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Abstract— The effect of rotational Reynolds 
number on heat and mass transfer around a cone of 
revolution in rotation to its axis of revolution and 
immersed in a Newtonian fluid as air at rest, has 
been investigated. The cone wall is impervious to 
heat and maintained at a constant and uniform 
temperature and mass concentration. The 
mathematical model that reflects the physical 
phenomenon of the studied model has been 
established. This phenomenon is modeled by 
partial differential equations. The heat, mass 
transfer, Navier-Stokes and continuity equations 
are approximated by boundary, permanent layers 
with constant physical properties. An implicit finite 
difference scheme is used to discretize the 
equations of the mathematical model. The 
discretized equations were solved by Thomas's 
algorithm associated with the boundary conditions. 
A calculation code has been developed. The results 
concern the distributions of the meridian, azimuth 
and normal components of velocity, temperature, 
mass concentration in the boundary layers and the 
Nusselt number, Sherwood number and friction 
coefficients. Results show that the rotation of the 
cone creates a longitudinal upward flow of fluid, 
and a suction of fluid towards the wall of the cone. 
There is an azimuthal detachment of the dynamic 
boundary layer. The influence of the rotational 
speed of the cone on heat and mass transfer rates 
is presented and discussed. Results have been 
validated with the study of Himasekhar et al. [16] 
and of Hering et al. [17] and presented a good 
agreement. 

 

Keywords—rotational Reynolds; heat  transfer; 
mass  transfer; cone of revolution. 

 

I.  INTRODUCTION  

Heat transfer around symmetrical bodies of 
revolution has been the subject of many studies, given 
their practical interest, especially in machines. 
Examples include certain hydraulic structures, aircraft, 
turbo machinery, ship propulsion systems, rockets, 
projectiles, and metal vapor deposits. Most of the work 
concerns a simple geometry such as the plane plate, 
the cylinder, the sphere. To our knowledge, the only 
published works relating to the numerical study of 
combined natural and rotary convection Raymond [1] 
and of pure convection around a cone of revolution are 
those of   Rakotomanga [2] and Ulrich [3].  

       Given the abundance of published work on 
convections and heat and mass transfers around a 
cone of revolution: Raymond et al. [1] focused their 
study to the natural and rotational three-dimensional 
mixed convective flow around an inclined cone of 
revolution immersed in a Newtonian fluid, with any 
opening and rotating with respect to a fixed axis with a 
constant angular speed. Authors highlighted the 
predominance of mass transfer against heat transfer 
and vice versa in pure mixed convection, and the 
predominance of natural convection over rotary 
convection and vice versa in the case where the 
transfers are comparable. Rakotomanga [2] studied 
transfers by laminar forced convection around a cone of 
revolution closed on its upper part by a spherical cap 
and inclined in relation to the vertical. Author 
determined the distribution of the outer velocity to the 
dynamic boundary layer using the singularity method. 
The conservation equations by an implicit finite 
differences method associated with Thomas' algorithm 
has been solved. It showed that the influence of the 
inclination of the cone results in a slight increase in the 
thickness of the boundary layer. Pop et al. [4] 
numerically studied natural convection around a 
sinusoidal wall cone of revolution. They dealt with the 
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problem of natural convection flux and heat transfer 
induced by a vertically oriented cone with a constant 
surface temperature. The cone is assumed to have 
transverse corrugated configurations. The flow of the 
limit layer at rest is described by two coupled parabolic 
partial differential equations. These equations are 
solved numerically using the Keller’s box method for a 
sinusoidal corrugated cone. The local Nusselt count 
was lower than the corresponding flat cone has been 
found. In addition, the local Nusselt number periodically 
varies in the direction of x and increases with x. The 
local Nusselt number is smaller for a corrugated cone 
than that corresponding to a flat cone, local Nusselt 
number values are higher for larger Prandtl number 
values. Hossain et al. [5] investigated the natural 
convection flow of viscous fluid around a truncated 
cone. They have treated in cases where the viscosity 
and thermal conductivity of the fluid are temperature 
dependent. Authors use the appropriate transformations 
to obtain the equations governing flow in a practical 
form and integrate them using an implicit finite 
difference method. Disturbance solutions are used to 
obtain the solution in diets near and far from the 
truncation point. Anilkumar et al. [6] treat unstable 
mixed convection flow on a rotating cone in a rotating 
fluid due to the combined effects of thermal diffusion 
and mass diffusion. The system of ordinary differential 
equations governing flow was solved numerically by 
using a schema of implicit finite differences in 
combination with the quasi-linearization technique. The 
prescribed wall temperature and heat flow conditions 
are both taken into account. Numerical results are 
reported for friction coefficients, Nusselt number and 
Sherwood number. The effect of various parameters on 
velocity, temperature and concentration profiles is also 
presented. Siabdallah et al. [7] treat, in a permanent 
state, the natural thermal and mass convection in the 
laminar boundary layer around a sinusoidal-walled cone 
trunk. It solved transfer equations by an implicit finite 
difference method associated with the Gauss Seidel 
iterative method. It shows that the increase in the 
amplitude of the sinusoid describing the shape of the 
cone trunk wall as well as the relationship between the 
volumic forces of thermal origin and those of mass 
origin is the cause of the decrease in the local Nusselt 
and Sherwood numbers and means. Rahman et al. [8] 
investigated the effect of temperature-dependent 
viscosity µ(T) on a two-dimensional natural convection 
flow along a vertical corrugated cone with a uniform 
surface heat flow. Viscosity is considered inversely 
proportional to temperature. The basic equations are 
transformed into adimensional boundary layer 
equations using suitable adimensional variables. 
Adimensional equations are discretized by the implicit 
finite differences method. It shown that the temperature 
inside the boundary layer at any fixed point decreases 
slightly as thermal conductivity increases. The results 
also show that the average heat transfer rate increases 
considerably with increases in thermal conductivity. 
Elbashbeshy et al. [9] investigated the influence of 
pressure on natural convection around a truncated 
cone. They solved digitally using the Mathematical 

technique. They showed that the speed and distribution 
of the temperature decrease with the increase in the 
pressure value. An increase in the value of the Prandtl 
number results in a decrease in the value of the 
coefficient of friction, but the local Nusselt number 
increases as the value of the Prandtl number increases. 

This study focuses on the modeling of heat and 
mass transfers around a rotating cone of revolution. 
The effect of rotational Reynolds number on heat and 
mass transfer around a cone of revolution has been 
particularly studied. Heat and mass transfers within 
boundary layers as well as pulse transfer have been 
considered. The Couette effect caused by the rotation 
of the cone of heat and mass transfers bas been 
highlighted. Authors determine the distribution of 
velocity, temperature and concentration by solving 
systems of conservation algebraic equations using 
Thomas' algorithm. A detailed study of the mesh effect 
resulted in the selection of 150 x 250 knots as the most 
suitable mesh for this study. One analyzed the influence 
of the speed of rotation of the flow, heat and mass 
transfers. 

II. METHODOLOGY 

A. Physical model  

A cone of revolution immersed in a Newtonian 
fluid at rest has been considered. It rotates around its 
axis of revolution at angular velocity ω (Fig. 1). The wall 
of the cone is maintained at a constant and uniform 
temperature Tp and mass concentration C0. The 
temperature and concentration of the fluid outside the 
thermal boundary layer is set at T∞ and C∞ respectively. 
The difference between the temperature of the cone 
wall and that of the fluid at infinity is negligible when its 
speed of rotation is zero. 

 
Fig. 1. Diagram of the physical model 

or 
 x = OM: meridian coordinate 
 y = MP: normal coordinate 
 r = HM: normal distance from the projected M 

B. Mathematical formulation 

In order to develop our numerical model, we have 
adopted the following hypothesis: 
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- The flow is permanent and in laminar regime. 
- The fluid is Newtonian and incompressible. 
- The physical properties of the fluid are constant. 
- The viscous dissipation function is negligible. 
- The diffusion of species is to the mass basis. 

We use the following adimensional variables:   

+yx r
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These dimensionless equations in the boundary layers, 
boundary conditions, the coefficients of friction, Nusselt 
number and Sherwood number are written: 
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The dimensionless parameters in these equations are 
defined as: 

Prandtl number: 
Cp

Pr





 

Schmidt number: Sc
D


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

 

Rotational Reynolds number: 
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III. NUMERICAL METHODS  

The equations of continuity, Navier Stokes, heat and 
mass transfer associated with boundary conditions are 
discretized using an implicit method of finite differences 
considering meshes of 150x250 knots. The 
conservation equations and the discretized mass 
transfer equation take the form of 

i 1 i 1 i 1

j 1 j j 1A X B X C X D for 2 j (J max 1)
j j j j

  
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(14) 

where X represents the quantities 
+ + + +

xT ,C ,V et V  

and Jmax characterizes the thickness of the boundary 
layer. Systems of algebraic equations (14) associated 
with discretized boundary conditions are solved by 

Thomas’s algorithm. The normal speed component yV
 

is derived from the continuity 
equation:
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The convergence of the iterative process within the 
boundary layer is assumed to be achieved when the 
following criterion is simultaneously verified on 

+ + + +

xT ,C ,V et V   is:
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with n is the iteration number. Partial derivatives of the 
expressions of Nusselt, Sherwood and friction 
coefficients are approached by three-point 
discretization. 
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IV. RESULTS  AND DISCUSSION 

Numerical results are obtained for values of:           
Pr = 0.71, Sc = 0.65, Ec = 0.0025, Δy

+
 = 0.1 and         

http://www.jmest.org/


Journal of Multidisciplinary Engineering Science and Technology (JMEST) 

ISSN: 2458-9403 

Vol. 9 Issue 10, October - 2022  

www.jmest.org 

JMESTN42354098 15576 

θ0 = 20. Our calculation code was validated on a natural 
and rotary mixed convection problem around a vertical 
cone.  We compared our results with those obtained by 
K. Himasekhar et al. [16]. The comparison is about the 
gradient of temperature for the Richardson number     
Ri = 0 and angular velocity ω = 50π rd/s. The analysis 
in Table I shows that our results are in perfect 
agreement with the results available in the literature, the 
relative difference not exceeding 2%. 

 

 

TABLE I.  EVOLUTION OF THE PARIETAL TEMPERATURE GRADIENT 

 
0y

T

y 







 
 

 
 

Relative 

gap 

Present model 0.4249  

Himasekhar et al. [16] 0.4299 0.0116 

Hering et al. [17] 0.4285 0.0084 

 

Fig. 2 shows the variation of the dimensionless 
meridian velocity as a function of y

+
 for several values 

of ω. One notices that the maximum value of Vx
+
 

increases as a function of ω. Moreover, the thickness of 
the dynamic boundary layer decreases as a function of 
ω. Otherwise; it confirms the physical evidence that the 
meridian component arises following the rotation of the 
body: it increases even more as ω increases. In the 
limiting case of zero rotational speed, the meridian 
component is zero: there is no upward motion of the 
fluid in the case of pure rotation. 

The rotation of the cone also causes the creation of 
the normal component whose variation is represented 
in Fig. 3. It shows that the normal component 
decreases in the boundary layer with ω and takes the 
negative values, which means that the fluid particles are 
sucked by the axis of rotation, that is to say towards the 
wall. This suction is all the greater as the speed of 
rotation is high, and closer to the free fluid. 

By Couette effect, the fluid particles in the immediate 
vicinity of the wall are driven by the movement of the 
cone, which is at the origin of the azimuthal component. 
Fig. 4 shows the variation of the dimensionless 
azimuthal velocity as a function of y

+
 for several values 

of ω. It is higher near the wall, decreases along the 
normal, and tends towards zero at infinity. One see that 
there is a privileged point along the normal for which Vφ

+
 

does not depend on ω, on either side of which is 
increasing and decreasing as a function of y

+
. 

 

Fig. 2. Reduced VX
+  according to y+ for several values of ω. 

 

Fig. 3. Reduced Vy
+  according to y+ for several values of ω. 

 
Fig. 4. Reduced Vφ

+  according to y+ for several values of ω. 

 

Fig. 5 represents the changes in the temperature of 
the fluid along the normal as a function of y

+
 for the 

different values of studied ω. It shows that the particles 
of the fluids near the wall have retained the heat. 
Reading these values shows that the temperature of the 
fluid and the thickness of the thermal boundary layer 
decrease when the rotational Reynolds number 
increases. The increase in ω decreases the heat 
exchange between the cone wall and the fluid. It is 
observed that the thermal gradient remains closely 
localized near the wall. Quantitatively, this results in the 
existence of much larger temperature gradients in the y 
direction. 
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Fig. 5. Reduced T+  according to y+ for several values of ω. 

Fig. 6 shows the evolution of the dimensionless 
mass concentration as a function of y

+
 for several 

values of ω. The difference in concentration at the wall 
and at infinity creates a mass transfer. Mass is 
transferred from more concentrated regions to less 
concentrated regions. When the cone rotates, the fluid 
particles concentrate around the wall of the cone. It 
shows that C

+
 decreases with the increase of ω. 

Increasing the rotational speed of the cone decreases 
the mass transfer. 

 

 
Fig. 6. Reduced C+ according to y+ for several values of ω 

 

One represents, in Fig. 7, the variation of the 
coefficient of friction Cfu for several values of ω as a 
function of x

+
. One observes that the Cfu increases 

along the wall of the cone and increases with ω. The 
growth of Cfu when x

+
 increases announces that the 

adherence of the fluid evolves along the wall of the 
cone. Increasing the rotational Reynolds number makes 
the fluid adhere better, and has the effect of increasing 
the coefficient of friction Cfu. It also shows the 
dependence of friction and the abscissa x

+
, in other 

words the further one moves downstream from the 
vertex O, the more the friction effect is damped. 

Fig. 8 makes it possible to study the variation of the 
coefficient of friction Cfw for several values of ω as a 
function of x

+
. One observe that the Cfw decreases 

along the wall of the cone, is a decreasing function of 
ω. The decrease of Cfw when x

+
 increases announces a 

separation of the boundary layer. It is seen that the 

separation of the fluid increases along the wall of the 
cone. The increase in the dimensionless rotation speed 
ω promotes the separation of the azimuthal dynamic 
boundary layer and increases the adhesion of the fluid 
to the wall. 

Figs. 9 and 10 show the variation of Nu and Sh as a 
function of x

+
. Near the stopping point, the heat and 

mass transfer rates increase abruptly and stabilize 
when the thermal equilibrium between the wall and the 
fluid particles is reached. They show that the intensity of 
heat and mass transfers between the wall and the fluid 
increase with longitude due to the progressively 
increasing difference in the wall temperature gradient. 
These dimensionless Nusselt and Sherwood numbers 
vary in the same way, and grow considerably along the 
wall but become stable from the point of fluid 
separation. One notices that the Sherwood and the 
Nusselt are more important when the cone rotates at 
high speed. The increase in ω promotes the transfer of 
mass and heat by mass rotary convection. 

 

 
Fig. 7. Coefficient of friction according to x as a function                              

of x+ for several values of ω 

 

 
Fig. 8. Coefficient of friction according to φ as 

function of x+ for several values of  ω 
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Fig. 9. Evolution of the Nusselt number as a function 

 of x+ for several values of ω.  

 
Fig .10. Evolution of the Sherwood number as a           

function of x+ for several values of ω. 

 

V. CONLUSION   

The effect of rotational Reynolds number on heat 
and mass transfer around a cone of revolution has been 
modeling. Authors developed the mathematical model 
based on the heat, mass transfer, Navier-Stokes and 
continuity equations coupled implicit finite difference 
scheme technique. THOMAS algorithm has been used 
to solve the algebraic equations system associated with 
boundary conditions. A numerical code has been 
developed. The results show that, by Couette effect, the 
rotation of the cone around its axis of revolution creates 
a meridian velocity component which causes an upward 
flow inside the dynamic boundary layer. It also creates 
a fluid flow in which a boundary layer of concentration 
develops. The fluid particles are exposed to suction. 
The thickness of the thermal boundary layer is smaller 
than that of the mass boundary layer. Heat and mass 
transfer rates increase along the wall. At the stopping 
point, there are small Nu and Sh. In the higher 
meridians, near the point of detachment, the Nu and Sh 
are considerable. The transfer rates evolve in the same 
direction, as do the temperature and the mass 
concentration. The heat transfer rate is greater than the 
mass transfer rate. Heat transfer is more dominant than 
mass transfer. The rotational speed of the cone has a 
positive influence on heat and mass transfer. 
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