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Abstract— In this research, two-dimensional   
continuity, momentum and energy equations for 
steady state, heat transfer problem inside a 
trapezoidal cavity has been analyzed using Finite 
element method. The effect of different shaped 
interior heated body that may be triangle, circle or 
square on fluid flow and heat transfer rate at hot & 
cold wall has been analyzed in the present work. 
The investigations are performed for different 
values of Hartmann number (Ha) & Grashof 
number (Gr) in the range of 50≤Ha≤200 & 
102≤Gr≤105. Various results such as streamlines, 
isotherms and heat transfer rate at bottom and top 
wall in terms of the average Nusselt number are 
presented for considered parameters. The results 
point out that the average Nusselt number (Nuav) 
at both the heated and cold surface as well as 
temperature distribution of the fluid inside the 
domain depend significantly on the chosen three 
geometric configuration under implied boundary 
conditions. The heat transfer rate decreases with 
the mounting value of Hartmann number and 
increases with upper value of Grashof number. 
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I. INTRODUCTION  

      Combined natural and forced convection heat 
transfer problem in a trapezoidal enclosure has 
received extensive interest from a large number of 
researchers. Mixed convection induced in an open 
and closed cavity containing heat conducting, heat 
generating as well as adiabatic element on its center 
is significant from both theoretical and practical points 
of view. In modern days, such configuration frequently 
encounters in various engineering and industrial 
applications, particularly in cooling of electronic 
components, thermal insulation, air conditioning, heat 
exchangers, furnaces, chemical processing 
equipment and drying technologies etc. Particularly, 
heat transfer mechanism in cavities by natural or 
mixed convection is very crucial issue of research that 
is focused by the work of a number of authors. Sereir 
et al. [1] studied optimal conditions of natural and 

mixed convection in a vented rectangular cavity with a 
sinusoidal heated wall inside with a heated solid 
block. An analysis of mixed convection in a 
differentially heated Square cavity with moving lids 
was carried out by Abraham and Varghes [2]. 
Numerical study of natural convection in square cavity 
with inner bodies using finite element method was 
presented by Pinto et al. [3]. Elsherbiny et al. [4] 
analyzed heat transfer in inclined air rectangular 
cavities with two localized heat sources. Fluid flow 
and heat transfer in a channel with an open cavity 
heated from bottom side was investigated by Timuralp 
and Altac [5]. Heat transfer enhancement in cavity 
with lid driven was reviewed by Saieed et al. [6]. 
Megneto-hydrodynamics free convection in the 
localized heat sources of an inclined trapezoidal 
enclosure filled with nano-fluid has been performed by 
Mansour et al [7]. Numerical investigation of conjugate 
natural convection in a cavity with a local heater by 
the Lattice Boltzmann method was performed by 
Gibanov and Sheremet [8]. Numerical simulation of 
natural convection in a square cavity with partially 
active vertical and horizontal walls was studied by 
Djoubeir et al. [9]. Guo and Sharif [10] analyzed mixed 
convection in rectangular cavities at various aspect 
ratios with moving isothermal sidewalls and constant 
flux heat source on the bottom wall. Mixed convection 
enhancement in a rectangular cavity by triangular 
obstacle was presented by Afluq et al. [11]. Ibrahim 
and Hirpho [12] analyzed mixed convection flow in a 
trapezoidal cavity with non-uniform temperature using 
Finite element method. The author’s shown that 
Hartman number has negative impact on the average 
Nusselt number whereas Richardson number has a 
positive effect on average Nusselt number. Zheng et 
al. [13] studied on natural convection heat transfer in a 
closed cavity with hot and cold tubes. Natural 
convection flow analysis has been performed by Akter 
and Parvin [14] in a trapezoidal cavity containing a 
rectangular heated body along with external oriented 
magnetic field.   
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As far the authors know the trapezoidal cavity 
having a centered heat conducting material (triangle, 
circle, square) simultaneously have not been studied 
yet. The goal of this work is to illustrate the flow and 
thermal field of the considered domain and explore 
variation of heat transfer at heated and cold wall of a 
trapezoidal cavity with different shaped inner obstacle.  

II. PROBLEM DEFINITION AND METHODOLOGY 

The studied geometry of the present problem is 
shown in Fig. 1. The considered area of the problem 
is consisted by a trapezoidal cavity whose length of 
bottom and top wall is 2L and L/2 respectively with an 
internal heat conducting materials (triangle, circle, 
square). The foot wall is set at a stable temperature 
Th, while the top wall maintains a low temperature Tc 
and rest two sides of the cavity are kept as adiabatic.  
A consistent magnetic field having strength B0 is 
imposed to the horizontal direction of left wall. All 
exterior and interior solid boundaries are fixed that is 
velocity components u and v are set to zero at four 
outer sides of the enclosure.  
 
 
 
 
 
 
 
 

Fig. 1. The studied geometry used for 
numerical simulation 

The cavity fluid is assumed to be two-dimensional, 
steady, Newtonian, laminar and incompressible. The 
fluid that holds constant thermo-physical properties is 
taken under consideration in the flow model. The 
buoyancy effect in the momentum equation is 
characterized by the Boussinesq’s approximation. 
Also, the viscous dissipation term in the energy 
equation is ignored. The governing equations for the 
current model may be written in the dimensionless 
form as follows: 
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Energy Equation 
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Here, Re iu L


  is the Reynolds number, Pr




  is the 

Prandtl number, 0Ha B L



  is the Hartmann 

number, 
2Re

Gr
Ri   is the Richardson number, and 

sk
K

k
  is the solid-fluid thermal conductivity ratio. 

     Boundary Conditions: The non-dimensional 
boundary conditions which are used in the current 
work can be set as follows:- 
On the top wall: 0,0,0  VU  

On the bottom wall: 1,0,0  VU  

On the inclined walls: 0,0,0 
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The average Nusselt number Nu at the hot wall is 
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A. Method of Solution 

      In the present work, the solutions of the leading 
equations along with boundary conditions are 
achieved by using the finite element method. Initially, 
the research interest area is separated into a set of 
non-overlapping regions which are composed of 
irregular triangular elements. The coupled equations 
(1) - (5) are changed into a system of integral 
equations using Galerkin weighted residual technique 
and imposed proper boundary conditions. By the 
assist of Newton-Raphson iteration technique the non-
linear algebraic equations are customized into a set of 
linear algebraic equations that are solved finally by 
means of triangular factorization method. 
 

B. Mesh Convergence Test 

     Different grid sized elements of the three 
configurations are taken (corresponding number of 
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