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 Abstract— Comparative analysis of 
communication range of LORA sensor network in 
the urban, suburban and rural environments is 
presented. The study used the Hata path loss 
model to determine the communication range of 
Semtech SX1272 LoRa transceiver in the rural 
area, the suburban area, the urban small city area 
and urban large city area. The study also 
considered the coverage range for three different 
operating bandwidths (125 KHz. 250 kHz and 500 
kHZ) of the transceiver and for five different 
spreading factors (SF = 7,8,9,10,11 and 12). The 
results show that the LoRa sensor network 
configuration with spreading factor, SF =12 has 
the best receiver sensitivity value of -137 dBm, the 
highest path loss value of 140.0 dB and the 
highest communication range of 17.559 km for the 
rural/open area, 5.090 km for the suburban area , 
3.680 for the urban small city and 3.666 for the 
urban large city. Also, the results show that 
among the three bandwidths (125 KHz. 250 kHz 
and 500 kHZ), the 125 kHz bandwidth has the 
highest path loss and the highest transmission 
range. On the other hand, the 500 kHz bandwidth 
had the lowest path loss and the lowest 
communication range when compared with the 
corresponding results in the other bandwidths. 
Essentially, the results show that it will take more 
LoRa transceiver resources to cover wider area in 
the urban large city than in any of the other 
environments considered. Also, the 125 kHz can 
be used when wider area need to be covered with 
the LoRa transceiver. Also, the spreading factor of 
12 has the largest coverage radius in all the cases 
(bandwidths) considered. 
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1. Introduction  
Wireless communication is today the most adopted 
communication technology across the globe 
[1,2,3,4,5,6,7,8,9]. The ease of deployment and other 
salient features are part of the reasons for such wide 
spread adoption of wireless communication systems. 
Moreover, wireless networks provide requisite 
communication framework that enables internet of 
things and smart system applications, such as smart 

city, smart home, smart medicine, and smart 
agriculture [10,11,12,13]. However, wireless 
commination networks generally have some setbacks 
which affects its operation and coverage. In view of 
the setbacks, accurate estimation of the 
communication range of wireless communication 
networks are important in their design and deployment 
[14,15,16,17,18].  
Notably, among the several factors that do affect the 
communication range of wireless signals are 
environmental factors like obstruction in the signal 
path; climatic factors like atmospheric temperature, 
pressure and relative humidity; communication device 
factors like antenna gain, cable loss, alignment loss; 
as well as other factors that may fall into different 
categories [19,20,21,22,23,24,25,26,27,28]. 
Generally, these factors cause signal attenuation 
which can be quantified in terms of path loss, 
diffraction loss, fading and other signal degrading 
parameters [29,30,31,32,33]. The degradation in 
signal strength decreases the attainable 
communication range of the wireless network. In 
practice, the propagation loss increases with increase 
in the obstruction in the path of the signal 
[34,35,36,37,38]. As such, the propagation loss 
encountered by a wireless signal in the rural area is 
quite different from the loss the signal will encounter in 
the suburban and urban areas. Furthermore, the 
variation in the propagation loss means that different 
communication ranges will be achieved when the 
same wireless signal is deployed in the rural, the 
suburban and the urban environments. Accordingly, in 
this paper, the variation in the communication range of 
Long Range (LoRa) sensor network [39,40,41,42,43] 
in the different environments is studied.  
Specifically, the study used an empirical path loss 
model to estimate the propagation loss in each of the 
environments considered and then determine the 
attainable communication range of a LoRa sensor 
network in each of the environments for different 
configurations of the LoRa transceiver. Several 
numerical examples are used to discuss the 
implications of the different LoRa transceiver 
configurations on the communication range in each of 
the different environments considered in the study. 
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2. Method 
2.1 Modelling of LoRa sensor network Propagation Loss 

The LoRa sensor network receiver sensitivity (𝑆௦௘௡), fade margin, 𝑀௙௠, transmission power ሺ𝑃௧ሻ , received power 
ሺ𝑃௥ሻ and path loss (𝐿௉௅), along with the antenna gain of the transmitter ሺ𝐺௧ሻ and that of the receiver ሺ𝐺௥ሻ are related 
as follows; 

𝑃௥ ൌ  𝑆௦௘௡ ൅ 𝑀௙௠ ൌ  𝑃௧  ൅ 𝐺௧ ൅ 𝐺௥ െ 𝐿௉௅ (1) 
Therefore; 

𝐿௉௅ ൌ  𝑃௧  ൅ 𝐺௧ ൅ 𝐺௥ െ 𝑀௙௠ െ 𝑆௦௘௡ (2) 
Also, LoRa sensor network receiver sensitivity (𝑆௦௘௡) is related to the bandwidth (BW), the noise Figure (NF) and 

signal to noise ratio (SNR) as follows; 
𝑆௅௢ோ௔ ൌ  െ174 ൅ 10 logଵ଴ሺ𝐵𝑊ሻ  ൅ 𝑁𝐹 ൅ 𝑆𝑁𝑅 (3) 

Again, the path loss (𝐿௉௅) is expressed as; 
𝐿௉௅ ൌ  𝑃௧  ൅ 𝐺௧ ൅ 𝐺௥ െ 𝑀௙௠ ൅ 174 െ 10 logଵ଴ሺ𝐵𝑊ሻ  െ 𝑁𝐹 െ 𝑆𝑁𝑅 (4) 

2.1 LoRa sensor network communication range based on Hata Propagation Model 
Hata path loss model is computed using the following expressions [ 44,45,46,47,48,49]; 

𝐿𝑃ு஺்஺  ൌ 𝐴 ൅ 𝐵 ∗ logଵ଴ሺ𝑑ሻ െ  𝐾 (5) 

𝐴 ൌ 69.55 ൅ 26.16 ∗ logଵ଴ሺ𝑓ሻ െ 13.82 ∗ logଵ଴ሺℎ௕ሻ  െ 𝑎ሺℎ௠ሻ (6) 

𝐵 ൌ 44.9 െ  6.55 ∗ logଵ଴ሺℎ௕ሻ (7) 

 𝐾 ൌ ൞

 0 𝑓𝑜𝑟 𝑈𝑟𝑏𝑎𝑛 𝐴𝑟𝑒𝑎 

 5.4 ൅  2 ∗ ቂlogଵ଴ ቀ ௙

ଶ଼
ቁቃ

ଶ
 𝑓𝑜𝑟 𝑆𝑢𝑏𝑢𝑟𝑏𝑎𝑛 Area

 40.94 ൅  4.78 ∗ ሾlogଵ଴ሺ𝑓ሻሿଶ  െ 18.33 ∗ logଵ଴ሺ𝑓ሻ  𝑓𝑜𝑟 𝑂𝑝𝑒𝑛 𝐴𝑟𝑒𝑎/Rural

 (8) 

 Where 𝑎ሺℎ௠ሻ is the antenna height correction factor which is give as; 

 𝑎ሺℎ௠ሻ ൌ ൞

 ሾ1.1 ∗ logଵ଴ 𝑓 െ 0.7ሿ ∗ ℎ௠ െ ሾ1.56 ∗ logଵ଴ 𝑓 െ 0.8ሿ 𝑓𝑜𝑟 small city, medium city, open / rural area 

 8.28 ∗ ሾlogଵ଴ሺ1.54 ∗ ℎ௠ሻሿଶ െ 1.1 𝑓𝑜𝑟 𝑙𝑎𝑟𝑔𝑒 𝑐𝑖𝑡𝑦 f ൑  200MHz 

 3.2 ∗ ሾlogଵ଴ሺ11.75 ∗ ℎ௠ሻሿଶ െ 4.97 𝑓𝑜𝑟 𝑙𝑎𝑟𝑔𝑒 𝑐𝑖𝑡𝑦 f ൒  400MHz 

(9) 

  f is frequency in MHz ; d is the link distance in km 
 150 MHz≤ f≤ 1000MHz; 30m ≤ℎ௕ ≤ 200m ;1m≤ ℎ௠≤ 10 m and 1 km ≤ d ≤ 20km 

Therefore, when Hata model is used, the path length, denoted as 𝑑௘ு is defined as; 

LPୌ୅୘୅ ൌ  L୔୐ ൌ = A ൅ B ∗ logଵ଴ሺdሻ െ  K ൌ  P୘  ൅ G୘ ൅ Gୖ  െ 𝑀௙௠ െ  𝑆௦௘௡ (10) 

dୣୌ ൌ  10
൭

ቀౌ౐ శ ృ౐శ ృ౎షಾ೑೘షౌ౏ቁష ఽశౡ 

ా ൱
 (11) 

 3. Results and discussion 
The computation of the communication range for LoRa sensor network that use Semtech SX1272 transceiver that 
is operating in the 868 MHz Band with base station antenna height of 40 m , sensor antenna height of 1 m and zero 
fade margin. The computation was conducted for the 125 kWHz bandwidth and for spreading factors (SFs) ranging 
from 7 to 12. The dataset on the receiver sensitivity used is given in Table 1 and Figure 1. 
Table 1 The dataset on the receiver sensitivity of Semtech SX1272 LoRa transceiver for spreading factors (SFs) 

ranging from 7 to 12. [50] 

SF, Spreading Factor  
Receiver Sensitivity (dBm) for 

BW= 125 kHz 
Receiver Sensitivity (dBm) for 

BW= 250 kHz 
Receiver Sensitivity (dBm) for 

BW= 500 kHz 

7 -124.000 -122.000 -116.000 

8 -127.000 -125.000 -119.000 

9 -130.000 -128.000 -122.000 

10 -133.000 -130.000 -125.000 

11 -135.000 -132.000 -128.000 

12 -137.000 -135.000 -129.000 
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Figure 1 The graph plot of receiver sensitivity versus spreading factor (SF) for Semtech SX1272 LoRa transceiver  
 The results of the communication range for the urban (city), suburban and Rural/Open environments are shown in 
Table 2 for different spreading factor (SF) of the LoRa sensor network with zero (0) fade margin. The graph of 
communication range (d in km) for the urban (city), suburban and rural/open environments versus spreading factor 
(SF) is given in Figure 2. Also, the graph of Path Loss, LPL (dB) versus spreading factor (SF) is given in Figure 3. 
The results show that the LoRa sensor network configuration with spreading factor, SF =12 has the best receiver 
sensitivity value of -137 dBm, the highest path loss value of 140.0 dB and the highest communication range of 
17.559 km for the rural/open area, 5.090 km for the suburban area , 3.680 for the urban small city and 3.666 for the 
urban large city. Essentially, the communication range is highest in the rural area. On the other hand, the LoRa 
sensor network configuration with spreading factor, SF =7 has the least receiver sensitivity value of -124. dBm and 
the lowest path loss value of 127 dB. The communication range of the case where SF =7 is such that the 
communication range of 7.356 km is obtained for the rural/open area, 2.132 km for the suburban area, 1.103 for the 
urban small city and 1.099 for the urban large city.  

 Table 2 The results of the communication range for the urban (city), suburban and Rural/Open 
environments 

SF, 
Spreading 

Factor  

 SNR 
(dB) 

Required 
for BW 
of 125 
KHz 

Receiver 
Sensitivity 

(dBm) 

Path 
Loss, 
LPL 
(dB) 

d (km) for 
Hata 

Rural/open 
Area 

d (km) for 
Suburban 

Area  

d (km) 
for 

Small 
City 
Area 

d (km) 
for 

Large 
City 
Area 

7 -7.5 -124 127 7.356 2.132 1.103 1.099

8 -10 -127 130.0 8.992 2.607 1.442 1.437

9 -12.5 -130 133.0 10.991 3.186 1.884 1.877

10 -15 -133 136.0 13.435 3.895 2.463 2.454

11 -17.5 -135 138.0 15.359 4.452 3.010 2.999

12 -20 -137 140.0 17.559 5.090 3.680 3.666
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Figure 2 The graph of communication range (d in km) versus spreading factor for the 125 kHz bandwidth 

 
Figure 3 The graph of the path loss (in dB) versus spreading factor , SF f or the 125 kHz bandwidth 

The graph of the path loss (in dB) versus spreading factor, SF for the125 kHz, 250 kHz and 500 kHz bandwidth is 
shown in Figure 4. Also, the graph of communication range (d in km) in the rural area versus spreading factor for 
the125 kHz, 250 kHz and 500 kHz bandwidth is shown in Figure 5, the graph of communication range (d in km) in 
the suburban area is shown in Figure 6, the graph of communication range (d in km) in the urban small city is 
shown in Figure 7, while the graph of communication range (d in km) in the urban large city is shown in Figure 8. 
In all, the results show that the 125 kHz bandwidth has the highest path loss and the highest communication range 
when compared to the 25o kHz and 500 kHz bandwidths. On the other hand, the 500 kHz bandwidth had the 
lowest path loss and the lowest communication range when compared with the corresponding results in the other 
bandwidths. Essentially, the results show that it will take more LoRa transceiver power to cover wider area in the 
urban large city than in any of the other areas considered. Also, the 125 kHz can be used when wider area need to 
be covered with the LoRa transceiver. Also, the spreading factor of 12 has the largest coverage radius in all the 
cases (bandwidths) considered. 
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Figure 4 The graph of the path loss (in dB) versus spreading factor, SF for the125 kHz, 250 kHz and 500 kHz 

bandwidth 

 
Figure 5 The graph of communication range (d in km) in the rural area versus spreading factor for the125 kHz, 250 

kHz and 500 kHz bandwidth 
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Figure 6 The graph of communication range (d in km) in the suburban area versus spreading factor for the125 kHz, 

250 kHz and 500 kHz bandwidth 

 
Figure 7 The graph of communication range (d in km) in the urban small city versus spreading factor for the125 

kHz, 250 kHz and 500 kHz bandwidth 

 
Figure 8 The graph of communication range (d in km) in the urban large city versus spreading factor for the125 

kHz, 250 kHz and 500 kHz bandwidth 
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 4. Conclusion  
Evaluation of the communication range of LoRa 
sensor network in different environments is presented. 
The study used the Hata path loss model to determine 
the communication range of Semtech SX1272 LoRa 
transceiver in the rural area, the suburban area, the 
urban small city area and urban large city area. The 
study also considered the coverage range for three 
different operating bandwidths of the transceiver and 
for five different spreading factors. The results show 
that the communication range is highest in the rural 
area and least in the urban large city environment. 
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