: 18th

International Conference, Munich, Germany, October 5-

9, 2015, Proceedings, Part III 18, 2015, pp. 234-241:

Springer.

[12] Z. Jiang, P. Tahmasebi, and Z. Mao, "Deep residual U-

net convolution neural networks with autoregressive

strategy for fluid flow predictions in large-scale

geosystems," Advances in Water Resources, vol. 150, p.

103878, 2021/04/01/ 2021.

[13] B. Yan, D. R. Harp, B. Chen, and R. Pawar, "A physics-

constrained deep learning model for simulating

multiphase flow in 3D heterogeneous porous media,"

Fuel, vol. 313, p. 122693, 2022.

Fig. 5 Pressure plot for the Sod shock wave tube using the FV-TVD

method at time t = 0.42 s.

Fig. 6 . Pressure plot for the Sod shock wave tube using the UNET

method at time t = 0.42 s.

Fig. 7 Pressure error plot between AI-UNET predicted and real FV-

TVD simulations at time t = 0.42 s.

http://www.jmest.org/

