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Abstract— In this paper, applied deep learning 

approach for prediction of pneumonia infection is 
presented. The pneumonia dataset used was 
extracted from Kaggle repository which consists 
of 5247 chest X-ray images selected from group of 
pediatric patients ranging from one to five years 
old. About 3906 images were obtained from 
persons who were affected by pneumonia of 
which 2561 images were for those affected by 
bacterial pneumonia and 1345 images were for 
those affected by viral pneumonia while 1341 
images out of the 5247 chest X-ray images were 
from normal subjects. Convolutional neural 
networks model was trained to detect pneumonia 
from chest X-ray images. First, the original X-ray 
images are transformed and the transformed 
images were passed to a convolutional neural 
network, which extracted features from the 
images. Then fully connected layer network was 
then used to classify the images, and thereby 
identify pneumonia infection from the chest X-ray 
images. The training and validation results for the 
Pneumonia classification deep learning model 
includes training loss of 0.0797, training accuracy 
of 96.65%, and training precision of 0.9786 and 
training recall of 0.9764. The validation loss was 
0.2754, validation accuracy of 93.24%, validation 
precision was 0.9324, and validation recall of 
0.9698. The results showed that the trained model 
presented in this paper can classify pneumonia 
from frontal view chest X-ray images with high 
accuracy that is above 96%.  

Keywords— Deep Learning, Bacterial Pneumonia, 
Convolutional Neural Network, Kaggle 
Repository, Viral Pneumonia, Data 
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1. Introduction 

Pneumonia is a popular disease that manifests in 
the form of inflammation of the lung tissues 
[1,2,3,4,5,6,7,8,9,10]. The causes of Pneumonia includes 
pathogenic microorganisms and immunologic injury as well 
as other pharmaceuticals [11,12,13,14,15,16,17,18,19,20]. 
Pneumonia can be classified as either infectious or non-
infectious [21,22,23,24,25,26,27,28,29,30]. It can also be 
classified as bacteria or viral, among other categories based 
on the different pathogeneses [31,32,33,34,35]. Across the 
globe, Pneumonia has been responsible for several millions 
of death. In any case, with the use of certain antibiotics and 
antiviral drugs, pneumonia can be managed 
[36,37,38,39,40,41]. However, management of pneumonia 
is more effective when early detection and treatment is 
adopted as it forestalls complications that may result due to 
escalation in the infection.  

Generally, the most popular clinical approach for 
diagnosing pneumonia is the use of Chest X-ray images 
[42,43,44,45]. However, experience has shown that it is 
quite difficult for experts to effectively detect pneumonia 
infection from Chest X-ray images; the results are quite 
subjective. As such, the use of modern technology to 
enhance the accuracy of the diagnosis of pneumonia based 
on Chest X-ray images has drawn the attention of many 
researchers. As such in this paper, applied deep learning 
approach for prediction of pneumonia infection is presented 
[46,47,48,49,50]. Particularly, deep learning model was 
trained to detect pneumonia from dataset of chest X-ray 
images. The prediction performance of the model was 
ascertain using test dataset of chest X-ray images.  

2. METHODOLOGY 

2.1 Dataset 

In this paper, the pneumonia dataset used was extracted 
from Kaggle repository which they obtained from 
Guangzhou Women and Children’s Medical Center, 
Guangzhou [51,52,53,54,55,56]. The Kaggle pneumonia 
dataset consists of 5247 chest X-ray images which were 
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