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Abstract— In this paper, applied deep learning
approach for prediction of pneumonia infection is
presented. The pneumonia dataset used was
extracted from Kaggle repository which consists
of 5247 chest X-ray images selected from group of
pediatric patients ranging from one to five years
old. About 3906 images were obtained from
persons who were affected by pneumonia of
which 2561 images were for those affected by
bacterial pneumonia and 1345 images were for
those affected by viral pneumonia while 1341
images out of the 5247 chest X-ray images were
from normal subjects. Convolutional neural
networks model was trained to detect pneumonia
from chest X-ray images. First, the original X-ray
images are transformed and the transformed
images were passed to a convolutional neural
network, which extracted features from the
images. Then fully connected layer network was
then used to classify the images, and thereby
identify pneumonia infection from the chest X-ray
images. The training and validation results for the
Pneumonia classification deep learning model
includes training loss of 0.0797, training accuracy
of 96.65%, and training precision of 0.9786 and
training recall of 0.9764. The validation loss was
0.2754, validation accuracy of 93.24%, validation
precision was 0.9324, and validation recall of
0.9698. The results showed that the trained model
presented in this paper can classify pneumonia
from frontal view chest X-ray images with high
accuracy that is above 96%.
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1. Introduction

Pneumonia is a popular disease that manifests in
the form of inflammation of the lung tissues
[1,2,3,4,5,6,7,8,9,10]. The causes of Pneumonia includes
pathogenic microorganisms and immunologic injury as well
as other pharmaceuticals [11,12,13,14,15,16,17,18,19,20].
Pneumonia can be classified as either infectious or non-
infectious [21,22,23,24,25,26,27,28,29,30]. It can also be
classified as bacteria or viral, among other categories based
on the different pathogeneses [31,32,33,34,35]. Across the
globe, Pneumonia has been responsible for several millions
of death. In any case, with the use of certain antibiotics and
antiviral ~ drugs, pneumonia can be  managed
[36,37,38,39,40,41]. However, management of pneumonia
is more effective when early detection and treatment is
adopted as it forestalls complications that may result due to
escalation in the infection.

Generally, the most popular clinical approach for
diagnosing pneumonia is the use of Chest X-ray images
[42,43,44,45]. However, experience has shown that it is
quite difficult for experts to effectively detect pneumonia
infection from Chest X-ray images; the results are quite
subjective. As such, the use of modern technology to
enhance the accuracy of the diagnosis of pneumonia based
on Chest X-ray images has drawn the attention of many
researchers. As such in this paper, applied deep learning
approach for prediction of pneumonia infection is presented
[46,47,48,49,50]. Particularly, deep learning model was
trained to detect pneumonia from dataset of chest X-ray
images. The prediction performance of the model was
ascertain using test dataset of chest X-ray images.

2. METHODOLOGY
2.1 Dataset

In this paper, the pneumonia dataset used was extracted
from Kaggle repository which they obtained from
Guangzhou Women and Children’s Medical Center,
Guangzhou [51,52,53,54,55,56]. The Kaggle pneumonia
dataset consists of 5247 chest X-ray images which were
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selected from group of pediatric patients ranging from one
to five years old. According to Kaggle repository portal, the
chest X-ray imaging was obtained during the patients’
routine clinical care. In respect of the 5247 chest X-ray
images, about 3906 images (Table 1 and Figure 1) were
obtained from different persons who were affected by
pneumonia of which 2561 images were for those affected
by bacterial pneumonia (Figure 2) while 1345 images were
for those affected by viral pneumonia (Figure 3). Similarly,
about 1341 images out of the 5247 chest X-ray images were
from normal subjects (shown in Table 1 , Figure 1 and
Figure 4). It was also noted that there were cases of mixed
viral and bacterial infection in some of the pneumonia
cases. However, the mixed viral and bacterial infection
dataset were not used in this study. Before the dataset was
used, it was first segmented into training dataset and test
dataset.

Table 1: Total number of images in Pneumonia dataset

Category No of images in the dataset
Bacterial & Viral Pneumonia 3906
Normal 1345

Pneumonia Dataset
mam Normal images Emm Pneumonia images

A

Figure 1: Pie Chart of Pneumonia dataset

Fgure 3: Viral Pneumonia Chest X-ra Scan

Figure 4: Normal Chest X-ray Scan
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2.2 Data Pre-processing

Data augmentation was applied to help address the
problem of overfitting and increase the number of images
used in the model training. The data augmentations
employed in this case included horizontal flip and zoom.
The settings for the image augmentation are shown in Table
2. In addition, data normalization is another important step
that was performed before the model training in the deep
learning approach adopted in this paper. Notably, all the
images used in both the training set and also for the test
dataset were normalized. Generally, data normalization
help to reduce model training time. In this paper, the
images in the dataset were resized to 200 x 200. A batch
size of 32 was adopted and binary class model was also
adopted.

Table 2: Settings for the image augmentation

Method Setting
Rescale 1/255
Zoom range 0.2
Horizontal Flip True

2.3The Pneumonia Classification Model Architecture

The architecture for the Pneumonia classification model is
made up of convolutional block with convolutional layer
that has 32 filters, 3 stride and adopted Relu activation
function. A max-pooling layer with a pool size of 2 was
added. The second convolutional block consists of a 64
filters convolutional layer with a stride of 3, and relu
activation was also used. A max-pooling layer with a pool
size of 2 was added. The third block consists of a 128 filters
convolutional layer with a stride of 3, and a relu activation
was also used. A max-pooling layer with a pool size of 2
was added. The fourth block consists of a 128 filters
convolutional layer with a stride of 3, and a relu activation
was also used. A max-pooling layer with a pool size of 2
was added. A flattening layer was added along with a
dropout layer. Also added was a fully connected layer with
512 nodes. The output layer has a sigmoid activation
function-based node. The Convolutional Neural Network
(CNN) model architecture for Pneumonia classification is
shown in Figure 5 and the CNN model summary for
Pneumonia classification is given in Figure 6. The CNN
model was compiled with an Adam optimizer with binary
cross-entropy loss function as well as accuracy metric. The
hyper-parameters used for the Pneumonia model
compilation is shown in Table 3.

Figure 5: CNN Model Architecture for Pneumonia classification
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Model: "sequential”

Layer (type) Output Shape Param #
convad (Comv2D)  (None, 200, 200, 32) 896
max_pooling2d (MaxPooling2D) (None, 18, 18, 32) 0
conv2d_1 (Conv2D) (None, 1@, 1€0, 64) 18496
max_pooling2d_1 (MaxPooling2 (None, 5@, 5@, 64) Q
conv2d_2 (Conv2D) (None, 50, 50, 128) 73856
max_pooling2d 2 (MaxPooling2 (None, 25, 25, 128) e
conv2d_3 (Conv2D) (None, 25, 25, 128) 147584
max_pooling2d_3 (MaxPooling2 (None, 12, 12, 128) @
flatten (Flatten) (None, 18432) e
dropout (Dropout) (None, 18432) (4]

dense (Dense) (None, 512) 9437696
dense_1 (Dense) (None, 1) 513

Total params: 9,679,041
Trainable params: 9,679,041
Non-trainable params: @

Figure 6: CNN Model Summary for Pneumonia classification

Table 3: Pneumonia model Hyper-parameters settings

Optimizer Adam

Loss function | Binary cross-entropy

Metrics

Accuracy, Recall, Precision

3. Results and Discussion

The Pneumonia model was trained using a
Graphics processing unit (GPU) from Google Colab. It
took about 3 hours to train the model for 70 epochs. The
parameters and hyper-parameters were fine-tuned to
improve the performance of the model.

3.1 Training and Validation Results for the

Pneumonia Model

The training and validation results for the
Pneumonia model are shown in Table 4. The main results
obtained are training loss of 0.0797, training accuracy of
96.65%, training precision of 0.9786 and training recall of
0.9764. The validation loss was 0.2754, validation accuracy
of 93.24%, validation precision was 0.9324, and validation
recall of 0.9698. Furthermore, the various performance
parameters for the results on the Pneumonia classification
model are plotted in the graphs presented in Figure 7,
Figure 8, Figure 19, Figure 10, Figure 11 and Figure 12.

In all, the accuracy of each of the model is over 96.6%.
This means that out of every 100 chest X-ray images passed
to the models as input, the model will correctly identify
over 96 pneumonia cases from the images. Only less than 4
out of the 100 chest X-ray images may be wrongly
classified by the model.
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Table 4: Training and Validation Results for the Pneumonia Classification Model and the COVID-19 Classification

Model
Final Result Pneumonia Model
Training Accuracy 96.65%
Validation Accuracy 93.24%
Training Loss 0.0797
Validation Loss 0.3844
Training Precision 0.9786
Validation Precision 0.9324
Training Recall 0.9764
Validation Recall 0.9698

Training and validation accuracy

0.95 .wm
0.90 1 e
0.85 1
0.80 1
0.75 1
0.70 1
® Taining acc
0.65 1 = Validation acc
0 10 20 0 4 O 6 70

Figure 7: Training and Validation Accuracy Results for the Pneumonia Classification Model

Pneumonia Model Accuracy Chart

TFaining Accuracy

Validation Accuracy

%0 %2 9 % 9% 100
Accuracy Score

Figure 8: Pneumonia Classification Model Accuracy Chart
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Figure 9: Training and Validation Loss Results for the Pneumonia Classification Model

Pneumonia Model Loss Chart
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Figure 10: Pneumonia Classification Model Loss Chart
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Pneumonia Model Precision Chart
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Figure 11: Pneumonia Classification Model Precision Chart
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Figure 12: Pneumonia Classification Model Recall Chart

4. Conclusion

In this paper, a deep learning mechanism that can
be used to quickly diagnose pneumonia is presented.
Convolutional neural networks model was trained to detect
pneumonia from chest X-ray images. First, the original X-
ray images are transformed and the transformed images
were passed to a convolutional neural network which
extracted relevant features from the images. Then fully
connected layer network was then employed to classify the
images, and thereby identify pneumonia infection from the
chest X-ray images. The results showed that the trained
model presented in this paper can classify pneumonia from
frontal view chest X-ray images with high accuracy.
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