Simulated Techno- Economic And Carbon Balance Analysis Of Off-Grid Solar Photovoltaic Power System For Remote Residential Apartment

Oyadinrin Kayode Julius¹ Department Of Electrical/Electronic and Computer Engineering University of Uyo, Akwa Ibom State Nigeria

Felix Edet Effiong² Department of Electrical / Electronic and Computer Engineering University of Uyo, Akwa Ibom State, Nigeria

Steve Worgu³ Department of Electrical/ Computer Engineering,

Port Harcourt Polytechnic, Rumuola, Port Harcourt Nigeria

Abstract- In this paper, techno- economic and carbon credit analysis of off-grid solar photovoltaic power system for remote residential apartment is presented. Technical analysis entails the determination of the PV system components parameter values while the economic analysis computation of the cost. Carbon balance analysis estimate the saving in CO2 emissions that is expected by the installation of the PV power system. The case study household is located in Uvo, Akwa Ibom State Nigeria and it has energy demand of 13204 Wh per day. The whole analysis were conducted using PVSyst software. The results showed that the system was designed for 5 % loss of load probability and 4 days power autonomy and it required 33 units PV array consisting of 130 Wp solar panels that generate a total of 4.3 kWp nominal power. Also, the system required 52 units of 100 Ah battery with a total of 49.9 kWh total energy storage capacity at 80 % depth of discharge (DoD). Again, the annual energy production was 6002 kWh /year, the solar fraction was 98.7 % and the performance ratio was 63.6 %. The unit energy cost was 238 Naira per kWh. The carbon balance results show that there is a saving of 54.576 tons of carbon due to the installation of the PV power system.

Keywords— loss of load probability, CO2 emissions, techno- economic analysis, solar photovoltaic, carbon credit analysis, power system

1. INTRODUCTION

As the effect of greenhouse emissions continues to manifest in diverse ways across the globe, the quest for clean energy sources becomes more urgent [1,2,3,4,5,6,7,8]. The national grid in most African nations are not accessible large percentage of the nations' population and this warrant the use of alternative energy source[9,10,11,12,13,14,15,16,17]. In most cases, the alternative source readily affordable in such nations are

the fossil fuel-based energy generators [18,19, 20,21, 22,23, 24, 25, 26].

In any case, the solar photovoltaic (PV) energy generators are clean options which can minimize the emission of harmful gasses into the environment [27,28, 29,30, 31,32, 33,34, 35]. Hence, in this paper, the techno- economic analysis along with carbon balance analysis of an off-grid solar photovoltaic power system for remotely located residential apartment is presented. The technical analysis is meant to determine the component sizes for such power system [36,37,38,39,40], the economic analysis is meant to provide the life cycle cost along with the unit cost of generated from energy the system [41,42,43,44,45,46,47,48]. The carbon balance analysis is meant to estimate the saving in CO2 emissions that is expected by the installation of the PV power system [[49,50,51,52,53,54,55]. The analysis was done using the notable PVSyst simulation software [56,57,58,59,60,61].

2 METHODOLOGY

Techno-economic analysis is a combination of technical and economic analysis. Technical analysis entails the determination of the PV system components parameter values while the economic analysis computation of the cost of acquiring, installing and maintaining the PV system all through its lifetime and also to determine the unit cost of energy of the PV system. The technical analysis involves determination the target load demand, the solar radiation data of the operating location of the PV system, and determination of the PV system components parameter sizes. The case study load is for a residential apartment in Uyo, Akwa Ibom State with load demand profile given in Figure 1 while the screenshot of the hourly load distribution is given in Figure 2. The solar radiation data of the operating location of the PV system is given in Figure 3; it has geo-coordinates with of latitude of 5.05 and longitude of 7.9. The system has energy demand of 13204 Wh per day.

							imptions, yea	2	
		IS Hourly distribution							
		Appliance	Power		Daily u	se	Hourly distrib	Daily er	ergy
8	÷	Lamps (LED or fluo)	15	W/lamp	4.0	h/day	ок	480	Wh
1	- .	TV	80	W/app.	6.0	h/day	OK	480	Wh
2	÷	Domestic appliances	250	W/app.	4.0	h/day	OK	2000	Wh
1	÷	Fridge / Deep-freeze	0.82	kWh/day	24.0	h/day	ок	820	Wh
1	÷	Washing Machine	1710.0	W aver.	4.0	h/day	OK	6840	Wh
2	- ÷-	PC	122	W/app.	10.0	h/day	OK	2440	Wh
0	÷	Other uses	0	W/app.	0.0	h/day		0	Wh
		Stand-by consumers	6	W tot	24 h/c	day		144	Wh
?	Appl	liances info				daily en monthly			Wh/day kWh/month
	sump 'ear	tion definition by	Week-end		ly use				

Figure 1 The load profile for the case study residential apartment in Uyo

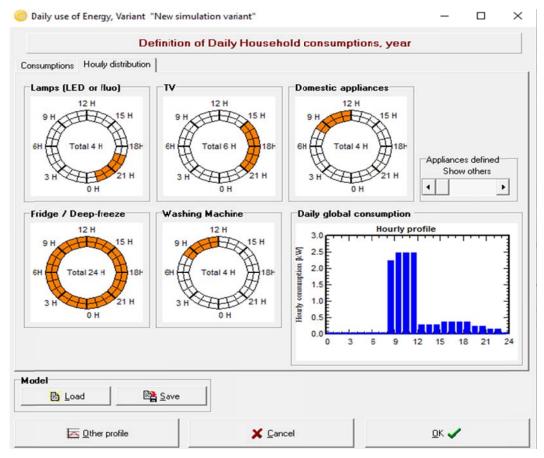


Figure 2 The screenshot of the hourly load distribution for the case study residential apartment in Uyo

I	Global Irrad. Diffuse kWh/m².mth kWh/m².mth							
January	171.4	53.6	25.4					
February	156.5	55.2	25.8					
March	164.9	68.8	25.7					
April	152.7	68.1	25.8					
May	146.3	67.6	25.6					
June	129.3	63.3	24.8					
July	119.4	66.0	24.1					
August	116.9	68.2	23.9					
September	118.2	68.1	24.1					
October	132.4	67.3	24.4					
November	145.2	58.5	24.7					
December	164.0	53.0	24.7					
Year	1717.2	757.7	24.9					
?	Paste	Paste	Paste					

Figure 3. The solar radiation data of the operating location of the PV system

2.1 Technical Analysis of the PV Power System

The optimal tilt angle
$$(\beta_{opt})$$
 of the PV module is determined as follows;

$$\beta_{\rm opt} = 3.7 + 0.69 \, | \, \text{Lat} \, | \qquad (1)$$

where Lat denotes the latitude of the installation site. The PV array output power (P_{pva}) is defined as :

$$P_{\text{pva}} = \frac{E_{\text{l}}}{f_d(\text{PSH})} \quad (2)$$

Where the parameters are PSH (peak sun hours), f_d (derating factors), E_l (daily electric load demand shown in Table 1).

The number of solar panel to be connected in series

$$\binom{N_{pvs}}{N_{pvs}}$$
 is defined as;
 $N_{pvs} = \frac{V_{sys}}{V_{pv}}$ (3)

Where the parameters are V_{sys} (the system line voltage), V_{pv} (nominal voltage of each of the PV module). Again, the PV module array output power (P_{pva}) is defined as;

$$N_{pvp} = \frac{P_{pva}}{N_{pvs}(P_{pv})} \tag{4}$$

Where the parameters are P_{pv} (power output of each solar panel) and N_{pvp} (number of PV module string in parallel). The required number of PV modules (N_{pvT}) is defined as;

$$N_{pvT} = N_{pvp} \left(N_{pvs} \right) \quad (5)$$

capacity (C_{ba}), is defined as

$$C_{ba} = \frac{(E_1) n_a}{(n_{ba})(DOD_{max})(V_{sys})} \quad (6)$$

Where the parameters are DOD_{max} (maximum depth of discharge), η_{ba} (battery efficiency) and n_a (number of days of autonomy)

The total number of batteries (N_b) used is defined as;

$$N_b = \frac{C_{ba}}{C_c}$$
(7)

Where the parameters are N_{bs} (number of series connected batteries), N_{bp} (number of parallel connected battery

strings) and V_b (nominal voltage of each battery). Then; $N_{.} = \frac{V_{sys}}{(sys)}$

$$N_{bs} = \frac{N_b}{N_{bc}}$$
(8)
$$N_{bp} = \frac{N_b}{N_{bc}}$$
(9)

2.2 Economic and Carbon Balance Analysis of the PV Power System

Then, the total cost of the PV array, denoted as C_{pv} is given as;

$$C_{pv} = N_{pvT}(P_{pv})(UC_{pvwp})$$
(10)

Where UC_{pvwp} is the unit cost of PV array per ratted watt. The installation cost (C_{inst}) is taken as 10% of the PV cost, hence,

$$C_{inst} = 0.1(C_{pv}) \tag{11}$$

The battery bank

Let A_{batcc} denote the charge controller rating in ampere and $UC_{batccPA}$ denote the unit cost per ampere of the charge controller, then, the cost of the battery charge controller denoted as C_{batcc} is defined as;

$$C_{batcc} = A_{batcc} (UC_{batccPA})$$
(12)
The cost of the inverter, (C_{inv}) is defined as;

$$C_{inv} = Inv_w \left(UC_{invPw} \right)$$
(13)

Where the parameters are Inv_w (inverter power rating) and UC_{invPw} (inverter unit cost per watt).

The initial cost of battery bank (CC_{bat}) is defined as

$$CC_{bat} = Bat_{Ah} \left(UC_{bat} \right) \tag{14}$$

Where the parameters are Bat_{Ah} (required Ah rating of battery bank) and UC_{bat} (unit cost of battery per Ah).

The battery bank lasts for 5 years while the system life cycle is, N = 25 years. Therefore, every five years the battery bank is replaced. If i denotes the inflation rate and d denotes the discount rate, the $CC_{bat(N)}$ is computed for n = 5, 10.15, and 20, hence:

$$CC_{bat(n)} = C_{bat} \left(\frac{1+i}{1+d}\right)^n$$
(15)

The initial yearly operation and maintenance cost denoted as $C_{M\&O}$ is estimated as 2 % of the PV cost, hence,

 $C_{M\&O} = 0.02(C_{pv})$

Let $C_{TM\&O}$ denote the yearly operation and maintenance cost which is computed for the lifetime of the system,

where;

$$C_{TM\&O} = C_{M\&O} \left(\frac{1+i}{1+d}\right) \left(\frac{1-\left(\frac{1+i}{1+d}\right)^{N}}{1-\left(\frac{1+i}{1+d}\right)}\right)$$
(17)

The solar power system life cycle cost denoted as LCC is given as;

 $LCC = C_{pv} + C_{batcc} + C_{bat(5)} + C_{bat(10)} + C_{bat(15)} + C_{bat(20)} + C_{inv} + C_{inst} + C_{TM\&O}$ (18)

Let ALCC denoted the yearly life cycle cost, then;

 $ALCC = LCC \left(\frac{1 - \left(\frac{1+i}{1+d}\right)^{N}}{1 - \left(\frac{1+i}{1+d}\right)}\right)$ (19) The unit cost (UC) of electrical energy in N/kWh is calculated as;

$$UC = \frac{ALCC}{26E(E_{\rm e})}$$
(20)

The PVSyst uses the economic analysis data to estimate the Carbon Balance which is the saving in CO2 emissions that is expected by the installation of the PV power system.

3 RESULTS AND DISCUSSION

The system component setting for PV array and the charge controller are presented in Figure 4 while the setting for the battery bank is given in Figure 5. According to Figure 4, the system was designed for 5 % loss of load probability and 4 days power autonomy and it required 33 units PV array consisting of 130 Wp solar panels that generate a total of 4.3 kWp nominal power. Also, Figure 5 shows that the system required 52 units of 100 Ah battery with a total of 49.9 kWh total energy storage capacity at 80 % depth of discharge (DoD).

The summary of the main results of the PV standalone power system is given in Figure 6. According to Figure 6, the annual energy production is 6002 kWh /year and the performance ratio is 0.637 (that is 63.6 %). The unit energy cost is 238 Naira per kWh. The results on the system energy balance and solar fraction shown in Figure 7 shows that the solar fraction is 0.987 which means that the PV power system is able to supply about 98.7 % of the total energy demand of the load. The details of the economic analysis of the PV system is given in Figure 8 which reaffirms the 238 Naira per kWh unit energy cost.

The result of the carbon balance analysis of the PV system is shown in Figure 9 and Figure 10 shows some details of the results on the carbon balance analysis of the PV system. The carbon balance results show that there is a saving of 54.576 tons of carbon due to the installation of the PV power system.

Specified User's needs Pre-sizing	suggestions System summary		
	ted LOL 5.0 2 2 ? ted autonomy 4.0 2 day(s) ? tetailed pre-sizing	Suggested capacity 1	48 ÷ V ? 295 Ah 4.32 kWp (nom.
Storage PV Array Back-up Schema Sub-array name and Orientation Name PV Array Orient. Fixed Tilted Plane	Tit 8* Azimut 0*	Enter planned power C 43	kWp, m²
Select the PV module Available Now Sort modules by: (* p TSMC Solar Ltd I 30 Wp 36V CIS Sizing voltage	TS-130C-1 Since 3	2012 Manufacturer 201 <u>-</u>] Dpen
Operating mode	MPPT power converter Nax. Charging - Discharging curren 94.A 11.A Univer	t rsal controler with MPPT convi € ▼	l B Carrol
C Direct couping C MPPT 300 W 48 V C MPPT converter C DC-DC converter Number of controllers 1	94 A 11 A Univer	28-48 V Controller's power 68 V Associated battery	3.73 kW
PV Array design Number of modules and strings Mod. in serie 1 + ✓ Between 1 and 1 Nb. strings 33 + ✓ Between 27 and 40 Overload loss 0.0 % Prom ratio 1.15 ? Nb modules 33 Area 36 m²	Operating conditions : Vmpp (60°C) 40 V Vmpp (20°C) 44 V Voc (-10°C) 65 V Plane irradiance 1000 W/m² Impp (STC) 97.9 A Icc (STC) 115 A Icc (at STC) 115 A	Max. operating power at 1000 W/m² and 50°C) Array': nom. power (STC)	4.0 kW 4.3 kWp

Figure 4 The system component setting for PV array and the charge controller

Specified User's nee	eds Pre-sizing suggestions	System summary	1		
Av. daily needs :	Enter accepted LOL	5.0 ÷ %	?	Battery (user) voltage	48 ÷ V ?
13.2 kWh/day	Enter requested autonomy	4.0 + day(s)	?	Suggested capacity	1295 Ah
	Detailed pre-siz	aing	and the second	Suggested PV power	4.32 kWp (nom.)

Storage PV Array Back-up Schema

Procedure								
	The Pre-sizing su	iggestions are b	ased on the M	fonthly i	meteo and the u	user's needs definition		
1 Pre-sizing	Define the desired	Pre-sizing con	ditions (LOL,	Autono	my, Battery volt	age)		
2 Storage	Define the battery	pack (default	checkboxes	will appr	roach the pre-siz	zing)		
3 PV Array design	Design the PV arr	ay (PV module)	and the cont	trol mode	e. You are advis	ed to begin with a universal c	ontroller.	
4 Back-up	Define an eventu	al Genset						
Specify the Battery	set							
Sort Batteries by	voltage C	capacity	C ma	nufactu	rer			
Volta	▼ 12 V	100 Ah	Pb Sealed	Tub	Volta 6SB100	2	•	<u>O</u> pen
All technol.	•					Batterypack voltage	48	v
						Global capacity	1300	Ah
4 ÷ I Batter	rys in serie	Number	of batterys	52		Stored energy (80% DOD)	49.9	k\wh
10 1 5						Total weight	1664	ka
13 → 🔽 Batte	rys in parallel	Number	of elements	312		Nb. cycles at 50% DOD	1211	2
					Total stored	energy during the battery life	41935	M₩h
Operating battery to	emperature		-					
Temper. mode Fixe	ed (tempered local)		1					
Fixed temperat	ure 20 *C							
	120 0							
The battery temperatur battery. An increase of by a factor of 2.								
						1		
					🗶 Car	and I	🥒 ОК	

Figure 5 The system component setting for the battery bank

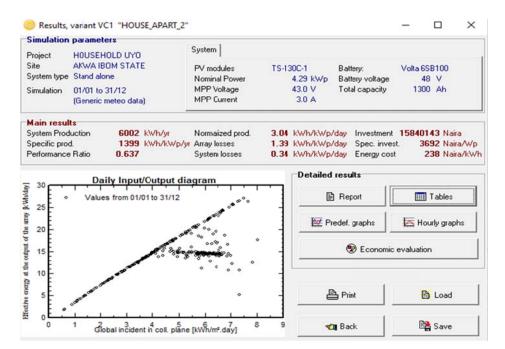


Figure 6 The summary of the main results of the PV standalone power system

Close Print	variant : HOU Export Help							
				E_APART_1 and main re				
	GlobHor	GlobEff	E Avail	EUnused	E Miss	E User	E Load	SolFrac
	kWh/m²	kWh/m²	kWh	kWh	k₩h	kWh	kWh	
January	171.4	178.7	638.1	191.1	0.00	409.3	409.3	1.000
February	156.5	159.0	567.8	187.5	0.00	369.7	369.7	1.000
March	164.9	162.1	578.8	159.8	0.00	409.3	409.3	1.000
April	152.7	145.2	516.2	104.4	0.00	396.1	396.1	1.000
May	146.3	135.4	482.2	62.9	0.00	409.3	409.3	1.000
June	129.3	118.2	418.7	9.8	0.00	396.1	396.1	1.000
July	119.3	110.1	390.9	0.0	18.25	391.1	409.3	0.955
August	116.9	109.7	393.7	0.0	0.00	409.3	409.3	1.000
September	118.2	114.0	403.4	0.0	45.73	350.4	396.1	0.885
October	132.4	130.8	463.1	66.8	0.00	409.3	409.3	1.000
November	145.2	149.0	530.9	86.6	0.00	396.1	396.1	1.000
December	164.0	172.0	618.6	195.6	0.00	409.3	409.3	1.000
Year	1717.2	1684.2	6002.3	1064.6	63.98	4755.5	4819.5	0.987

Figure 7 The results on the system energy balance and solar fraction

PVSYST V6.70				07/08/2	22 Page 5/6
	Stand Alone System	: Economic	evaluation		
Project :	HOUSEHOLD UYO				
Simulation variant :	HOUSE_APART_2				
Main system parameters	System type	Stand alone		1000	
PV Field Orientation	tilt	8*	azim	nuth 0°	
PV modules	Model	TS-130C-1	Pr	nom 130	
PV Array	Nb. of modules	33	Pnom t		
Battery	Model				l-acid, sealed, tub
Battery Pack	Nb. of units		Voltage / Capa		/ 1300 Ah
User's needs	Daily household consumers	Constant over	the year Gk	obal 4820	kWh/year
Investment					
PV modules (Pnom = 130 V	Vp) 33 units	300000	Naira / unit	9900000 1	Naira
Supports / Integration		3450	Naira / module	113850 N	Vaira
Batteries (12 V/100 Ah)	52 units		Naira / unit	2860000 N	
centroller				500000 N	Vaira
Settings, wiring,				50000 M	Vaira
Substitution underworth					Jaira
	nout taxes)			13423850	
Financing					
Gross investment (without t				13423850	Naira
Taxes on investment (VAT)				2416293 N	Vaira
Gross investment (including	VAT)			15840143 N	
Subsidies					Vaira
Net investment (all taxes	included)			15840143 N	Naira
Annuities	(Loan 5.0 %	over 25 years)		1123897 N	Vaira/vear
Maintenance		,,			Naira/year
insurance, annual taxes				1 0	Vairalyear
Provision for battery replace	ement (lifetime 9.0 y	ears)		8380 M	Naira/year
Total yearly cost				1132277	Naira/year
Energy cost					
Used solar energy				4756 k	Wh / year
Excess energy (battery full))				Wh / year
Used energy cost					Naira / kWh

Figure 8 The details of the economic analysis of the PV system

PVSYST V6.70				07/08/22	Page 6/6	
	Stand Alone Syst	tem: CO2 Balanc	e			
Project :	HOUSEHOLD UYO					
Simulation variant :	HOUSE_APART_2					
Main system parameters	System type	Stand alone				
PV Field Orentation	tilt	8*	azimuth			
PV modules	Model	10-1000-1	Pnom			
PV Array	Nb. of modules		Pnom tota			
Battery	Model		Technology		d, sealed, tubu	
Battery Pack	Nb. of units		e / Capacity			
User's needs	Daily household consumers	Constant over the year	Globa	4820 kW	/h/year	
Produced Emissions	Total:	8.23 tCO2				
	Source:		n table belo	w.		
Replaced Emissions	Total:	72.4 tCO2				
	System production:	6002.26 kWh/yr	Lifetime:			
			egradation:	1.0 %		
	Grid Lifecycle Emissions:	402 gCO2/kWh				
	Source:	IEA List	Country:	Nigeria		
CO2 Emission Balance	Total:	54.6 tCO2				
System Lifecycle Emissio	ons Details:					
Item		odules		Supports		
LCE	1713 k	gCO2/kWp	2	68 kgCO2/kg		
Quantity	4.2	9 kWp		330 kg		
Subtotal [kcCO2]	1 7	348		885		

Figure 9 The result of the carbon balance analysis of the PV system

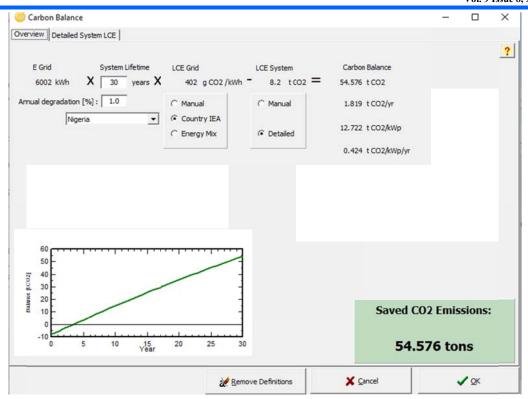


Figure 10 The details of results on the carbon balance analysis of the PV system

4 CONCLUSION

The technical, economic and carbon balance analysis of a PV solar power system for a household is presented. The mathematical expressions are presented and the actual analysis is performed using PVSyst software. The analysis yielded the PV module and battery requirements along with order system sizing parameters. The results included the total energy production, the solar fraction, the unit energy cost and the total carbon balance of the system along with other system losses and performance parameters.

REFERENCES

- Sen, S., & Ganguly, S. (2017). Opportunities, barriers and issues with renewable energy development–A discussion. *Renewable and Sustainable Energy Reviews*, 69, 1170-1181.
- Elum, Z. A., & Momodu, A. S. (2017). Climate change mitigation and renewable energy for sustainable development in Nigeria: A discourse approach. *Renewable and Sustainable Energy Reviews*, 76, 72-80.
- Du, K., & Li, J. (2019). Towards a green world: How do green technology innovations affect total-factor carbon productivity. *Energy Policy*, 131, 240-250.
- Petinrin, J. O., & Shaaban, M. (2015). Renewable energy for continuous energy sustainability in Malaysia. *Renewable and Sustainable Energy Reviews*, *50*, 967-981.
- 5. Rabe, B. G. (2007). Beyond Kyoto: Climate change policy in multilevel governance systems. *Governance*, *20*(3), 423-444.

- Ajala, O. E., Aberuagba, F., Odetoye, T. E., & Ajala, A. M. (2015). Biodiesel: Sustainable Energy Replacement to Petroleum-Based Diesel Fuel–A Review. *ChemBioEng Reviews*, 2(3), 145-156.
- Haberl, H., Wiedenhofer, D., Virág, D., Kalt, G., Plank, B., Brockway, P., ... & Creutzig, F. (2020). A systematic review of the evidence on decoupling of GDP, resource use and GHG emissions, part II: synthesizing the insights. *Environmental* Research Letters, 15(6), 065003.
- Gibson, L., Wilman, E. N., & Laurance, W. F. (2017). How green is 'green'energy?. *Trends in ecology & evolution*, 32(12), 922-935.
- Linard, C., Gilbert, M., Snow, R. W., Noor, A. M., & Tatem, A. J. (2012). Population distribution, settlement patterns and accessibility across Africa in 2010. *PloS one*, 7(2), e31743.
- Falchetta, G., Pachauri, S., Byers, E., Danylo, O., & Parkinson, S. C. (2020). Satellite observations reveal inequalities in the progress and effectiveness of recent electrification in sub-Saharan Africa. One Earth, 2(4), 364-379.
- 11. Neumann, B., Vafeidis, A. T., Zimmermann, J., & Nicholls, R. J. (2015). Future coastal population growth and exposure to sea-level rise and coastal flooding-a global assessment. *PloS one*, *10*(3), e0118571.

- Aliyu, A. S., Ramli, A. T., & Saleh, M. A. (2013). Nigeria electricity crisis: Power generation capacity expansion and environmental ramifications. *Energy*, *61*, 354-367.
- Ikem, I. A., Ibeh, M. I., Nyong, O. E., Takim, S. A., & Osim-Asu, D. (2016). Integration of Renewable Energy Sources to the Nigerian National Grid-Way out of Power Crisis. *International Journal of Engineering Research*, 5(8), 694-700.
- 14. Neumann, B., Vafeidis, A. T., Zimmermann, J., & Nicholls, R. J. (2015). Future coastal population growth and exposure to sea-level rise and coastal flooding-a global assessment. *PloS one*, *10*(3), e0118571.
- 15. Vincent, E. N., & Yusuf, S. D. (2014). Integrating renewable energy and smart grid technology into the Nigerian electricity grid system. *Smart Grid and Renewable Energy*, 2014.
- 16. Njiru, C. W., & Letema, S. C. (2018). Energy poverty and its implication on standard of living in Kirinyaga, Kenya. *Journal of Energy*, 2018.
- Bertheau, P., Oyewo, A. S., Cader, C., Breyer, C., & Blechinger, P. (2017). Visualizing national electrification scenarios for sub-saharan African countries. *Energies*, *10*(11), 1899.
- Farnoosh, A., Lantz, F., & Percebois, J. (2014). Electricity generation analyses in an oil-exporting country: Transition to non-fossil fuel based power units in Saudi Arabia. *Energy*, *69*, 299-308.
- Karmaker, A. K., Rahman, M. M., Hossain, M. A., & Ahmed, M. R. (2020). Exploration and corrective measures of greenhouse gas emission from fossil fuel power stations for Bangladesh. *Journal of Cleaner Production, 244*, 118645.
- Niles, K., & Lloyd, B. (2014, February). Using power sector reform as an opportunity to increase the uptake of renewable energy in the power sector: Responding to peak oil and climate change in C aribbean and P acific small island developing S tates, between 1970-2010. In *Natural resources forum* (Vol. 38, No. 1, pp. 14-26).
- Chapman, A. J., McLellan, B. C., & Tezuka, T. (2018). Prioritizing mitigation efforts considering co-benefits, equity and energy justice: Fossil fuel to renewable energy transition pathways. *Applied Energy*, 219, 187-198.
- 22. Ohunakin, O. S., Adaramola, M. S., Oyewola, O. M., & Fagbenle, R. O. (2014). Solar energy

applications and development in Nigeria: drivers and barriers. *Renewable and Sustainable Energy Reviews*, *32*, 294-301.

- 23. Barua, A., Chakraborti, S., Paul, D., & Das, P. (2014). ANALYSIS OF CONCENTRATED SOLAR POWER TECHNOLOGIES'FEASIBILITY, SELECTION AND PROMOTIONAL STRATEGY FOR BANGLADESH. Journal of Mechanical Engineering, 44(2), 112-116.
- Islam, F. R., & Mamun, K. A. (2017). Possibilities and challenges of implementing renewable energy in the light of PESTLE & SWOT analyses for island countries. In Smart energy grid design for island countries (pp. 1-19). Springer, Cham.
- Alova, G., Trotter, P. A., & Money, A. (2021). A machine-learning approach to predicting Africa's electricity mix based on planned power plants and their chances of success. *Nature Energy*, *6*(2), 158-166.
- Jianzhong, X. U., Assenova, A., & Erokhin, V. (2018). Renewable energy and sustainable development in a resource-abundant country: Challenges of wind power generation in Kazakhstan. *Sustainability*, *10*(9), 3315.
- Milligan, M., Frew, B., Kirby, B., Schuerger, M., Clark, K., Lew, D., ... & Tsuchida, B. (2015). Alternatives no more: Wind and solar power are mainstays of a clean, reliable, affordable grid. *IEEE Power and Energy Magazine*, *13*(6), 78-87.
- Dincer, I., & Acar, C. (2015). A review on clean energy solutions for better sustainability. *International Journal of Energy Research*, 39(5), 585-606.
- 29. Rigo, P. D., Siluk, J. C. M., Lacerda, D. P., Rosa, C. B., & Rediske, G. (2019). Is the success of small-scale photovoltaic solar energy generation achievable in Brazil?. *Journal of Cleaner Production*, 240, 118243.
- Majumdar, D., & Pasqualetti, M. J. (2019). Analysis of land availability for utility-scale power plants and assessment of solar photovoltaic development in the state of Arizona, USA. *Renewable Energy*, *134*, 1213-1231.
- Tuller, H. L. (2017). Solar to fuels conversion technologies: a perspective. *Materials for renewable and sustainable energy*, 6(1), 1-16.
- Hosenuzzaman, M., Rahim, N. A., Selvaraj, J., Hasanuzzaman, M., Malek, A. A., & Nahar, A. (2015). Global prospects, progress, policies, and environmental impact of solar photovoltaic power generation. *Renewable*

and Sustainable Energy Reviews, 41, 284-297.

- 33. Ozturk, M., & Dincer, I. (2021). A comprehensive review on power-to-gas with hydrogen options for cleaner applications. *International Journal of Hydrogen Energy*, *46*(62), 31511-31522.
- Patterson, M., Macia, N. F., & Kannan, A. M. (2014). Hybrid microgrid model based on solar photovoltaic battery fuel cell system for intermittent load applications. *IEEE Transactions on Energy Conversion*, 30(1), 359-366.
- Bódis, K., Kougias, I., Taylor, N., & Jäger-Waldau, A. (2019). Solar photovoltaic electricity generation: a lifeline for the European coal regions in transition. *Sustainability*, *11*(13), 3703.
- Rozali, N. E. M., Alwi, S. R. W., Manan, Z. A., Klemeš, J. J., & Hassan, M. Y. (2014).
 Optimal sizing of hybrid power systems using power pinch analysis. *Journal of Cleaner Production*, *71*, 158-167.
- Lan, H., Wen, S., Hong, Y. Y., David, C. Y., & Zhang, L. (2015). Optimal sizing of hybrid PV/diesel/battery in ship power system. *Applied energy*, *158*, 26-34.
- Gonzalez, A., Riba, J. R., Rius, A., & Puig, R. (2015). Optimal sizing of a hybrid gridconnected photovoltaic and wind power system. *Applied energy*, *154*, 752-762.
- Buitrago-Velandia, A. F., Montoya, O. D., & Gil-González, W. (2021). Dynamic reactive power compensation in power systems through the optimal siting and sizing of photovoltaic sources. *Resources*, *10*(5), 47.
- Weniger, J., Tjaden, T., & Quaschning, V. (2014). Sizing of residential PV battery systems. *Energy Procedia*, 46, 78-87.
- 41. Bhandari, B., Lee, K. T., Lee, C. S., Song, C. K., Maskey, R. K., & Ahn, S. H. (2014). A novel off-grid hybrid power system comprised of solar photovoltaic, wind, and hydro energy sources. *Applied Energy*, *133*, 236-242.
- 42. Chandel, M., Agrawal, G. D., Mathur, S., & Mathur, A. (2014). Techno-economic analysis of solar photovoltaic power plant for garment zone of Jaipur city. *Case Studies in Thermal Engineering*, *2*, 1-7.
- Olatomiwa, L., Mekhilef, S., Huda, A. N., & Sanusi, K. (2015). Techno-economic analysis of hybrid PV-diesel-battery and PV-winddiesel-battery power systems for mobile BTS: the way forward for rural development. *Energy Science & Engineering*, *3*(4), 271-285.

- 44. Cucchiella, F., D'adamo, I., & Gastaldi, M. (2016). Photovoltaic energy systems with battery storage for residential areas: an economic analysis. *Journal of Cleaner Production*, *131*, 460-474.
- Kumar, U. S., & Manoharan, P. S. (2014). Economic analysis of hybrid power systems (PV/diesel) in different climatic zones of Tamil Nadu. *Energy Conversion and Management*, 80, 469-476.
- Rad, M. A. V., Ghasempour, R., Rahdan, P., Mousavi, S., & Arastounia, M. (2020). Techno-economic analysis of a hybrid power system based on the cost-effective hydrogen production method for rural electrification, a case study in Iran. *Energy*, *190*, 116421.
- Lang, T., Ammann, D., & Girod, B. (2016). Profitability in absence of subsidies: A technoeconomic analysis of rooftop photovoltaic selfconsumption in residential and commercial buildings. *Renewable Energy*, *87*, 77-87.
- Guinot, B., Champel, B., Montignac, F., Lemaire, E., Vannucci, D., Sailler, S., & Bultel, Y. (2015). Techno-economic study of a PVhydrogen-battery hybrid system for off-grid power supply: Impact of performances' ageing on optimal system sizing and competitiveness. *International journal of hydrogen energy*, 40(1), 623-632.
- Meylan, F. D., Piguet, F. P., & Erkman, S. (2017). Power-to-gas through CO2 methanation: Assessment of the carbon balance regarding EU directives. *Journal of Energy Storage*, *11*, 16-24.
- Krauter, S., & Rüther, R. (2004). Considerations for the calculation of greenhouse gas reduction by photovoltaic solar energy. *Renewable energy*, *29*(3), 345-355.
- Guo, X., Lin, K., Huang, H., & Li, Y. (2019). Carbon footprint of the photovoltaic power supply chain in China. *Journal of cleaner production*, 233, 626-633.
- 52. Lima, G. C. D., Toledo, A. L. L., & Bourikas, L. (2021). The role of national energy policies and life cycle emissions of pv systems in reducing global net emissions of greenhouse gases. *Energies*, *14*(4), 961.
- 53. Alsema, E. A. (1998). Energy requirements and CO2 mitigation potential of PV systems.
- Alsema, E. (2012). Energy payback time and CO2 emissions of PV systems. In *Practical Handbook of Photovoltaics* (pp. 1097-1117). Academic Press.
- 55. Schmidt, J., Cancella, R., & Pereira Jr, A. O. (2016). An optimal mix of solar PV, wind and hydro power for a low-carbon electricity

supply in Brazil. *Renewable Energy*, 85, 137-147.

- 56. Yadav, P., Kumar, N., & Chandel, S. S. (2015, April). Simulation and performance analysis of a 1kWp photovoltaic system using PVsyst. In 2015 International Conference on Computation of Power, Energy, Information and Communication (ICCPEIC) (pp. 0358-0363). IEEE.
- Irwan, Y. M., Amelia, A. R., Irwanto, M., Leow, W. Z., Gomesh, N., & Safwati, I. (2015). Stand-alone photovoltaic (SAPV) system assessment using PVSYST software. *Energy Procedia*, *79*, 596-603.
- 58. Gurupira, T., & Rix, A. (2017). Pv simulation software comparisons: Pvsyst, nrel sam and pvlib. In *Conf.: saupec*.

- 59. Muñoz, Y., Vargas, O., Pinilla, G., & Vásquez, J. (2017). Sizing and study of the energy production of a grid-tied photovoltaic system using PVsyst software. *Tecciencia*, *12*(22), 27-32.
- 60. Ramoliya, J. V. (2015). Performance evaluation of grid-connected solar photovoltaic plant using PVSYST software. Journal of Emerging Technologies and Innovative Research (JETIR), 2(2), 7.
- Shrivastava, A., Sharma, R., Saxena, M. K., Shanmugasundaram, V., & Rinawa, M. L. (2021). Solar energy capacity assessment and performance evaluation of a standalone PV system using PVSYST. *Materials Today: Proceedings.*