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 Abstract— In this paper, analysis of energy 
demand profile and battery lifespan for a battery-
powered sensor node employed in monitoring 
vibration energy on a machinery is presented. A 
four mode energy consumption model is adopted 
for the sensor node, where the modes are sleep 
mode, measure data mode, transmit data mode 
and receive data mode. A numerical example is 
based on the wireless sensor node used in 
monitoring both the energy and other information 
about the vibrations on a machinery using 
accelerometer-based algorithm. The data on the 
measurement mode is presented for two cases, 
one, when 512 data samples are taken, which is 
the minimum sample for acceptable accuracy. 
However, for high accuracy, the 512 data samples 
are taken four times and hence, the measurement 
time in this case is four times that of case one. 
The Tenergy T26B 18650 Li-Ion battery with 
capacity of 2600mAh is used in the analysis. The 
results showed the duty cycle for the two cases 
are respectively 0.9% for the high accuracy 
sampling and 0.28 for the low accuracy sampling 
with a cycle time of 720000 ms. Also, for the case 
of high accuracy sampling, in each cycle, the 
sensor node consumed 2.79 mJ in the 
measurement and process data mode, 38.964 mJ 
in the transmit data mode, 9.9 mJ in the receive 
data mode, and 10.70277 mJ in the sleep mode, 
giving a total of 62.35677 mJ per cycle and 
7482.812 mJ per day. For the case of high 
accuracy sampling, the battery life is 90,062.4 
hours or 10.27 years if the usable battery capacity 
is 100 % of its rated capacity. However, the battery 
life is 76,553.0 hours or 8.73 years if the usable 
battery capacity is 85 % of its rated capacity. This 
gives about 15% reduction in battery lifespan for a 
15 % reduction in usable battery capacity. In all, 
the results showed the transmit data mode 
followed by the sleep mode are the high energy 
consuming modes which will require optimization 
for battery lifespan. 

Keywords— Battery Lifespan, Energy Demand 
Profile, Sensor Node, Usable Battery Capacity, 
Wireless Sensor, Energy Consumption Model 

1. Introduction 

Nowadays, there is growing adoption of wireless 
sensor devices and wireless sensor networks [1,2, 
3,4, 5,6,7, 8,9,10,11,12,13,14,15]. This has given rise 
to Internet of Things (IoT), a network where ‘things’ or 
‘anything’ that is adequately equipped with the 
facilities to connect and communicate electronically 
can become part of a network that range from a local 
area network to the world wide web of networks 
[16,17,18,19,20,21,22,23]. In such cases, sensor 
provides the requisite electronic capability for sensing 
the environment or monitoring specific actions or 
phenomena and also be able to process and store the 
data electronically using a local micro-controller-based 
system attached to the sensor [24,25,26,27,28,29,30]. 
In most cases, the sensors are also equipped with 
transceiver devices that enables the sensor node to 
connect and transmit and receive data and control 
information within a network [31,32,33,34,35,36,37].  

In view of the salient features of modern sensor 
devices, they are increasingly being employed in 
various automation processes, remote data collection, 
remote monitoring and control of process as well as 
for smart systems implementation 
[38,39,40,41,42,43]. Essentially, sensors are getting 
more sophisticated with more features and hence the 
role of sensor node in a given system is becoming 
paramount to the effective functioning of the entire 
system. In view of this, ensuring effective function of 
the sensors at all times in the lifecycle of a sensor 
network or sensor-based IoT system is gaining more 
attention among researcher.  

Generally, sensor nodes are resource constrained; 
they have limited memory, limited processing 
capabilities and also they are most often battery-
powered in which case their battery life span is limited 
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[44,45,46,47]. In such case, determination of the 
power consumption profile of the sensor node and the 
lifespan of the battery are essential in managing the 
sensor-dependent system. Accordingly, in this paper, 
analysis of energy demand profile and battery lifespan 
for a battery-powered sensor node employed in 
monitoring vibration energy on a machinery is 
presented. The detailed analytical models for 
characterising the energy demand profile and battery 
lifespan are presented along with numerical examples 
that demonstrated the applicability of the models. 

2. Methodology 

2.1 Battery Lifespan Computation 

The battery lifespan of a battery-powered sensor 
node is simply the duration of time that the fully 
charged battery delivering energy to the sensor node 
will last before it needs to be replaced. The analytical 
approach used to define the battery lifespan requires 
the following input parameters; 

𝐼𝑆𝐿𝑃 denotes the current in mA drawn by the device 
when it is in its sleep mode  

𝐼𝑇𝑋 denotes the current in mA drawn by the device 
when it is in transmit mode  

𝐼𝑅𝑋 denotes the current in mA drawn by the device 
when it is in Receive mode  

𝐼𝑀𝐸𝐴𝑆 denotes the current in mA drawn by the 
device when it is in measurement mode  

𝑇𝑇𝑋  denotes the duration in mA that device is in 
Transmit (TX) mode  

𝑇𝑅𝑋 denotes the duration in mA that device is in 
Receive (RX) mode  

𝑇𝑀𝐸𝐴𝑆 denotes the duration in mA that device is in 
measurement mode  

Now, let 𝑇𝐴𝐶𝑇  denote the duration in mA that device 
is in active mode, then; 

𝑇𝐴𝐶𝑇 =  𝑇𝑇𝑋 + 𝑇𝑅𝑋 + 𝑇𝑀𝐸𝐴𝑆 (1) 

𝑛𝐴𝐶𝑇  denotes the number of times per day the 
device will be in active mode 

𝐶𝐵𝑎𝑡 denotes the capacity of the battery expressed 
in mAh 

𝐶𝑈𝑃𝐵𝑎𝑡  denotes the usable battery capacity 
(expressed in %) after accounting for self-discharge 

𝐶𝑈𝐵𝑎𝑡  denotes the usable battery capacity 
(expressed in mAh) after accounting for self-discharge 
, where; 

𝐶𝑈𝐵𝑎𝑡 =  𝐶𝐵𝑎𝑡 (
𝐶𝑈𝑃𝐵𝑎𝑡

100
)(2) 

Let 𝑇𝑠𝐻𝑅  denote the number of milliseconds per 

hour which is 𝑇𝑠𝐻𝑅 = 3,600,000 

Let 𝐶𝐴𝐷𝑎𝑦 denote the battery capacity used per day 

in the active mode of the device  

Let 𝐶𝑆𝐷𝑎𝑦 denote the battery capacity used per day 

in the sleep mode of the device  

Let 𝐶𝑇𝐴𝐷𝑎𝑦 denote the total battery capacity used 

per day in both the active and sleep modes of the 

device and 𝐼𝐴𝑉𝐺𝐻𝑅  denote the average current drawn 
per hour 

𝐶𝐴𝐷𝑎𝑦 =
𝑛𝐴𝐶𝑇{(𝑇𝑇𝑋∗𝐼𝑇𝑋 )+(𝑇𝑟𝑋∗𝐼𝑟𝑋 )+(𝑇𝑀𝐸𝐴𝑆∗𝐼𝑀𝐸𝐴𝑆 )} 

𝑇𝑠𝐻𝑅
(3) 

𝐶𝑆𝐷𝑎𝑦 = 𝐼𝑆𝐿𝑃  (24 − (
𝑛𝐴𝐶𝑇(𝑇𝑇𝑋 +𝑇𝑟𝑋 +𝑇𝑀𝐸𝐴𝑆) 

𝑇𝑠𝐻𝑅
))(4) 

𝐶𝑇𝐴𝐷𝑎𝑦 =  𝐶𝐴𝐷𝑎𝑦 + 𝐶𝑆𝐷𝑎𝑦 (5) 

𝐼𝐴𝑉𝐺𝐻𝑅 =  
𝐶𝑇𝐴𝐷𝑎𝑦

24(𝑇𝑠𝐻𝑅)
=  

(𝐶𝐴𝐷𝑎𝑦+ 𝐶𝑆𝐷𝑎𝑦)

24(𝑇𝑠𝐻𝑅)
 (6) 

𝐶𝐿𝐹𝐻𝑅  denotes the battery lifespan expressed in 
hours 

𝐶𝐿𝐹𝐷𝑌  denotes the battery lifespan expressed in 
days 

𝐶𝐿𝐹𝑌𝑅 denotes the battery lifespan expressed in 
years  

Battery lifespan in hours, 𝐶𝐿𝐹𝐻𝑅 = (
𝐶𝑈𝐵𝑎𝑡

𝐼𝐴𝑉𝐺𝐻𝑅
) =

(
𝐶𝑈𝐵𝑎𝑡

𝐶𝐴𝐷𝑎𝑦+ 𝐶𝑆𝐷𝑎𝑦
) ((24)(𝑇𝑠𝐻𝑅))(7) 

Battery lifespan in days, 𝐶𝐿𝐹𝐷𝑌 = (
𝐶𝑈𝐵𝑎𝑡

𝐼𝐴𝑉𝐺𝐻𝑅
) (

1

24
) =

(
𝐶𝑈𝐵𝑎𝑡

𝐶𝐴𝐷𝑎𝑦+ 𝐶𝑆𝐷𝑎𝑦
) (𝑇𝑠𝐻𝑅) (8) 

Battery lifespan in year, 𝐶𝐿𝐹𝑌𝑅 = (
𝐶𝐿𝐹𝐷𝑌

365.24
) =

(
𝐶𝑈𝐵𝑎𝑡

𝐶𝐴𝐷𝑎𝑦+ 𝐶𝑆𝐷𝑎𝑦
) (

𝑇𝑠𝐻𝑅

365.24
) (9) 

2.2 The Duty Cycle and Energy Demand Profile 

The duty cycle defines the fraction of the cycle time 
that is used in the active mode of the sensor node. 
The time for one cycle, denoted as 𝑇𝑃𝑒𝑟𝑖𝑜𝑑 is the sum 

of one active mode time, 𝑇𝐴𝐶𝑇  and sleep mode time, 
𝑇𝑆𝐿𝑃 where;  

𝑇𝑃𝑒𝑟𝑖𝑜𝑑 = (
24∗60∗60∗1000)ms/day

120 active modes per day
) =

(
24∗𝑇𝑠𝐻𝑅)ms/day

120 active modes per day
) (10) 

Hence,  

𝑇𝑆𝐿𝑃 = 𝑇𝑃𝑒𝑟𝑖𝑜𝑑 − 𝑇𝐴𝐶𝑇  (11) 

The duty cycle, 𝐷𝐶𝑦𝑐 is given as; 

𝐷𝐶𝑦𝑐 = (
𝑇𝐴𝐶𝑇

𝑇𝑃𝑒𝑟𝑖𝑜𝑑
)  100 % (12) 

The energy demand profile of the sensor node 
entails the energy the sensor node consumes in each 
of the modes it has per cycle. The energy profile is 
computed from the knowledge of the current, time and 
operating voltage of the sensor node in each of the 
modes. Assuming the operating voltage of 𝑉𝑜𝑝 , the 

energy consumed by the sensor node in each mode 
per cycle are given as follows (where current is in mA, 
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time is in second voltage is in V and then the energy 
is in mJ) ; 

For the measurement mode, 𝐸𝑀𝐸𝐴𝑆  

𝐸𝑀𝐸𝐴𝑆= 𝑇𝑀𝐸𝐴𝑆 ∗ 𝐼𝑀𝐸𝐴𝑆 ∗ 𝑉𝑜𝑝 (13) 

For the transmit data mode, 𝐸𝑇𝑋 

𝐸𝑇𝑋 = 𝑇𝑇𝑋 ∗ 𝐼𝑇𝑋 ∗ 𝑉𝑜𝑝 (14) 

For the receive data mode, 𝐸𝑅𝑋 

𝐸𝑅𝑋 = 𝑇𝑅𝑋 ∗ 𝐼𝑅𝑋 ∗ 𝑉𝑜𝑝 (15) 

For the active mode time, 𝐸𝐴𝐶𝑇   

𝐸𝐴𝐶𝑇 = 𝐸𝑀𝐸𝐴𝑆 + 𝐸𝑇𝑋 + 𝐸𝑅𝑋(16) 

For sleep mode time, 𝑇𝑆𝐿𝑃 , 𝐸𝑆𝐿𝑃  

𝐸𝑆𝐿𝑃  = 𝑇𝑆𝐿𝑃 ∗ 𝐼𝑆𝐿𝑃 ∗ 𝑉𝑜𝑝 (17) 

For each cycle, 𝐸𝑃𝑒𝑟𝑖𝑜𝑑   

𝐸𝑃𝑒𝑟𝑖𝑜𝑑 = 𝐸𝑀𝐸𝐴𝑆 + 𝐸𝑇𝑋 + 𝐸𝑅𝑋 + 𝐸𝑆𝐿𝑃 = 𝐸𝐴𝐶𝑇 +
 𝐸𝑆𝐿𝑃(18) 

3. Numerical Example 

The numerical example is based on the wireless 
sensor node used in monitoring both the energy and 
other information about the vibrations on a machinery 
using accelerometer-based algorithm, as presented 
by Magno, et al. in [47]. Specifically, a three-axis 
accelerometer, CMA3000-D01 from Murata, is 
interfaced with a microcontroller , MSP430 from Texas 
Instruments. Also, a nano-power wake-up radio is 
used to minimize energy drawn during idle period. The 
entire sensor node is built around the CC2530 
system-on-chip which is responsible for 
communication with the ZigBee protocol that runs on 
the MSP430 microcontroller. In all, the energy 
consumption model adopted in [27] can be matched 
with the four distinct modes of the sensor node as 
presented in Table 1 [27] . The data in Table 1 are 
empirically measured current consumption for the four 
modes of the sensor node operating at 3V [27] . In 
Table 1, the data on the measurement mode is 
presented for two cases, one, when 512 data samples 
are taken, which is the minimum sample for 
acceptable accuracy. However, for high accuracy, the 
512 data samples are taken four times and hence, the 
measurement time in this case is four times that of 
case one, as presented in Table 1.  

 

 

 

 

 

 

 

 

Table 1. The energy consumption data adopted in 
[27] for the four distinct modes of the sensor node 

S/N  
Current 

(mA) 
Time (s) 

Sleep 
Node sleep and 

wake-up 
0.005 

To be 
calculated 

Measurement 

Data acquisition 
and processing 

for 512 data 
samples 

0.155 1.5 

Data acquisition 
and processing 
for 512 x4 data 

samples 

0.155 6 

Transmit 
MODE  

Transmission of 
data 

34 0.382 

Receive 
Mode 

Receive data 33 0.1 

 

4. Result and Discussion 

In this paper, the energy demand profile and the 
required battery capacity are computed using the 
energy consumption data presented in Table 1. 
Particularly, the period is determined from the number 

of times (𝑛𝐴𝐶𝑇) the sensor node is expected to be in 

active mode per day. With 𝑛𝐴𝐶𝑇 = 120  per day, the 
period is given as (24 *60*60)/ 𝑛𝐴𝐶𝑇 = (24 *60*60)/ 120 
= 720 s = 720000 ms. In the case of battery life 
determination, the selected battery capacity is the 
rechargeable Tenergy T26B 18650 Li-Ion battery with 
capacity of 2600mAh. The results of the computation 
for the active mode time, the sleep mode time, the 
cycle time and the duty cycle of the sensor node are 
shown in Table 2. The duty cycle for the two cases 
are respectively 0.9% for the high accuracy sampling 
and 0.28 for the low accuracy sampling with a cycle 
time of 720000 ms. 

The results of the computation for the energy 
demand profile of the sensor node mode are given in 
Table 3 and Table 4. According to the results in Table 
3 and Table 4, for the case of high accuracy sampling, 
in each cycle, the sensor node consumed 2.79 mJ in 
the measure and process data mode, 38.964 mJ in 
the transmit data mode, 9.9 mJ in the receive data 
mode, and 10.70277 mJ in the sleep mode, giving a 
total of 62.35677 mJ per cycle and 7482.812 mJ per 
day. The highest energy per cycle demand is in the 
transmit data mode followed by the sleep mode. As 
such, energy efficiency can be effectively pursued by 
optimizing the energy consumption in the two modes. 
On the other hand, for the case of low accuracy 
sampling, in each cycle, the sensor node consumed 
similar energy except in the measure and process 
data mode, where it consumed 0.6975 mJ per cycle 
instead of 2.79 mJ. Also, for the case of low accuracy 
sampling, in the sleep mode it consumed 10.77027 
mJ per cycle instead of 10.70277mJ. 

The results for the battery lifespan (in Table 5) 
show that for the case of high accuracy sampling, the 
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battery life is 90,062.4 hours or 10.27 years if the 
usable battery capacity is 100 % of its rated capacity. 
However, the battery life is 76,553.0 hours or 8.73 
years if the usable battery capacity is 85 % of its rated 
capacity. This gives about 15% reduction in battery 
lifespan for a 15 % reduction in usable battery 
capacity. Similarly, for the case of low accuracy 

sampling, the battery life is 93,085.3 hours or 10.62 
years if the usable battery capacity is 100 % of its 
rated capacity. However, the battery life is 79,122.5 
hours or 9.03 years if the usable battery capacity is 85 
% of its rated capacity. Again, this amounts to about 
15% reduction in battery lifespan for a 15 % reduction 
in usable battery capacity. 

 Table 2 The results of the computation for the active mode time, the sleep mode time, the cycle time and the 
duty cycle of the sensor node, with 𝑛𝐴𝐶𝑇 = 120 per day. 

 

For the case of high accuracy sampling with 512 x 4 samples 

Time spent in active mode Time spent in sleep mode Time spent in one cycle Duty Cycle 

𝑻𝑨𝑪𝑻 (ms) 𝑻𝑺𝑳𝑷 (ms) 𝑻𝑷𝒆𝒓𝒊𝒐𝒅 (ms) 𝑫𝑪𝒚𝒄 (%) 

6482 713518 720000 0.90 

    

For the case of low accuracy sampling with 512 x 1 samples 

Time spent in active mode Time spent in sleep mode Time spent in one cycle Duty Cycle 

𝑻𝑨𝑪𝑻 (ms) 𝑻𝑺𝑳𝑷 (ms) 𝑻𝑷𝒆𝒓𝒊𝒐𝒅 (ms) 𝑫𝑪𝒚𝒄 (%) 

1982 718018 720000 0.28 

 

Table 3 The results of the computation for the energy demand profile of the sensor node mode 

 

For the case of high accuracy sampling with 512 x 4 samples 

Sensor Node 
Mode 

Current per cycle, I 
(mA) 

Time per cycle, t 
(mS) 

Pow
er 

per 
cycle

, P 
(mW) 

Energy per cycle, 𝑬𝑷𝒆𝒓𝒊𝒐𝒅 
(mJ) 

Energy per day , 𝑬𝒅𝒂𝒚 

(mJ) 

Transmit 34 382 102 38.964 4675.68 

Receive 33 100 99 9.9 1188.00 

Measure 0.155 6000 0.465 2.79 334.80 

Sleep 0.005 713518 0.015 10.70277 1284.33 

Total       62.35677 7482.812 

           

For the case of low accuracy sampling with 512 x 1 samples 

Sensor Node 
Mode 

Current per cycle, I 
(mA) 

Time per cycle, t 
(mS) 

Pow
er 

per 
cycle

, P 
(mW) 

Energy per cycle, 𝑬𝑷𝒆𝒓𝒊𝒐𝒅 
(mJ) 

Energy per day , 𝑬𝒅𝒂𝒚 

(mJ) 

Transmit 34 382 102 38.964 4675.68 

Receive 33 100 99 9.9 1188.00 

Measure 0.155 1500 
0.465 

l; 
0.6975 83.70 

Sleep 0.005 718018 0.015 
 

10.77027 
1292.43 

Total       60.33177 7239.812 
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Table 4 Normalised energy demand with respect energy demand per cycle, EPeriod 

For the case of high accuracy sampling with 512 x 4 samples 

𝐸𝑇𝑋 (mJ) 𝐸𝑅𝑋 (mJ) 𝐸𝑀𝐸𝐴𝑆 (mJ) 𝐸𝐴𝐶𝑇  (mJ) 𝐸𝑆𝐿𝑃 (mJ) 𝐸𝑃𝑒𝑟𝑖𝑜𝑑 (mJ) 𝐸ℎ𝑟 (mJ) 𝐸𝑑𝑎𝑦 (mJ) 𝐸𝑦𝑒𝑎𝑟 (mJ)  

39.0 9.9 2.8 51.7 10.7 62.4 311.8 7482.8 2733022.4  

62.5 % 15.9 % 4.5 % 82.8 % 17.2% 100.0 % 500.0% 12000.0% 4382880.%0 
Percentage 

of 𝑬𝑷𝒆𝒓𝒊𝒐𝒅 

𝑬𝑩𝑨𝑻 (mJ) =28080000 mJ  

For the case of low accuracy sampling with 512 x 4 samples 

𝑬𝑻𝑿 (mJ) 𝑬𝑹𝑿 (mJ) 𝑬𝑴𝑬𝑨𝑺 (mJ) 𝑬𝑨𝑪𝑻 (mJ) 𝑬𝑺𝑳𝑷 (mJ) 𝑬𝑷𝒆𝒓𝒊𝒐𝒅 (mJ) 𝑬𝒉𝒓 (mJ) 𝑬𝒅𝒂𝒚 (mJ) 𝑬𝒚𝒆𝒂𝒓 (mJ) 𝑬𝑩𝑨𝑻 (mJ) 

39.0 9.9 0.7 49.6 10.8 60.3 301.7 7239.8 2644269.1  

62.5 % 15.9 % 4.5 % 82.8 % 17.2% 100.0 % 500.0% 12000.0% 4382880.%0 
Percentage 

of 𝑬𝑷𝒆𝒓𝒊𝒐𝒅 

 

Table 5 Battery Lifespan based on the energy demand profile of the sensor node mode 

 

For the case of high accuracy sampling with 512 x 4 samples 

 
Average Current 
Drawn Per Hour 

Usable Battery 
Capacity 

Affective Battery 
Capacity 

Battery Lifespan 
in Hours 

Battery Lifespan 
in Days 

Battery Lifespan 
in Years 

 𝐼𝐴𝑉𝐺𝐻𝑅  (mA)  𝐶𝑈𝑃𝐵𝑎𝑡 (%) 𝐶𝑈𝐵𝑎𝑡 (mAh) 𝐶𝐿𝐹𝐻𝑅  (ℎ𝑜𝑢𝑟𝑠) 𝐶𝐿𝐹𝐷𝑌(day) 𝐶𝐿𝐹𝑌𝑅  (𝑦𝑒𝑎𝑟) 
1 0.028868875 100 2,600.0 90,062.4 3752.60 10.27 

2 0.028868875 85 2,210.0 76,553.0 3189.71 8.73 

For the case of low accuracy sampling with 512 x 1 samples 

 
Average Current 
Drawn Per Hour 

Usable Battery 
Capacity 

Affective Battery 
Capacity 

Battery Lifespan 
in Hours 

Battery Lifespan 
in Days 

Battery Lifespan 
in Years 

 𝐼𝐴𝑉𝐺𝐻𝑅  (mA)  𝐶𝑈𝑃𝐵𝑎𝑡 (%) 𝐶𝑈𝐵𝑎𝑡 (mAh) 𝐶𝐿𝐹𝐻𝑅  (ℎ𝑜𝑢𝑟𝑠) 𝐶𝐿𝐹𝐷𝑌(day) 15 
1 0.027931375 100 2,600.0 93,085.3 3878.55 10.62 

2 0.027931375 85 2,210.0 79,122.5 3296.77 9.03 

  

5. Conclusion 

The analytical models for computing the energy 
demand profile and battery lifespan of a battery-
powered sensor node are presented. The case study 
sensor node is used for monitoring vibration energy in 
a machinery. The empirically measure current and 
timing values for the various sensor node operating 
modes are used for a numerical example. The results 
showed the transmit data mode followed by the sleep 
mode are the high energy consuming modes which 
will require optimization for optimal battery lifespan. 
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