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Abstract—Retinal stimulations that aim to compensate 

for defective photoreceptor cells bypass the initial visual 

processing  system and directly stimulate the ganglion 

cells. The output of the ganglion cells is directed to the 

Lateral Geniculate Nucleus (LGN), the visual “gateway” 

to the brain. 

This paper numerically simulates part of the above 

process using the generalized finite element method. 

The ganglion cell is modeled using the cable equation 

and the extracellular medium using a 3D formulation. 

The ionic current model used is the one built by 

Fohlmeister et al. for mammals. Relying on results from 

different branches of applied mechanics, as well as 

generalizing the interpolation functions to the capacitive 

and membrane currents,  lead to compact matrices 

throughout the finite element formulation. This applies 

to the transient, steady-state, ionic as well as membrane 

current matrices. 

The coupling between the extracellular/intracellular 

domains thru the extracellular potential and membrane 

current is also discussed. 

Keywords— ganglion cells, extracellular/intracellular 

domains, action potential, membrane current, retinal 

stimulation. 
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I. INTRODUCTION 

 

A group of numerical simulations in the field of 

biomedical engineering aim to understand better the 

functioning of the different organs and to suggest 

alternative pathways to the defective ones [1-7]. 

Retinal simulations are a subset of such a group. The 

goal of these simulations is to find a way to 

compensate for defective photoreceptor cells by 

bypassing the initial retinal visual processing system 

and directly stimulating the ganglion cells.  The 

ganglion cells are the output of the retina to the 

Lateral Geniculate Nucleus (LGN), the visual 

“gateway” to the brain. 

Models that simulate this process range from the 

bidomain model, that assumes the extracellular and 

intracellular domains to coexist in the same physical 

space and averages the response of the ganglion cells 

[7], to the decoupled model of extracellular  

space-ganglion cell line model [3], passing by the 

coupled model of extracellular space-ganglion cell 

line model [4]. 

 

In this paper, a numerical simulation of part of the 

above process is attempted. It relies on results from 

different branches of applied mechanics that leads to 

compact finite element matrices. In addition, 

generalizing the interpolation functions to the ionic 

and membrane currents simplifies the time integration 

scheme. Several examples are presented that discusses 

the above approach. 

 

One of the goals of the formulation in this paper is to 

allow the mesh of the extracellular space to be 

independently built from the mesh of the ganglion cell 

model. 

The extracellular space is modeled using the 3D finite 

element method. The ganglion cells are modeled using 

1D elements based on the cable equation.  

The coupling between the extracellular and 

intracellular domains is thru the extracellular potential 

and the membrane current. The extracellular potential 

affects the membrane potential in the ganglion cell 

that generates membrane current that feed back into 

the extracellular potential. The extracellular potential 

is interpolated to determine the nodal values at the 

ganglion cell mesh. The nodal membrane currents at 

the ganglion cell mesh are extrapolated to the 
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extracellular nodes to determine their effects on the 

extracellular potential distribution. The last section in 

the paper discusses the formulation of such a process 

and an example is presented that illustrates the 

solution.   

 

In most examples, the ionic current model proposed 

by Fohlmeister et al. for mammals was used [2-7].  

 

II. Ganglion cells 

Light that is reflected from objects passes first through 

the retina and is finally processed by the brain. The 

energy carried by the photons of light is chemically 

transformed into current by the photoreceptor cells. 

This current is then fed through several layers of cells, 

and end up at the ganglion cells. The output of the 

ganglion cells is directed to the Lateral Geniculate 

Nucleus (LGN), the visual “gateway” to the brain. 

 

a. Ganglion Cell Ionic Current Model: Fohlmeister 

Model [2-7] 

The model assumes the membrane current to be the 

sum of a capacitive part represented by cm. ∂Vm/∂t  

and an Ionic part which is mainly the sum of Na, K, 

and Ca ionic currents. The equations of the ionic 

currents are generally the product of a nonlinear 

conductance term, and difference in potentials. 

 

 

Fig. 1 Response of Ionic current model to a step 

current of 120 μA/cm2   (Currents=107*μA/μm2 , 

Voltage=mV) 

 

This is expressed by the equation: 

 

Im= cm. ∂Vm/∂t  + Jionic                                                (1) 

 

where 

Im= membrane current (μA/μm2) 

cm= capacitance of the membrane (μF/μm2) 

Vm= membrane potential (mV) 

t  = time (ms) 

Jionic = Ionic current (μA/μm2) 

 

The response of such a model to a step current of  

120 μA/cm2 is shown in Fig. 1. The properties used 

are similar to that of the soma in [2]. 

 

b. The Cable Equation-Constant Diameter 

 

The cable equation is derived by applying the 

conservation of total current to a membrane electrical 

circuit, shown in Fig. 2. 

 

 
Fig. 2 Membrane electrical circuit 

 

The conservation of total current leads to: 

 
Jc +  Jionic  = (a /2) .σcytoplasm ∂2/∂x2 [Vinside] + Iext(s,t)/(2* π *a)     (2) 

 

where  

 

VI =  Intracellular potential 

VE = Extracellular potential 

Vm = membrane potential = Vinside -Voutside  

Iext(s,t)= external applied current (μA/μm) 

σcytoplasm  =conductance of cytoplasm (mS/μm) 

Rcytoplasm  =resistance of cytoplasm (kΩ.μm) 

a= radius of tube (μm) 

 

Expressing eq. (2) in terms of the membrane potential 

gives (in the absence of external current): 

 
( cm. ∂Vm/∂t +  Jionic ) – (a/2).σcytoplasm . ∂2/∂s2 Vm(s,t)  =           

                                                     (a/2).σcytoplasm . ∂2/∂s2 VE(s,t)   (3) 

 

And, in terms of the intracellular potential: 

 
( cm. ∂VI/∂t +  Jionic ) – (a/2).σcytoplasm . ∂2/∂s2 VI(s,t)= cm. ∂VE/∂t (4) 
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c. Method of Weighted Residual- Finite Element 

Formulation 

 

Applying the method of weighted residual to the cable 

equation (3) leads to: 

 
cm. ∂Vm/∂t . ϕi(s). ds  +  ϕi(s). Jionic(Vm).ds  +   

 (a/2).σcytoplasm . ∂Vm(s,t)/∂s. ∂ϕi(s)/∂s.ds   =   

-  (a/2).σcytoplasm . ∂VE(s,t)/∂s. ∂ϕi(s)/∂s.ds +  

[ -Iinside(s,t). (a/2). ϕi(s)/A ]s2
s1                                                       (5) 

 

Similarly, when applied to eq.(4) gives: 

 
cm. ∂VI/∂t . ϕi(s). ds  +  ϕi(s). Jionic(Vm).ds  + 

  (a/2).σcytoplasm . ∂VI(s,t)/∂s. ∂ϕi(s)/∂s.ds  = cm. ∂VE/∂t . ϕi(s). ds + 

[ -Iinside(s,t). (a/2). ϕi(s)/A ]s2
s1                                                         (6) 

 

To derive the finite element equations, we start by 

space discretization of the membrane potential along 

an element 

 

Vm(s,t)= jϕj(s).Vmj(t)                                                (7) 

 

where ϕj(s) is the shape function of node “j” , Vj(t) the 

potential at node ”j” , “s” the distance along the 

dendrite/axon, and “A” the cross-sectional area of the 

tube. 

  

Inserting (7) into eq. (5) results in: 

 
Cij * dVmj(t)/dt + FIonic_i + Kij * Vmj(t) =  -Kij * VEj(t)  +  

[ -Iinside(s2,t). (a/2).δi2/A  +  Iinside(s1,t). (a/2).δi1/A ]                     (8)                  

 

where  

 

Cij = s2
s1 cm .ϕi(s). ϕj(s). ds                                         (9) 

Kij = s2
s1 (a/2).σcytoplasm . ∂ϕi(s)/∂s. ∂ϕj(s)/∂s. ds 

FIonic_i = s2
s1 ϕi(s). Jionic(Vm(s,t)) . ds 

δij = Kronecker’s delta 

 

If  eq. (6) is used instead, this leads to: 
Cij * dVIj(t)/dt + FIonic_i + Kij * VIj(t) =  Cij * dVEj(t)/dt 

 + [ -Iinside(s2,t). (a/2).δi2/A  +  Iinside(s1,t). (a/2).δi1/A ]                (10)                  

 

For a 2-node element with constant diameter, the 

matrices Cij, Kij and FIonic_i could be expressed as: 

                          (11) 

 

            
Looking at the integral    s2

s1 ϕi(s). Jionic(vm(s,t)) . ds  

 

Assume that Jionic is interpolated using the same shape 

function as Vm/VI, i.e., 

 

 Jionic (s,t) = ϕi(s). Jionic (si,t) + ϕj(s). Jionic (sj,t)          (12) 

 

When replacing in eq. (11)3, for a linear element, 

 
Fionic_i =  ∫s2

s1 . ϕi(s). *(ϕi(s). Jionic (si,t) + ϕj(s). Jionic (sj,t)).ds    (13) 

 

the above equation is written in matrix form as: 

 

                  (14) 

 

Then, eq.(8) simplifies to 

 

(15) 

 

III. Extracellular space 

 

a. Extracellular Potential 3D Equation 

The extracellular potential distribution (VE) over a 

medium with conductivity σe is given by the following 

equation, in case the transient term can be neglected: 

 

    ∇.(-σe∇VE) = Iexternal                                        (16) 

 

where: 

 

σe  = local conductivity of the retinal layer (mS/μm) 

VE = the extracellular potential (mV) 

Iexternal = the external current per unit volume (μA/μm3) 

 

 b. Method of Weighted Residual – Finite Element 

Formulation 

Applying the weak form to the extracellular potential 

equation results in  

 
 ∫Ω ∇NI. [ (σe∇VE)] dΩ  =  ∫Γ NI*[(σe∇VE) .n ] dΓ   + 

                                                        ∫Ω NI*[  Iexternal  ] dV            (17) 

 

where NI is the shape  function for node “I”. 

 

Using the interpolation function for an 8-node element  
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VE(X,Y,Z,t) =  Σ
8

J=1 NJ(X,Y,Z) . VE
J(t)                    (18) 

 

in eq.(17), leads to 

 

ΣJ{ ∫Ω [σe ∇NI.∇NJ] dΩ } VE
J(t)   =   

∫Γ NI*[(σe∇VE) .n ] dΓ   + ∫Ω NI*[  Iexternal ] dΩ        (19) 

 

 

 

IV. Time Integration Scheme: Interaction of the 

Extracellular space with the Ganglion Cells 

 

a. Decoupled case 

 

Using the forward Euler integration scheme, namely, 

 

dVmi(tn)/dt = [Vmi(tn+1) - Vmi(tn)]/dt                         (20) 

 

into eq. (15) leads to: 

 

 (21) 

Similarly, for the intracellular potential the equation is 

written as: 

 

 
 (22) 

      

Example I - Action Potential Initiation and 

Propagation due to Input Current/Extracellular 

Potential 

 

As an example, a ganglion cell meshed using ten 

linear elements is subjected to two types of loading 

and boundary conditions: 

(i)  A current of 10-4μA at the left end and insulated at 

the right end. 

(ii) An external cathodic current source 50μm from 

above. This causes an extracellular potential variation 

along the length of the cell. Both ends of the mesh are 

insulated. 

 

The radius of the element used is 0.3μm, 

representative of part of an axon, and the properties of 

gNa conductance is 3 times the gNa of Soma to 

represent an increase similar to the Sodium Channel 

Band (SOCB) (higher values could still be used [2,3]). 

As mentioned, ten linear elements were used with 

eleven nodes. The initiation and propagation of the 

membrane action potentials are shown in Fig. 3 (a) 

and (b) for nodes 1 and 11. 

 

 

   
            (a)                                       (b) 

Fig. 3 (a) Membrane potential of case (i) versus time   

          (b) Membrane potential of case (ii) versus time 

 

b. Membrane Current 

For the retina ganglion cell (RGC), the total 

membrane current Im of element “e”, as shown in Fig. 

4, is given by 

 
Fig. 4 Ganglion cell element with total membrane 

current 

 

Im (t)_total = ∫sk
sj . 2*π*a*Im(s,t).ds  

                  =  ∫sk
sj . 2*π*a*( Jc +  Jionic ).ds                (23) 

 

where Jc is the capacitive current. 

 

For the nodal membrane current INmj at node “j” of 

element “e”, the following equation assumes that each 

node of the element will acquire a membrane current 

weighted by the shape function of that node, thus, 

 

INmj(t) =  ∫sk
sj . ϕj(s). 2*π*a*( Jc +  Jionic ).ds              (24) 

 

 

Assume that Jc and Jionic are interpolated using the 

same shape functions as Vm/VI, i.e., 

 

Jc (s,t) = ϕj(s).Jc (sj,t) + ϕk(s).Jc (sk,t)                      (25) 

 

 Jionic (s,t) = ϕj(s).Jionic (sj,t) + ϕk(s).Jionic (sk,t)          (26) 

 

Replacing in eq. (24) leads to  

 

INmj = 2*π*a*∫sk
sj . ϕj(s). (ϕj(s).Jc(sj,t)+ ϕk(s).Jc(sk,t) + 

ϕj(s).Jionic (sj,t) + ϕk(s).Jionic (sk,t) ).ds 

 

INmj =2*π*a*∫sk
sj . ϕj(s). ({ϕj(s).Jc(sj,t)+ϕj(s).Jionic(sj,t)} + 

{ϕk(s).Jc(sk,t)+ϕk(s).Jionic(sk,t)}).ds 

 

For a linear element, the above equation is written as: 

 

INmj=(2π.a.L/6)*{2[Jc (sj)+Jionic (sj)]+[Jc (sk)+Jionic (sk)]} 

=2*π*a*( 2*Imj(sj,t)+Imk(sk,t))*L/6                          (27) 
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where Imj(sj,t) is the membrane current “density” at 

node “j”. 

 

Similarly, 

 

INmk =  2*π*a*( Imj(sj,t)+ 2*Imk(sk,t))*L/6              (28) 

 

 

Example II - Closed Form Solution: Membrane 

Potential and Membrane Current 

 

This example deals with stimulating a single ganglion 

cell element by an external current source in the 

extracellular space, as shown in Fig. 5 below. 

The external potential was built up over time to 

steady-state value at node “1” and assumed constant 

throughout the element to simplify the closed form 

solution. 

 

The boundary condition (b.c.) on the left of the 

element is of the Neumann type (insulated). 

On the right, the b.c. is of the mixed type given by 

 

I2 = gr*(Vi2-Vr)                                                        (29) 

 

where 

gr = conductance (mS), Vr = voltage (mV) 

 

The ionic current model used was the passive leaky 

current model. 

A closed form solution was derived and compared 

with the results of a finite element mesh of one/ten 

elements. Fig. (6) compares the nodal membrane 

current at node “1” and total element current from the 

finite element solution with the closed form solution.  

The total membrane current is equal to (-I2) in this 

case. 

 

 
Fig. 5 Finite element with extracellular potential and 

boundary conditions 

 

Membrane Currents of Example I 

Fig. 7(a) shows the element membrane current versus 

time for elements 1 and 10 as well as the sum of 

elements membrane current for case (i). The sum of 

elements membrane current equals the input current in 

this case. 

 

Fig. 7(b) shows the element membrane current versus 

time for elements 1 and 10 as well as the sum of 

elements membrane current for case (ii). The sum of 

elements membrane current equals zero in this case. 

 

 
            (a)                                       (b) 

Fig. 6 (a) Nodal membrane current at node “1”    

          (b) Total membrane current  

          Closed form solution vs. finite element solution 

 

 

 
            (a)                                               (b) 

Fig. 7 (a) Element membrane current/sum of elements      

                membrane current for case (i) (μA)    

(a) Element membrane current/sum of elements 

membrane current for case (ii)  (μA)  

 

c. Coupling terms 

 

i). Extrapolation of membrane nodal currents to the 

extracellular mesh 

The concentrated current INmj is located within a solid 

extracellular element with nodes K=1,…,8, if an  

8-node element is used in the extracellular mesh, as 

shown in Fig. 8. 

 
Fig. 8      8-node 3D extracellular element with 

ganglion node “j” 

 

The concentrated nodal membrane current INmj within 

a solid extracellular element is distributed to the nodes 

of the extracellular mesh according to the weights of 
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the shape functions as detailed in eq. (30), with each 

node “K” getting a current ImKj . 

 

ImKj = { NK(xj,yj,zj)/[Σ
8

L=1 NL(xj,yj,zj) ] }* INmj       (30) 

 

Since  Σ8
L=1 NL(xj,yj,zj)  = 1,   

 

 ImKj = NK(xj,yj,zj)* INmj                              (31) 

 

ii) Interpolation of the extracellular potential to nodal 

values on the ganglion cell mesh 

In solving the cable equation, the extracellular 

potential is needed at the nodes of the meshed cable. 

This could be obtained by interpolation, such as: 

For the value of VEi , if node “i” lies in element “E”, 

then 

 

VEi =  Σ
8

K=1 NK(xi,yi,zi) . VEK(t)                                (32) 

 

d. Coupled case (as an example, use multiple isolated 

elements each with two nodes) 

 

Since time does not appear explicitly in the 

extracellular equation, but rather implicitly in Iapplied(t) 

and Im(t), the principle of superposition is assumed to 

apply. 

 

The extracellular potential at a point is then the sum of 

extracellular potential due to the applied current in 

addition to the effects of membrane currents. This 

could be expressed by the following relation: 

 

 Ve(t) = Veo + Veij*INm(t)                                     (33) 

 

where 

 

Ve(t) = vector of nodal extracellular potential at nodes 

of the ganglion mesh 

Veo = vector of nodal extracellular potential due to 

applied current 

Veij = matrix of extracellular potential at node “i” due 

to a unit membrane current at node “j” 

INm(t) = vector of membrane nodal currents in 

ganglion mesh 

 

The vector Veo and the matrix Veij could be 

determined a priori before time integration. 

 

The solution is obtained by replacing the above 

equation into the cable equation, namely, 

 

   C.dVm/dt  + Fionic  + K.Vm = -K.Ve + I(end)    (34) 

 

and integrating thru time. 

 

Example III - Coupling between Extracellular/ 

Intracellular Potentials: A Grid of 110 elements 

 

To investigate the effect of coupling the membrane 

currents and the extracellular potential the following 

example is discussed. 

A 35.85μA cathodic point current source is injected 

into an extracellular domain, 50μm above a layer of 

110 independent ganglion cells, 2-node elements, as 

shown in Fig. 9. 

The layer size is 300μmx100μm. It is estimated that 

the ganglion cell density is around 2000 cells/mm2 [7]. 

 

 
Fig. 9 Grid of 110 ganglion cell elements 

 

Each element is subjected to the extracellular potential 

with boundary conditions similar to Example II. The 

length of each element is 30μm with ionic properties 

same as Example I. 

In this example, the nodal currents from each element 

are fed back into the solution of the extracellular 

potential. 

Fig. 10 shows the time variation of the nodal 

membrane currents of element #56. 

For this particular problem, the membrane current 

seems to have a small effect on the extracellular 

potential. 

 

 
Fig. 10 Nodal membrane currents of element #56 

versus time (μA) 
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V. Conclusions 

 

Stimulating the ganglion cells directly with electrodes 

attached to the extracellular domain aims to 

circumvent a damaged photoreceptor system. 

This paper built on our previous publication in using 

the finite element method with its various tools from 

applied mechanics to model the response of ganglion 

cells under extracellular potential. The ganglion cells 

were modeled using the 1D cable equation with the 

Fohlmeister ionic model for mammals. The 

extracellular space was modeled as a 3D domain. 

The interaction of the extracellular space and the 

ganglion cell-cable is thru the extracellular potential 

and the membrane current. Closed form solutions as 

well as generalized finite element interpolations were 

used to investigate these interactions. 

One of the aims of such formulation is to extend it to 

large scale problems were the number of individual 

ganglion cells modeled is large “independent” of the 

size of the extracellular mesh. 

In addition, the effect of the membrane current from 

these ganglion cells is easily fed back into the 

extracellular mesh and readily accounted for. 
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