
Journal of Multidisciplinary Engineering Science and Technology (JMEST) 

ISSN: 2458-9403 

Vol. 10 Issue 1, January - 2023  

www.jmest.org 

JMESTN42354141 15730 

Pulse-echo Measurement Systems - A Mini 
Review 

Jaemyung Ryu 
Department of Optical Engineering 

Kumoh National Institute of Technology 
Gumi, South Korea 

ryujaemyung2019@gmail.com 

ARTICLE INFO  

Article history 
Received: Dec. 11th, 2023 
Revised: Jan. 8th, 2023 
Accepted: Jan. 25th, 2023 
Published: Jan. 31th, 2023 

Abstract—Pulse-echo measurement systems 
using optical, radio frequency, and acoustic 
sources have been widely used to detect the fault 
and crack of the desired target materials because 
of repair and condition of the materials. Recently, 
some pulse-echo measurement systems have 
been widely used combined with several sensor 
devices. Especially, the pulse-echo measurement 
systems with acoustic sources could provide real-
time, non-invasive, and cost-effective solutions. In 
this review paper, several commercial pulse-echo 
measurement systems were introduced. 
Therefore, this review paper could provide some 
guidance how to handle and utilize the acoustic-
based pulse-echo measurement systems and to 
optimize the performances of the pulse-echo 
measurement system electronics. 

Keywords—pulse-echo response; fault and 
crack; measurement system 

I.  INTRODUCTION  

Among the medical imaging instruments, X-ray, 
magnetic resonance imaging (MRI), optical imaging, 
single photon emission computed tomography 
(SPECT), positron emission tomography (PET), X-ray 
based computed tomography (CT), and ultrasound 
imaging are most common imaging solutions [1-16]. 
These medical diagnostic, therapeutic, and imaging 
instruments are commercialized over 60 years [7, 17-
25]. Especially, the MRI, CT, PET, and ultrasound 
imaging are commonly used in the hospitals and their 
market shares are still increasing especially in the Asia 
because of the recent semiconductor integrated circuit 
technology and deep learning technology [26-42].  

  Compared to optical imaging, ultrasound imaging 
techniques could obtain the images from deep area 
due to the characteristics of the acoustic signals which 
can penetrate to the materials [43-51]. Because most 
optical lights could be scattered in the surfaces and 
only some lights could be penetrated into the target, 
the optical imaging could provide functional information 
with high contrast [52-56]. The optical absorption 

characteristics need to utilize the light beam due to 
different light wavelengths [57-61]. The penetration 
depth of the materials is related with absorption 
coefficient such as oxy-hemoglobin, lipid, melanin, 
collagen, and elastin. The optical beam needs to be 
passed through several optical components and 
delivered to the target [62-66]. Compared to optical 
imaging, the ultrasound imaging could provide 
structural information with high spatial resolution and 
low contrast [67-70]. Therefore, the photoacoustic 
instruments combined with optical and ultrasound 
techniques were developed to use mutual advantages 
of the optical and ultrasound imaging such as high 
contrast and spatial resolutions [71-75]. 

Ultrasound instruments have been widely accepted 
because they provide real-time image processing 
capability, relatively low cost, non-ionized, and non-
invasive functions [76-78]. For ultrasound imaging 
systems, portable or mobile type medical ultrasound 
imaging machines are widely used in the industry and 
hospitals [79-83]. For such small size mobile imaging 
machines, synthetic aperture imaging methods are 
supported to be utilized for array type transducers [84-
86]. The acoustic signals are transmitted to the soft 
tissues in the human body and reflected or refracted 
from the materials which have different acoustic 
impedances [87-92].  

The received acoustic signals are reconstructed to 
obtain the images. Basically, this concept was 
developed from radar system of the communication 
instruments or sonar from submarine [93-96]. The 
medical ultrasound imaging adopted this concept. The 
essential devices in the ultrasound imaging systems 
are ultrasonic array transducers so the scanning 
techniques are used [97-99]. 

 The scanning techniques are utilized in the 
medical ultrasound diagnostic instruments [100-102]. 
The scanning methods are composed of the electrical 
and mechanical scanning methods. The electrical 
scanning methods are composed of linear, sector, and 
phase methods. Mechanical scanning methods are 
also composed of liner and sector scanning methods. 
These scanning methods are coming from radar 
system techniques [103-105]. To test the 
performances of developed imaging solutions like 
ultrasound imaging, the pulse-echo measurement 
systems are utilized accordingly [106-108].  
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Section II describes the main devices of the pulse-
echo measurement system. In section II, the 
beamforming techniques using array transducer is 
described because the pulse-echo measurement 
systems utilize the beamforming techniques. Section 
III describes the electronics for the pulse-echo 
measurement systems. Section IV describes the 
commercial pulse-echo measurement systems. In 
section IV, the specific process and operating 
mechanisms of the pulse-echo measurement systems 
with some commercial instruments are described. 
Section V is the conclusion of the paper.  

 

II. DEVICES FOR PULSE-ECHO MEASUREMENT 

SYSTEMS 

The main devices of the pulse-echo measurement 
system are fundamental array transducer [109-111]. 
The linear, convex, curvilinear, phased, and sector 
array type transducers are categorized depending on 
the structures and applications [112-114]. In the array 
transducers used in the medical ultrasound systems, a 
linear array transducer is mainly used for shallow 
areas, convex array transducer is used for human 
abdomen, and phase array transducer is used for deep 
heart area [115-117]. 

The theory of the beam-forming measurement 
method is briefly introduced with respect to the 
electrical scanning, focusing, steering, and 
transmission principles [118-120]. The ultrasonic beam 
transmitted from one ultrasonic array transducer 
element in medical ultrasonic diagnostic instruments 
spreads over a fairly wide ranges so the resolution of 
the instruments can hardly be obtained with only one 
element [121-123]. When forming the ultrasonic beam 
on an arbitrary point, the ultrasonic beam radiated from 
each element at the focal point or focal distance must 
be constructive interference [124-126].  

The ultrasonic waves from each element at the 
focal point must have the same phase and reach the 
desired targets at the same time [41, 127, 128]. At the 
focal points or focal distances, the amplitudes of the 
beam will be maximized compared to the surrounding 
areas out of the focal points so the amplitudes of the 
ultrasonic beam are relatively reduced due to beam 
cancellation or interference [129-131]. Therefore, the 
signal transmission generated from each ultrasonic 
transducer array element must have appropriately 
different delay time which we call focusing delay [132-
134]. 

In the beam-forming measurement technique, a 
beam is made into the desired beam shape to be 
focused, thus improving the spatial resolution of the 
ultrasonic instruments [135-137]. In the medical 
ultrasound diagnostic instruments, beam-forming 
techniques are important because they can determine 
the ultrasound image resolutions [138-140]. The 
performances of the array transducers have also great 
influences of the ultrasound image resolutions [141-
143]. When transmitting ultrasonic signals, each array 

transducer element produces the transmit pulse [144-
146]. The beam generated from each transducer 
element could be reached to the focal point at the 
same time, resulting in focusing the ultrasonic beam in 
the desired focal points [147-149]. On the other hand, 
the time delay is applied to the ultrasonic echo signal 
received by each element to unify the time delay when 
ultrasonic echo signal is received [150-153]. When all 
the received signals are added together, they become 
coherent summation which we called delay-and-sum 
receiving focusing [154-156]. In the pulse-echo 
measurement system, ultrasound beam needs to be 
focused. 

 

III. ELECTRONICS FOR PULSE-ECHO MEASUREMENT 

SYSTEMS 

The fundamental pulse-echo measurement 
instruments except several beam-forming and control 
electronics will be described [157-160]. The electronics 
for pulse-echo measurement systems are transmitter, 
receiver, and control electronics [161-163]. The 
transmitter needs to produce the single unipolar pulse 
or multi-cycle pulse. We called a pulser which can 
produce the uni-polar pulse and a power amplifier 
which can produce the multi-cycle pulse [164-166]. 
The transmitter can be used to trigger the ultrasonic 
transducer which generates the acoustic signals [166]. 
The transmitted acoustic signals are delivered to the 
target in the water tank. The returned acoustic echo 
signal is converted to the electrical echo signal through 
the ultrasonic transducer. The obtained electrical echo 
signal is processed through the receiver electronics.  

The receiver needs to filter out the noise signals or 
amplify the weak echo signals generated from the 
ultrasonic transducers [167-171]. The analog-to-digital 
converter (ADC) or digital-to-analog converter (DAC) 
are used to support the transmitter or receiver, 
respectively [172-176]. The DAC is used to convert the 
digital signal controlled by the computer to the analog 
signal. This analog signal is the input of the 
transmitter. The ADC is used to convert the received 
analog echo signal to the digital echo signal. The 
control electronics are simply called beam-forming 
electronics [177-179]. The beam-forming electronics 
are transmitting and receiving beam-forming 
electronics which control the transmitter and receiver 
electronics, respectively [180-182]. These beam-
forming electronics control the whole transmitter and 
receiver electronics with proper timing control because 
the pulse generation and echo generation time should 
not be merged. Otherwise, the received acoustic echo 
signal waveforms in the pulse-echo measurement 
system could not be properly obtained. 

The most commercial transmitters/receivers are 
called pulse-echo or pulser-receiver made from 
Olympus Inc., Verasonics Inc., and Imaginant Inc., The 
companies of the Olympus Inc. and Imagniant Inc. 
usually provide the positive or negative uni-plor single 
pulser combined with receiver. The pulser-receiver 
made from the Olympus Inc. and Imagniant Inc., is 
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composed of the pulser and receiver. The receiver is 
composed of the preamplifier and filter.  The Vantage 
system made from Verasonic Inc., is composed of the 
pulser, power amplifier, and receiver including imaging 
processing electronics. The Vantage system utilizes 
the pulser and power amplifier which can generate the 
single uni-polar pulse and multiple pulse together. In 
the Vantage system, there are beam-forming 
electronics including ADC and DAC electronics to plot 
the ultrasound images in the computer.  

 

IV. PULSE-ECHO MEASUREMENT SYSTEMS 

This section will describe the commercial pulse-
echo measurement systems. Genesis Inc. recently 
developed the automatic pulse-echo ultrasound 
measurement system with robotic arm for other 
applications such as transportation and aerospace 
applications. The developed pulse-echo system could 
be used to detect the flaws of the structures in the 
materials or pipelines using ultrasonic array 
transducers [183]. In 2016, real-time mobile scanning 
function supported pulse-echo laser-ultrasonic 
transmission imaging instrumentation was developed 
[183]. That system could be used as in-situ and in-
process non-destructive testing equipment.  

Onda Corporation provides the pulse-echo 
measurement system which they called acoustic 
intensity measurement system (AIMS). AIMS is one of 
the pulse-echo systems for ultrasound transducers and 
system evaluation tool. The AIMS system follow the 
internationally recognized guidelines which are 
standard procedure for diagnostic ultrasound systems 
such as AIUM-NEMA, UD-2/UD-3, IEC 60601-2-37, 
IEC 62127-1, and IEC 62359 [184]. Acertara 
Corporation also provided similar system which they 
called acoustic measurement system (AMS). The AMS 
system follow the internationally recognized guidelines 
such as NEMA UD 2, NEMA UD 3, IEC 60601-2-37, 
EN 45502-1, IEC 61847, and ISO 147081-1.  

In the pulse-echo measurement system, the 
ultrasound array transducers and fixtures support the 
x, y, and z axes with tilt, azimuth, and elevation 
directions which are five axes directions [185-187]. In 
these systems, users could use the programs from the 
personal computer to control the ultrasonic array 
transducers with LM guide structure and supporting 
position indicators [188-191]. When testing the 
materials in the pulse-echo measurement system, the 
ultrasonic array transducer and hydrophone need to be 
aligned. The control boxes could provide the alignment 
process. In the pulse-echo measurement system, the 
holder needs to move from left to right and top to 
bottom. The transmitted acoustic signals generated 
from the ultrasonic transducers are approached into 
the ultrasound hydrophone sensor located in the 
bottom of the pulse-echo system. The motor controller, 
digital oscilloscope, arbitrary function generator or 
signal generator are also used. The temperature 
monitoring sensor with control motion board is also 
included because the water temperature need to be 

controlled all the time for accurate performance 
measurement with ultrasonic transducer and 
ultrasound system. The received acoustic signals are 
extracted using MATLAB or Microsoft EXCEL 
programs in the computer.  

 

V. CONCLUSION 

This review paper briefly provide the information of 
the pulse-echo measurement system with electronics 
information of the system. The pulse-echo 
measurement system is recently widely used to 
estimate the performances of the developed ultrasonic 
transducers or ultrasound system electronics or find 
the flaws or cracks of the materials. The pulse-echo 
measurement system is composed of the transmitter, 
receiver, control electronics, and ultrasonic 
transducers with some beam-forming algorithms.  

In the pulse-echo measurement system, the 
transmitter and receiver electronics with beam-forming 
techniques are utilized to align the ultrasonic 
transducers and hydrophone with target materials. 
This alignment process is performed with control box 
electronics in the water tank. After alignment process, 
the received echo signals could be processed to obtain 
the crack or fault images of the materials. Therefore, 
customers could analyze the material status. 

Several companies commercialize the pulse-echo 
measurement system for research and industry 
purpose. However, there are no detail information 
about the concept, construction methods, and beam-
forming algorithms which are useful for the ultrasonic 
transducer engineers because customers just utilize to 
evaluate the performances with the regulations of the 
ultrasonic transducers. The commercial pulse-echo 
measurement systems include some internally 
recognized guidelines with manual as mentioned 
before.  

In this review paper, the descriptions and 
guidelines of the special ultrasound system could be 
provided with evaluation tools in the pulse-echo 
measurement system so the customers or users could 
provide some useful reports about various ultrasound 
data. However, these companies do not provide the 
detail construction methods. Therefore, this review 
paper could be useful guidance for the engineers who 
developed the pulse-echo measurement system 
commercialization. 
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