Simulated Grid-Connected Roof-Top Solar Power System Analysis: Case Study Of Superstore Building In Akwa Ibom

Clement, Kingsley Bassey¹

Department Of Electrical/Electronic And Computer Engineering, University of Uyo, Akwa Ibom State Nigeria kingsleyclement@uniuyo.edu.ng

Philip M. Asuquo²

Department Of Electrical/Electronic And Computer Engineering, University of Uyo, Akwa Ibom State Nigeria philipasuquo@uniuyo.edu.ng

Udoiwod, Emmmanuel Nsese³ Department Of Electrical/Electronic And Computer Engineering, University of Uyo, Akwa Ibom State Nigeria eudoiwod@gmail.com

Abstract- In this paper, simulated gridconnected roof-top solar power system analysis is presented and the case study was a superstore building in Akwa Ibom. The effective rooftop area for PV array installation at the case study superstore was about 18 m^2 , the load demand was 33460 Wh per day and the horizontal global irradiation at the site was 1717.2 kWh. m^2 per month. The analysis was implemented using **PVSvst** solar power simulation software. According to the results, a total of 10 PV modules are required and this gave a total PV array module area of 16.4 m^2 and array cell area of 14.4 m^2 . The power system has total energy production of 4305 kWh/year, the performance ratio of 82.84 % and solar fraction of 32.57 %. The operating efficiency of the PV modules was 17.99 % with respect to cell area which is different from the quoted value 21.12 % on the PV datasheet. Also, the of operating efficiency of the PV modules was 15.70 % with respect to module area which is different from the quoted value of 18.44 % on the PV datasheet.

Keywords— Grid-Connected, PVSyst software, PV Array, Irradiance, Roof-Top Solar Power

1. INTRODUCTION

In the recent decades, the rising harmful impact of fossil fuel-based energy generators has prompted the global call for the adoption of more environmentally friendly energy sources [1,2, 3,4, 5,6,7,8,9,10,11,12,13]. While there are many options, in Nigeria, the most popular clean energy source in the solar of which photovoltaic option is the most dominant [14,15,16,17,18,19,202,21,22,23,24]. In

this wise, photovoltaic (PV) panels are installed and used to capture solar energy and converts same to electric energy [25,26,27,28,29,30]. While such approach is good, the solar panels occupy space, especially due to the low conversion efficiency the PV panels and hence relatively large area of space that is needed to accommodate the solar panels for large energy harvest.

In order to conserve space while still adopting the solar PV option, rooftop installed PV panels are now being used in many places [31,32,33,34,35,36]. This is particularly useful in the cities where space is very scares and expensive. As such, in this paper, the focus is to determine the amount of energy generated from the available rooftop and also the operating efficiency of the rooftop installed PV panels. The PVSyst software is used in the study and it also used to generate other relevant performance parameters of the PV installation. The case study used was a superstore building in Akwa Ibom State in Nigeria.

2 METHODOLOGY

The effective area of the roof (A_{PVT}) is determined from the available roof area (A_{RFA}) after applying the various reduction factors, namelyr_{flat} (flat roof reduction factor, $r_{flat} = 1$), r_{peak} (peaked roof reduction factor usually, $r_{peak} = 0.5$), f_0 (roof inclination reduction factor), f_s (unused and shaded roof area reduction factor roof area, typically, $0.3 \le f_s \le 0.9$), f_{flat} (flat roof fraction) and f_{peak} (peaked roof fraction). Then

$$A_{PVT} = (f_o)(f_s)(A_{TRF}) \tag{1}$$

Where,

$$f_{o} = (f_{flat})(r_{flat}) + (f_{peak})(r_{peak})$$
(2)

The tilt angle, β_{opt} for optimal solar radiation capture on the PV module is calculated as follows;

$$\beta_{opt} = 3.7 + 0.69 |\varphi| \tag{3}$$

Where φ is denotes the site latitude.

Researches have shown the cell temperature (T_{cell}) affect the PV module output. Furthermore, the ambient temperature (T_a) , the absorption coefficient (α), the irradiance (G) incident on the PV module plane and the standard test condition module efficiency (η_{PVSTC}) all affect the cell temperature which is determined in this paper using the Faiman PV temperature model, where;

$$T_{cell} = T_a + \left(\frac{\alpha(G)(1 - \eta_{PVSTC})}{U_0 + U_1 (V_{wind})}\right)$$
(6)

Where the thermal loss factor values adopted close roof mount PV are; Uo =15, U1= 0.

The de-rating factor due to cell temperature (f_{temp}) is given as:

$$f_{temp} = 1 - (\gamma_{pv} * (T_a - T_{STC}))$$
(9)

Where T_{STC} is the Standard Test Conditions cell temperature in degrees Celsius, γ_{pv} dentes the temperature coefficient of the PV module, and T_a is the ambient temperature. Similarly, $f_{dc/ac}$ denotes the overall DC to AC de-rate factor where its value is usually about 0.8. Then , if η_{pv} is the operating PV module efficiency , E_L is the daily load demand and G_d denotes the average daily global solar on the PV module plane, then;

$$A_{PVT} = \frac{E_L}{(G_d * \eta_{pv} * f_{dc/ac} * f_{temp})}$$
(7)

Hence, the daily load that can be satisfied by the given effective roof area, A_{PVT} is given as;

$$E_L = A_{pv} \left(G_d * \eta_{pv} * f_{dc/ac} * f_{temp} \right)$$
(8)

The detail PV power analysis was implemented using PVSyst software. The details of the meteorological data for the PV installation site, as captured using the PVSyst software is shown in Figure 1. The horizontal global irradiation at the site is 1717.2 kWh. m^2 per month. Figure 2. The load demand profile of the case study superstore is shown in Figure 2 which shows a daily energy demand of 33460 Wh per day, approximately, 33.5 kWh per day. The effective rooftop area for PV array installation at the case study superstore was about 18 m^2 . Hence, the PV array selected does not exceed 18 m^2 and some rooms are given for pathways around the PV arrays.

The selected PV module for the system is the NU-RD 300 model PV module manufactured by Sharp and it is a 300 Wp 26V rated Si-mono PV module. The definition of the PV module basic parameters and rated efficiency is shown in Figure 3, the definition of the PV module size and technology is shown in Figure 4, while the definition of the PV module optimization, efficiency versus irradiance is shown in Figure 5. The PV module has $1.643 m^2$ module area, $1.435 m^2$ cell area, as shown in Figure 4. Also, the module has 21.12 % efficiency with respect to cell area, 18.44 % efficiency with respect to module area, as shown in Figure 3 and Figure 5.

The simulation parameters of the PV power system is given in Figure 6. According to Figure 6, a total of 10 PV modules are required and this gave a total PV array module area of 16.4 m^2 and array cell area of 14.4 m^2 .

The section of the main simulation results of the PV system is given in Figure 7 which shows that the power system has total energy production of 4305 kWh/year, the performance ratio of 82.84 % and solar fraction of 32.57 %. The operating efficiency of the PV modules are shown in Figure 8 which shows that due to site specific losses in the PV array, the operating efficiency of the PV modules is 17.99 % with respect to cell area which is different from the quoted value of 21.12 % on the PV datasheet. Also, the operating efficiency of the PV modules is 15.70 % with respect to module area which is different from the quoted value of 18.44 % on the PV datasheet.

PVSYST V6.70											(07/08/	22	Page 1/1
Hourly meteorological data Meteo data : AKWA IBOM STATE ;NASA-SSE satellite data, 1983-2005;Synthetic File AKWA IBOM STATE_Nasa_SYN.MET of 29/05/21 06h21								ic						
Situation Time defined as				La Lega	titude Time	tude 5.05° N Longitu Time Time zone UT Altitu		ngitude Altitude	le 7.90° E le 56 m					
Source file char Monthly Meteo	acteris Values	tics		Syn	thetic (Data ge ource	neratio AKWA	n, Mon IBOM	thly rer	ormalis _Nasa	sation 1983.	SIT 1	NASA-S	SSE satellite
	Jan.	Feb.	Mar.	Apr.	May	June	July	Aug.	Sep.	Oct.	Nov.	Dec.	Year	
Hor. global	171.4	156.5	164.9	152.7	146.3	129.3	119.4	116.9	118.2	132.4	145.2	164.0	1717.2	kWh/m².mth
Hor. diffuse	53.6	55.2	68.8	68.1	67.6	63.3	66.0	68.2	68.1	67.3	58.5	53.0	757.7	kWh/m².mth
Extraterrestrial	295.0	281.8	323.1	312.2	312.6	294.6	306.5	315.8	310.7	314.4	289.2	288.4	3644.2	kWh/m².mth
Clearness Index	0.581	0.555	0.510	0.489	0.468	0.439	0.390	0.370	0.380	0.421	0.502	0.569	0.471	
Amb. temper.	25.4	25.8	25.7	25.8	25.6	24.8	24.1	23.9	24.1	24.4	24.7	24.7	24.9	°C

Figure 1 The details of the meteorological data for the PV installation site

3 RESULTS AND DISCUSSION

VSYST V6.70			07	7/08/22	Page 2
Gi roject : F imulation variant : S	rid-Conne ROOF_TOP SUPERSTO	cted System: I _PV_POWER RE _1	Detailed Use	er's nee	eds
		Annual	values		
	Number	Power	Use	Ene	rgy
Light	6	18 W/lamp	13 h/day	140	4 Wh/day
TV	3	80 W/app	13 h/day	3120	0 Wh/day
Air Conditioner	2	780 W/app	13 h/day	2028	0 Wh/day
Fridge / Deep-freeze	2		24 Wh/day	1643	2 Wh/day
Fan	4		13 Wh/day	312	0 Wh/day
Computer	3	125 W tot	10 h/day	375	0 Wh/day
Stand-by consumers			24 h/day	144	4 Wh/day
Total daily energy	3000	Hourly profile		3346	0 Wh/day
	2500 - 2000 - 1500 - 500 -				

Figure 2 The load demand profile of the case study superstore

😌 Definition of a PV module	
Basic data Sizes and Technology	fodel parameters Additional Data Commercial Graphs
Model NU-RD 300	Manufacturer Sharp
File name Sharp_NU_RD300.PAN	Data source Manufacturer 2016
? Original PVsyst database	Prod. from 2016
Nom. Power 300.0 Wp Tol. (at STC)	-/+ 0.0 5.0 % Technology Si-mono
Manufacturer specifications or	other Measurements
Reference conditions: GRef	1000 W/m² TRef 25 °C ?
Short-circuit current Isc	9.970 A Open circuit Voc 39.40 V
Max Power Point: Impp	9.630 A Vmpp 31.20 V
Temperature coefficient mulsc	5.0 mA/°C Nb cells 60 in series
or mulsc	0.050 %/°C
Internal model result tool	
Operating conditions GOper	1000 + W/m² TOper 25 + C ?
Max Power Point: Pmpp	303.0 W ? Temper. coeff0.39 %/*C
Current Impp	9.42 A Voltage Vmpp 32.2 V
Short-circuit current Isc	9.97 A Open circuit Voc 39.4 V
Efficiency / Cells area	21.12 % / Module area 18.44 %

Figure 3 The definition of the PV module basic parameters and rated efficiency

Definition of a PV module	:
asic data Sizes and Technology Model parameters Additional Da	ata Commercial Graphs
Module Cells Length 1660 nm Width 990 nm Thickness 50.0 nm Weight 20.00 kg Module area 1.643 m² Cells area 1.435 m² Perinition of Module's sizes is mandatory, it is used for the letermination of the "usual" efficiency ells area is facultative: if defined it allows for the definition of the fficiency at cell level Module technology and specifities Frame: Aluminium Frame: Aluminium Structure: Solar glass (TSG) Connections: EVA and polymer sheet Cells area	Maximum Array Voltage Absolute maximum voltage of the Array in any conditions (i.e. Voc at lowest possible ambient temperature). Maximum vollage IEC 1000 V Maximum voltage UL (US) N/A V By-pass protection diodes N/A V Nb. of sub-modules 3 - /module (i.e. functional by-pass diodes) Sub-module partition In length C In width T win half cells Tile module Bi-facial module

Figure 4 The definition of the PV module size and technology

Figure 5 The definition of the PV module optimization, efficiency versus irradiance

PVSYST V6.70				07/08/22	Page 1/4
Gr	id-Connected System	n: Simulatio	on parameters		
Project : R	OOF_TOP_PV_POWER				
Geographical Site	AKWA IBON STATE		Country	Nigeria	
Situation Time defined as Meteo data:	Latitude Legal Time Albedo AKWA IBON STATE	5.05° N Time zone UT 0.20 NASA-SSE sa	Longitude Altitude tellite data, 1983-20	7.90° E 56 m	hetic
Cimulation variant : C	UDEDSTORE 4				
Simulation variant : S	Simulation date	07/08/22 16h0	3		
Simulation parameters	System type	No 3D scene	defined		
Collector Plane Orientation	Tilt	8*	Azimuth	0*	
Models used	Transposition	Hay	Diffuse	Perez,	Meteonorm
Horizon	Free Horizon				
Near Shadings	No Shadings				
PV Array Characteristics PV module Original PVsyst database Number of PV modules	Si-mono Model Manufacturer In series	NU-RD 300 Sharp 10 modules	In parallel	I 1 string	s
Total number of PV modules Array global power Array operating characteristics Total area	Nb. modules Nominal (STC) s (50°C) U mpp Module area	10 3000 Wp 288 V 16.4 m ²	Unit Nom. Power At operating cond. I mpp Cell area	300 Wp 2725 W 9.4 A 14.3 m ²	p (50°C)
Inverter Original PVsyst database Characteristics	Model Manufacturer Operating Voltage	PV-3000N-V PrimeVolt 100-580 V	Unit Non. Power	r 3.00 kV	Vac
Inverter pack	Nb. of inverters	1 units	Total Power Pnom ratio	3.0 kW	ac
PV Array loss factors					
Thermal Loss factor	Uc (const)	20.0 W/m²K	Uv (wind)	0.0 W/r	n²K / m/s
Wiring Ohmic Loss LID - Light Induced Degradatio Module Quality Loss Module Mismatch Losses Strings Mismatch Loss	Global array res.	513 mOhm	Loss Fraction Loss Fraction Loss Fraction Loss Fraction	1.5% a 1.0% -1.3% 1.0% a	at MPP
Incidence effect, ASHRAE par	rametrization IAM =	1 - bo (1/cos i -	- 1) bo Param	0.05	
User's needs :	Daily household consumers average	Constant over 33.5 kWh/Day	the year		

Figure 7 The section of the main simulation results of the PV system

	EffArrR	EffAnC
	%	%
January	15.58	17.84
February	15.53	17.80
March	15.60	17.87
April	15.59	17.86
Мау	15.71	18.00
June	15.76	18.06
July	15.88	18.20
August	16.09	18.43
September	15.83	18.14
October	15.65	17.93
November	15.72	18.00
December	15.68	17.96
Year	15.70	17.99

Figure 8 The operating efficiency of the PV modu	ules
--	------

4 CONCLUSION

The sizing of the components of the rooftop PV solar power installation on a superstore in Akwa Ibom state in Nigeria is presented. The focus was selecting the appropriate PV array size that will fit on the rooftop of the case study superstore and to determine the total energy generated, the solar fraction, and the operating efficiency of the PV modules, as well as the solar fraction and performance ratio. The analysis as implemented on PVSyst solar power simulation software.

REFERENCES

- Gustavsson, L., Haus, S., Lundblad, M., Lundström, A., Ortiz, C. A., Sathre, R., ... & Wikberg, P. E. (2017). Climate change effects of forestry and substitution of carbon-intensive materials and fossil fuels. *Renewable and Sustainable Energy Reviews*, 67, 612-624.
- Lelieveld, J., Klingmüller, K., Pozzer, A., Burnett, R. T., Haines, A., & Ramanathan, V. (2019). Effects of fossil fuel and total anthropogenic emission removal on public health and climate. *Proceedings of the National Academy of Sciences*, *116*(15), 7192-7197.

- Nicoletti, G., Arcuri, N., Nicoletti, G., & Bruno, R. (2015). A technical and environmental comparison between hydrogen and some fossil fuels. *Energy Conversion and Management*, 89, 205-213.
- 4. Green, F. (2018). Anti-fossil fuel norms. *Climatic Change*, *150*(1), 103-116.
- Zhang, N., Kong, F., Choi, Y., & Zhou, P. (2014). The effect of size-control policy on unified energy and carbon efficiency for Chinese fossil fuel power plants. *Energy policy*, *70*, 193-200.
- 6. Martins, F., Felgueiras, C., Smitkova, M., & Caetano, N. (2019). Analysis of fossil fuel energy consumption and environmental impacts in European countries. *Energies*, *12*(6), 964.
- Kaabeche, A., & Ibtiouen, R. (2014). Technoeconomic optimization of hybrid photovoltaic/wind/diesel/battery generation in a stand-alone power system. *Solar Energy*, *103*, 171-182.
- Hasanuzzaman, M., Zubir, U. S., Ilham, N. I., & Seng Che, H. (2017). Global electricity demand, generation, grid system, and renewable energy polices: a review. *Wiley Interdisciplinary Reviews: Energy and Environment*, 6(3), e222.
- Üney, M. Ş., & Çetinkaya, N. (2014, October). Comparison of CO2 emissions fossil fuel based energy generation plants and plants with Renewable Energy Source. In Proceedings of the 2014 6th International Conference on Electronics, Computers and Artificial Intelligence (ECAI) (pp. 29-34). IEEE.
- Üney, M. Ş., & Çetinkaya, N. (2014, October). Comparison of CO2 emissions fossil fuel based energy generation plants and plants with Renewable Energy Source. In Proceedings of the 2014 6th International Conference on Electronics, Computers and Artificial Intelligence (ECAI) (pp. 29-34). IEEE.
- 11. Owusu, P. A., & Asumadu-Sarkodie, S. (2016). A review of renewable energy sources, sustainability issues and climate change mitigation. *Cogent Engineering*, *3*(1), 1167990.
- 12. Vidadili, N., Suleymanov, E., Bulut, C., & Mahmudlu, C. (2017). Transition to renewable energy and sustainable energy development in Azerbaijan. *Renewable and Sustainable Energy Reviews*, *80*, 1153-1161.
- 13. Kear, G., Shah, A. A., & Walsh, F. C. (2012). Development of the all-vanadium redox flow battery for energy storage: a review of technological, financial and policy aspects. *International journal of energy research*, *36*(11), 1105-1120.
- 14. Kumar, R., & Singh, S. K. (2018). Solar photovoltaic modeling and simulation: As a renewable energy solution. *Energy Reports*, *4*, 701-712.

- Qazi, A., Hussain, F., Rahim, N. A., Hardaker, G., Alghazzawi, D., Shaban, K., & Haruna, K. (2019). Towards sustainable energy: a systematic review of renewable energy sources, technologies, and public opinions. *IEEE access*, 7, 63837-63851.
- Sampaio, P. G. V., & González, M. O. A. (2017). Photovoltaic solar energy: Conceptual framework. *Renewable and Sustainable Energy Reviews*, 74, 590-601.
- 17. Bhandari, B., Lee, K. T., Lee, C. S., Song, C. K., Maskey, R. K., & Ahn, S. H. (2014). A novel off-grid hybrid power system comprised of solar photovoltaic, wind, and hydro energy sources. *Applied Energy*, *133*, 236-242.
- Ohunakin, O. S. (2010). Energy utilization and renewable energy sources in Nigeria. *Journal* of Engineering and Applied Sciences, 5(2), 171-177.
- 19. Blaabjerg, F., & Ionel, D. M. (2015). Renewable energy devices and systems– state-of-the-art technology, research and development, challenges and future trends. *Electric Power Components and Systems*, *43*(12), 1319-1328.
- Asdrubali, F., Baldinelli, G., D'Alessandro, F., & Scrucca, F. (2015). Life cycle assessment of electricity production from renewable energies: Review and results harmonization. *Renewable and Sustainable Energy Reviews*, *42*, 1113-1122.
- Neves, D., Silva, C. A., & Connors, S. (2014). Design and implementation of hybrid renewable energy systems on microcommunities: A review on case studies. *Renewable and Sustainable Energy Reviews*, *31*, 935-946.
- 22. Sandhu, M., & Thakur, T. (2014). Issues, challenges, causes, impacts and utilization of renewable energy sources-grid integration. *International Journal of Engineering Research and Applications*, *4*(3), 636-643.
- Ludin, N. A., Mustafa, N. I., Hanafiah, M. M., Ibrahim, M. A., Teridi, M. A. M., Sepeai, S., ... & Sopian, K. (2018). Prospects of life cycle assessment of renewable energy from solar photovoltaic technologies: a review. *Renewable and Sustainable Energy Reviews*, 96, 11-28.
- 24. Wan, C., Zhao, J., Song, Y., Xu, Z., Lin, J., & Hu, Z. (2015). Photovoltaic and solar power forecasting for smart grid energy management. *CSEE Journal of Power and Energy Systems*, 1(4), 38-46.
- Sampaio, P. G. V., & González, M. O. A. (2017). Photovoltaic solar energy: Conceptual framework. *Renewable and Sustainable Energy Reviews*, 74, 590-601.
- Zheng, H., Li, S., Challoo, R., & Proano, J. (2014). Shading and bypass diode impacts to energy extraction of PV arrays under different

converter configurations. *Renewable Energy*, *68*, 58-66.

- 27. Mehrjerdi, H. (2019). Off-grid solar powered charging station for electric and hydrogen vehicles including fuel cell and hydrogen storage. *International journal of hydrogen Energy*, *44*(23), 11574-11583.
- 28. Guney, M. S. (2016). Solar power and application methods. *Renewable and Sustainable Energy Reviews*, *57*, 776-785.
- 29. Lazaroiu, G. C., Longo, M., Roscia, M., & Pagano, M. (2015). Comparative analysis of fixed and sun tracking low power PV systems considering energy consumption. *Energy Conversion and Management*, *92*, 143-148.
- Patil, V. R., Biradar, V. I., Shreyas, R., Garg, P., Orosz, M. S., & Thirumalai, N. C. (2017). Techno-economic comparison of solar organic Rankine cycle (ORC) and photovoltaic (PV) systems with energy storage. *Renewable Energy*, *113*, 1250-1260.
- Osma-Pinto, G., & Ordóñez-Plata, G. (2019). Measuring factors influencing performance of rooftop PV panels in warm tropical climates. *Solar Energy*, *185*, 112-123.
- 32. Korsavi, S. S., Zomorodian, Z. S., & Tahsildoost, M. (2018). Energy and economic performance of rooftop PV panels in the hot and dry climate of Iran. *Journal of Cleaner Production*, *174*, 1204-1214.

- Kappagantu, R., Daniel, S. A., & Venkatesh, M. (2015). Analysis of rooftop solar PV system implementation barrier in Puducherry Smart Grid Pilot Project. *Procedia Technology*, *21*, 490-497.
- 34. Corcelli, F., Fiorentino, G., Petit-Boix, A., Rieradevall, J., & Gabarrell, X. (2019). Transforming rooftops into productive urban spaces in the Mediterranean. An LCA comparison of agri-urban production and photovoltaic energy generation. *Resources, conservation and recycling, 144,* 321-336.
- Miranda, R. F., Szklo, A., & Schaeffer, R. (2015). Technical-economic potential of PV systems on Brazilian rooftops. *Renewable Energy*, 75, 694-713.
- Cubi, E., Zibin, N. F., Thompson, S. J., & Bergerson, J. (2016). Sustainability of rooftop technologies in cold climates: Comparative life cycle assessment of white roofs, green roofs, and photovoltaic panels. *Journal of Industrial Ecology*, 20(2), 249-262.