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Abstract— In this paper, Hata-Okumura model-
based characterisation of propagation loss for a
market in urban area is studied. The case study
area is a market in the city of Uyo in Akwa Ibom
State, Nigeria. The field measurement of Received
Signal Strength Intensity (RSSI) was conducted
for cellular network in the 1800 MHz frequency.
Samsung Galaxy S4 phone with Android app, G-
NetTrack Lite 8.0 installed was used to capture the
RSSI of the cellular network. In this paper, in
order to accurately characterize the propagation
loss of the study area, the Hata-Okumura
propagation loss model, also known as the Hata
propagation loss model is tuned based on field
measured data in the case study area. Three
different approaches are employed in the tuning
of the Hata-Okumura propagation loss model. The
first tuning approach (method 1) is the Root Mean
Square Error (RMSE)-based tuning approach. The
second approach (method Il) is a function of
residue method. The third approach (method lll) is
parameter tuning method in which the distance, d
was remodelled as a logarithm function. The
measurement campaign was conducted three
times and the three datasets were merged and
then divided into two parts of 75% of the dataset
which was used for the model training and the
remaining 25 % of the dataset which was used for
the cross validation of the model. According to
the results, the tuning method lll has the best
results with the lowest root mean square error
(RMSE) of 2.3856 dB, the lowest range of error
value of 8.8903 dB, and the lowest maximum
absolute error value of 4.6528 dB. The tuning
approach | has the worst results compared to the
other two methods. The first approach has the
highest RMSE of 2.9850 dB, the highest range of
error value of 11.6966 dB and the highest
maximum absolute error value of 6.2742dB. The
results showed that the tuned Hata-Okumura
model using the second and third tuning methods
predicted the cross validation data better than the
training data. In essence, the tuned model

effectively characterized the propagation loss in
the case study market.
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1. Introduction
In the wireless communication industry, accurate estimation
of the propagation loss in any given area of interest is
essential for effective deployment of wireless service in that
area [1,2, 3, 4, 5,]. This is because of the inherent factors in
the vicinity of the signal propagation path which can cause
different forms of wireless signal degradations
[6,7,8,9,10,11,12]. These factors and the resulting signal
degradation can affect the communication range and other
quality of service of the wireless communication system
[13,14, 15,16, 17,18, 19,20, 21,22, 23,24 ,25]. Notably, the
signal degradation is suffered in both terrestrial and satellite
wireless communication links
[26,27,28,29,30,31,32,33,34]. However, the specific factors
that affect the satellite signals may differ in some ways
from those that apply to terrestrial wireless communication
links.
In any case, over the years, some wireless signal
propagation loss models have been developed to enable
prediction of propagation loss in a given area
[35,36,37,38,39,40, 41,42,43,44,45,46,47,48,49,50]. While
some of the propagation loss models are empirically
developed based on field measurements, some are
analytically developed by modelling different aspects of
environmental factors that can cause signal strength
degradation [51,52,53,54,55,56,57].
Among the empirical propagation loss models, Hata-
Okumura is a leading model which can be used to estimate
the propagation loss for rural, suburban and urban areas
[58, 59, 60, 61, 62,63]. In this paper, the propagation loss in
a market located in Uyo, the main city in Akwa Ibom State,
Nigeria is studied. The study focus is on accurate
characterization of the propagation loss in the market area
by using the Hata-Okumura model for urban area.
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Importantly, experts have noted that some form of model
tuning may be required to enhance the prediction
performance of most of the empirically developed models,
especially when applied to an area other than the place
where the model was originally developed. In addition,
there are different was the model tuning can be performed,
ecach method gives different result and prediction
performance. Hence, in this paper, three different model
tuning approaches are applied to the Hata-Okumura model
for urban area and their prediction performances are
compared.
2. Methodology
2.1 The Hata-Okumura Propagation Loss Model

The Hata-Okumura propagation loss model, also known as
the Hata propagation loss model utilized the information
from Okumura model to develop the propagation loss
model for urban areas which is further adapted for other
areas such as the suburban area and the open area [58,59,
60, 61,62,63,64]. The Hata-Okumura propagation loss
model is expressed analytically as follows[58,59, 601;

LPypra = A+ B *logyo(d) — K (5)
A =69.55+ 26.16 * log10(f) — 13.82 * log,(hy) — a(hy,) (6)
B = 44.9 — 6.55 * log,4(h;) @)
K =
0 city or urban

54 + 2% [loglo (zf—g)]z suburban ®)

40.94 + 4.78 * [logo(f)]? — 18.33 xlogyo(f) rural

Where the antenna height correction factor , a(h,,) is
expressed as;

a(hm) =
[1.1 *log,o f — 0.7] * hy, — [1.56 * logy, f — 0.8] rural/suburban

8.28 * [log,(1.54 * h,,)]? — 1.1 for large city f < 200MHz
3.2 x [log10(11.75 * h,,)]? — 4.97 for large city f> 400MHz

)

v' f is frequency in MHz ; d is the link distance in
km

v' 150 MHz< < 1000MHz; 30m <h;, <200m ;1m<
h,<10mand 1 km <d <20km

2.2 Tuning of the Hata-Okumura Propagation Loss
Model

Normally, the classical Hata-Okumura propagation loss
model may not accurately predict the pathloss for a given
case study site. In such case, the usual practice is to tune or
adjust some parameters of the classical Hata-Okumura
propagation loss model so that it can predict better and
hence be more effective in characterizing the propagation
loss in the case study area. In this paper, three different
approaches are employed in the tuning of the Hata-
Okumura propagation loss model. Also, the study was
conducted for urban area (city).

2.2.1 Model Tuning Approach I: the root mean square
error-based propagation loss tuning approach

The first tuning method is the root mean square error-based

propagation loss tuning approach. In this approach, the

error (e) is computed along with sum of error (SE) and the
root mean square error (RMSE), where e; is given as;

€; = PLmeasiy = Pluatai) (10)
SE = Ziz?( e) = Z::?(PLmeas(i) - PLHata(i))
(1)

2 1 .
risE = *|(L(Zi21e)?)) (12

Where , PLyeqs(iy 1s the measured propagation loss at the
data point i and PLygq(;y is the Hata-Okumura predicted
propagation loss at data point i, where there is a total of n
data points in the study. The tuned Hata-Okumura predicted
propagation loss using this first approach is denoted as
PLyatarunea i iy and itis given as;

pL PLyataqy + RMSE  if SE=0
HataTuned 1D | PLyqvqqy — RMSE  if SE <0
(13)

2.2.2 Model Tuning Approach II: The function of
residue method

In function of residue method, the propagation loss
prediction error (residue) in Eq 10 is expressed as an
exponential function of distance, d and then the result of the
computed residue is added t0 PLyq1q(;) to obtain the tuned
model as follows;

e =K, (d2)  (14)

In this paper, the values of K; and K, are determined using
trend line and Solver tools in Microsoft Excel. The tuned
Hata-Okumura predicted propagation loss using the second
approach is denoted as PLyqrarunea_ni_(iy @nd it is given as;

PLHataTuned_II_(i) = PLHata(i) + Kl(dKz)
(13)

223 Model Tuning Approach III: The model
parameter tuning method

In model parameter tuning method, the log of distance,
Log(d), in the Hata model of Eq 5 is expressed as
(M{+(M,*LOG(d))). In this paper, the values of M; and M,
are determined using trend line and solver tools in
Microsoft Excel. The tuned Hata-Okumura predicted
propagation loss using the third approach is denoted as
PLyataruned_in_i) and it is given as;

Plyatarunea i ¢y = A+ B * ((Mz * LOG(d)) +
LOG(M;)) — K (14)

In essence, rather than using d, as it is in the classical Hata
model, the third tuning approach used d = M, (dM2) which
when expressed in logarithm it gives (M, * LOG(d)) +
LOG(M,).

2.3 The Performance Metric

The result from three tuning approaches are compared
using the RMSE and the range of prediction error, as well
as the absolute maximum error. The propagation loss
prediction error after tuning is denoted as €; yyneq x and
also the RMSE after tuning is  denoted
RMSE yneq x Where;

€i_tuned_x = PLmeas(i) - PLHataTuned_X_(i) (15)
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RMSE_tuned_X =

21 i 2
\/(; (Zé;?(PLmeas(i) - PLHataTuned_X_(i)) )) (16)
Where X =1 for the first tuning approach, X = II for the

second tuning approach and X = III for the third tuning
approach. s where

The error range consists of the maximum error, €;(mqy) and
the minimum error, €;(my) Where,

€(max) = maximum( ei_tuned_x)fori =1,2,3,...n  (17)
€(min) = minimum( ei_tuned_x)fori =1,23,...n (18)

The absolute maximum error,
eAMAX = maximum(|eanax |, leminy|)  (19)

2.3 The field measured data

The field measurement of received signal strength intensity
(RSSI) was conducted for cellular network in the 1800
MHz frequency. The case study area is a market in the city
of Uyo in Akwa Ibom State, Nigeria. Samsung Galaxy S4
phone with Android app, G-NetTrack Lite 8.0 installed was
used to capture the RSSI of the cellular network.
Subsequently, the link budget equation was used to convert
the RSSI values to measured path propagation loss values.
The measurement campaign was conducted three times and
the three datasets were merged and then divided into two
parts of 75% of the dataset which was used for the model
training and the remaining 25 % of the dataset which was
used for the cross validation of the model. The field
measured propagation loss (dB) for dataset I is shown in
Figure 1, while that of dataset II and dataset III are shown
in Figure 2 and Figure 3 respectively. The training dataset
which is 75 % of the field measured propagation loss data
items is shown in Table 1.
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Figure 1 Field Measured Propagation loss (dB) for Dataset I
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Figure 2 Field Measured Propagation loss (dB) for Dataset II
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Figure 3 Field Measured Propagation loss (dB) for Dataset ITT

Table 1 The training dataset which is 75 % of the field measured propagation loss data items

o | acm | Yot oy | (3| et |y |0 e | | g g | e
1 0.477 124.6 24 0.695 136.9 47 0.805 138.8 70 0.964 142.4
2 0.480 125.4 25 0.699 135.0 48 0.809 138.3 71 0.965 142.6
3 0.488 126.5 26 0.700 137.4 49 0.845 137.4 72 0.972 145.2
4 0.496 126.7 27 0.711 138.9 50 0.851 134.9 73 0.972 146.3
5 0.499 126.1 28 0.731 139.4 51 0.851 137.1 74 0.975 144.6
6 0.507 125.6 29 0.733 137.0 52 0.856 134.9 75 0.978 142.6
7 0.515 126.7 30 0.734 138.6 53 0.864 134.8 76 0.980 145.0
8 0.518 126.6 31 0.736 139.6 54 0.869 137.4 77 0.981 143.5
Www.jmest.org
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9 0.526 125.4 32 0.738 138.7 55 0.869 138.1 78 0.986 139.3
10 0.591 130.5 33 0.739 139.7 56 | 0.875 137.8 79 0.986 140.7
11 0.595 130.2 34 | 0.747 140.0 57 0.888 136.2 80 0.991 140.0
12 0.604 130.6 35 0.749 136.8 58 | 0.895 1375 81 0.996 139.5
13 0.608 128.4 36 0.750 135.0 59 0.901 142.3 82 0.997 1425
14 0.611 128.9 37 0.770 138.7 60 | 0.915 136.3 83 1.001 139.6
15 0.612 130.1 38 0.775 140.3 61 0.922 136.2 84 1.004 145.1
16 0.615 130.0 39 0.786 141.1 62 0.928 137.4 85 1.011 140.1
17 0.621 130.8 40 | 0.787 140.6 63 0.942 137.4 86 1.012 145.0
18 0.625 132.6 41 0.788 137.5 64 | 0.943 140.0 87 1.018 143.9
19 0.643 132.3 42 0.791 137.1 65 0.950 140.0 88 1.025 142.6
20 0.647 133.9 43 0.792 138.1 66 | 0.951 145.0 89 1.026 141.4
21 0.657 134.3 44 | 0.793 140.3 67 0.957 143.0 90 1.040 144.0
22 0.684 134.4 45 0.797 137.2 68 | 0.957 144.3
23 0.688 132.6 46 0.804 139.6 69 0.963 143.9

3. Results and discussion

The training dataset was used to determine the values of the
parameters used in the model tuning process. First, the
Hata-Okumura model was applied to the training dataset
(Figure 4) and a RMSE error of 8.695194 dB was obtained
without tuning while the RMSE obtained with the cross
validation dataset (Figure 5) was 8.799818dB without
tuning model.

The three tuning approaches were applied to the training
dataset and the RMSE values, the minimum error, the

maximum error, the range of error and the maximum
absolute error were determined for each tuning approach.
The results of the tuning of the training dataset using the
three tuning approaches are shown in Table 2 and Figure
6. According to the results in Table 1, the tuning method III
has the best results with the lowest RMSE of 2.3856 dB
(Figure 7), the lowest range of error value of 8.8903 dB
(Figure 8), and the lowest maximum absolute error value
of 4.6528 dB (Figure 9). The tuning approach I has the
worst results compared to the other two methods. The first
approach has the highest RMSE of 2.9850 dB, the highest
range of error value of 11.6966 dB and the highest
maximum absolute error value of 6.2742dB.
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Figure 4 Measured and predicted propagation loss (dB) based on the training dataset
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Figure 5 Measured and predicted propagation loss (dB) based on the cross validation dataset

Table 2 The results of the tuning of the training dataset using the three tuning approaches

RMSE | Minimum Error,e| Maximum Error, Range of Maximum Absolute Error,
(dB) (dB) €(max) (dB) Error (dB) eAMAX (dB)
Not tuned 8.6952 2.4210 14.1176 11.6966 14.1176
Tuning
method | 2.9850 -6.2742 5.4224 11.6966 6.2742
Tuning
method I 2.4790 -4.3888 4.7013 9.0901 4.7013
Tuning
method I 2.3856 -4.6528 4.2376 8.8903 4.6528
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Figure 6 Measured , tuned and un-tuned Hata-Okumura model predicted propagation loss (dB) based on the
training dataset

The cross validation dataset and the un-tuned Hata-
Okumura model applied to the cross validation dataset is
shown in Table 3. Also, the results of the three tuned Hata-
Okumura model applied to the cross validation dataset are
shown in Table 4 and Figure 10. The bar chart of the RMSE
of the three tuned Hata-Okumura based on the training
dataset and the cross validation dataset is presented in

Figure 11. The results showed that the tuned Hata-
Okumura model using the second and third tuning methods
predicted the cross validation data better than the training
data. In essence, the tuned model effectively characterized
the propagation loss in the case study market.
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Figure 7 Bar chart of the RMSE of the three tuned Hata-Okumura based on the training dataset
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Figure 8 Bar chart of the range of error of the three tuned Hata-Okumura based on the training dataset
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Figure 9 Bar chart of the maximum absolute error of the three tuned Hata-Okumura based on the training

dataset

Table 3 The cross validation dataset and the un-tuned Hata-Okumura model applied to the cross validation dataset

Un-tuned Tuned Hata- | Tuned Hata- | Tuned Hata-

Field Measured Hata- Okumura Okumura Okumura

Propagation Okumura Urban (dB) Urban (dB) Urban (dB)

S/N d (km) loss (dBm) Urban (dB) Method | Method Il Method Il
1 0.573 128.1 124.3 133.0 129.5 130.0
2 0.577 128.2 124.4 133.1 129.7 130.2
3 0.586 128.2 124.6 133.3 130.0 130.5
4 0.627 129.9 125.6 134.3 131.4 132.1
5 0.631 128.7 125.7 134.4 131.6 132.2
6 0.641 131.0 1259 134.6 1319 132.5
7 0.707 138.9 127.4 136.1 134.1 134.8
8 0.711 137.5 127.5 136.2 134.3 1349
9 0.722 135.0 127.7 136.4 134.6 135.3
10 0.752 135.0 128.3 137.0 135.6 136.2
11 0.757 135.0 128.4 137.1 135.7 136.4
12 0.769 136.3 128.7 137.4 136.1 136.7
13 0.790 137.2 129.1 137.8 136.7 137.3
14 0.795 139.7 129.2 1379 136.9 137.5
15 0.807 139.2 129.4 138.1 137.2 137.8
16 0.856 136.1 130.3 139.0 138.7 139.1

JMESTN42354045

Www.jmest.org

15298



Journal of Multidisciplinary Engineering Science and Technology (JMEST)
ISSN: 2458-9403
Vol. 9 Issue 3, March - 2022

17 0.862 138.4 130.4 139.1 138.8 139.3
18 0.875 138.5 130.6 139.3 139.2 139.6
19 0.936 141.6 131.6 140.3 141.0 141.2
20 0.942 137.4 131.7 140.4 141.1 1413
21 0.956 142.2 131.9 140.6 141.5 141.7
22 0.961 145.1 132.0 140.7 141.7 141.8
23 0.967 140.1 132.1 140.8 141.8 141.9
24 0.982 145.1 132.3 141.0 142.2 142.3
25 0.985 140.1 132.4 141.1 142.3 142.3
26 0.992 143.8 132.5 141.1 142.5 142.5
27 1.007 146.3 132.7 141.4 142.9 142.8
28 1.034 143.7 133.1 141.8 143.6 143.4
29 1.040 144.0 133.2 141.9 143.8 143.6
30 1.056 1443 133.4 142.1 144.2 143.9

—o— Field Measured Propagation loss (dBm)
—&— Un-tuned Hata-Okumura Urban (dB)

1 —6— Tuned Hata-Okumura Urban (dB) Method I
—&— Tuned Hata-Okumura Urban (dB) Method II
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Distance, d (km)

Figure 10 Measured , tuned and un-tuned Hata-Okumura model predicted propagation loss (dB) based on the
cross validation dataset

Table 4 The results of the three tuned Hata-Okumura model applied to the cross validation dataset

RMSE (dB) | €(nin) (dB) | €(max) (dB) | Error Range (dB) | Absolute Maximum Error, eAMAX (dB)
Not tuned 8.7998 3.0183 13.6398 10.6216 13.6398
Tuning method | 2.9976 -5.6769 4.9446 10.6216 4.9446
Tuning method 1l 2.0709 -3.7610 4.7559 8.5169 4.7559
Tuning method 1l 2.1178 -3.9562 4.0998 8.0560 4.0998
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Figure 11Bar chart of the RMSE of the three tuned Hata-Okumura based on the training dataset and the cross

validation dataset

4. Conclusion

The propagation loss in a market was studied and
characterized using the popular Hata-Okumura model. The
received signal strength intensity was measured using
android phone and three datasets were captured. The three
datasets were merged and a portion of the merged dataset
was used to train the Hata-Okumura model. Specifically,
three different tuning approaches were used to tune the
Hata-Okumura model and the models performance was
cross validated using another portion of the field measured
dataset that was set aside for cross validation. The results
showed that two out of the three tuning methods performed
very well in both the training dataset and in the cross
validation dataset.
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