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Abstract—The main purpose of this paper is to 
model the turbulent flow field and to determine the 
effect of using the k-ε turbulence model and the 
algebraic stress model (A.S.M) compared to the laminar 
model. To achieve this goal, the equations governing 
the turbulent flow in two-dimensional and non-
continuous states are obtained, and in the next step, in 
order to complete the said equations, the A.S.M 
turbulence model is selected. In this research, the 
SMAC method is used, in which the nonlinear 
differential equations are discretized using the finite 
difference method, and the discrete equations are 
solved using the iterative method. 

The SMAC program, which is actually a simplified 
model of the MAC program, uses a combination of 
Illyrian and Lagrangian perspectives. In other words, 
this method uses Lagrangian particles that represent 
the fluid mass in the Eulerian lattice, which represents 
the solution. The most important disadvantage of the 
SMAC method is that it assumes that the flow is smooth 
and layered, and therefore in the present study to 
correct this defect, by modifying the existing k-ε 
turbulence model and also completing the program. The 
ASM turbulence model tries to show the effect of the 
turbulence model on the results. 

 

Keywords— Mathematical modeling, SMAC 
method, Algebraic stress perturbation model, 
Algebraic perturbation models. 

I.  INTRODUCTION  

With the increasing progress and increasing speed 
of computers, numerical methods have found a special 
place in solving computational fluid dynamics problems 
[1]. Given that the equations governing the turbulent 
flow field are nonlinear partial differential equations [2], 
to solve them, these partial differential equations must 
first be discretized and converted into algebraic 
equations, which for this purpose are often The finite 
difference method is used [3]. Then the generative 

algebraic equations are solved by direct solution 
method or iteration method [4]. Using the finite 
difference method, most of the dynamical problems of 
computational fluids such as unstable states can be 
solved [5]. For this purpose, Eulerian and Lagrangian 
views can be used. However, the use of combined 
Eulerian-Lagrangian methods gives better results [6]. 
In Euler's view, the focus is on a number of points in 
space and fluid changes are expressed as a function 
of time at these points, while in the Lagrangian 
method, the focus is on small fluid elements and 
changes in fluid elements to It is a function of time. In 
methods, fluid composition is considered as a number 
of Eulerian elements that are fixed in place and a set 
of Lagrangian particles is considered to show the 
movement of fluid through the network of elements. 
Flow variables such as velocity and pressure are 
assigned to points on the Eulerian lattice, and 
Lagrangian particles are used only to display fluid 
properties such as density. 

The MAC program was one of the first programs to 
use the Euler-Lagrangian combination method [7] and 
later several researchers worked on improving this 
program, which resulted in the introduction of the 
SMAC program. The most important disadvantage of 
this program can be considered as a layer of flow. In 
other words, the effect of flow turbulence is not 
considered in this program [8]. Therefore, in the 
present study, we have tried to obtain a real analytical 
analysis of the turbulent flow in the governing 
equations by using a suitable turbulence model and 
considering the effect of Reynolds stresses. The 
method of work in the present study is that the 
turbulence of the flow is modeled using the algebraic 
stress model. 
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II. GOVERNING EQUATIONS 

The continuity equation for turbulent flow is written 
as follows [9]: 

𝜕𝑢𝑖

𝜕𝑥𝑖
= 0                                                                                                    

(1)  

Also, the momentum equation for turbulent flow is 
written as follows [9]: 

𝜕𝑢𝑖

𝜕𝑡
+ 𝑢𝑗

𝜕𝑢𝑖

𝜕𝑥𝑗
=  −

1

𝜌𝑟

𝜕𝑃

𝜕𝑥𝑖
+ 

𝜕

𝜕𝑥𝑗
(𝑣

𝜕𝑢𝑖

𝜕𝑥𝑗
− 𝑢𝑖𝑢𝑗) + 𝑔𝑖

𝜌−𝜌𝑟

𝜌𝑟
                                                                 

(2)  

In the above relations, 𝑢𝑖  represents the 

instantaneous velocity component in the 𝑥𝑖  direction, 
and v represents the molecular viscosity, 𝜌𝑟  the 

reference density, ρ the local density, and finally 𝑔𝑖 the 
gravitational acceleration. It should be noted that the 
system of the above equations is not closed because 
there are nonlinear terms in which the process of 
averaging on them creates new relationships between 

velocity fluctuations, 𝑢𝑖
′𝑢𝑗

′ [10]. 

The term −𝜌𝑢𝑖
′𝑢𝑗

′  represents the momentum 

transfer of  𝑥𝑖 in the 𝑥𝑗 direction or vice versa. Due to 

the fact that this effect acts like a stress on the fluid, it 
is called Reynolds stress or turbulence [11]. In order to 
be able to solve Equations (1) and (2) for the mean 

values of velocity and pressure, the terms 𝑢𝑖
′  and 𝑢𝑗

′ 

must be specified [12]. In fact, the main problem in 
calculating turbulent flows is the determination of 
dependency terms [13]. True transfer equations can be 

obtained for 𝑢𝑖
′𝑢𝑗

′  in different directions, but these 

equations also include higher degree dependence 
terms [14]. 

III. ALGEBRAIC STRESS MODEL (ASM) 

In general, for three-dimensional currents, there are 
six Reynolds stress components. The model of 
complete turbulence is a model that has introduced the 
transfer equation for each of the stresses. Considering 
the equations k and ε and the Reynolds equations, the 
flow equation system includes 11 differential 
equations. In this case, the best technique is to 
simplify the equations by substituting algebraic 
expressions instead of partial differential terms. 

The basic equation of transfer 𝑢𝑖𝑢𝑗 is as follows. 

𝐷(𝑢𝑖𝑢𝑗)

𝐷𝑡
= 𝐷𝑖𝑓𝑓𝑢𝑖𝑢𝑗 + 𝑃𝑖𝑗 + ∅𝑖𝑗 + 𝐷𝑖𝑗(3)                                                                                            

In the above relation 
𝐷(𝑢𝑖𝑢𝑗)

𝐷𝑡
 is the substitute for the 

displacement transfer 𝑢𝑖𝑢𝑗  by motion and 𝐷𝑖𝑓𝑓𝑢𝑖𝑢𝑗  is 

the substitute for the diffusion transfer by motion. 𝑃𝑖𝑗, 

∅𝑖𝑗  and 𝐷𝑖𝑗  also represent production, strain-pressure 

and viscosity loss, respectively. 

The gradients of the dependent variables in the 
transfer equations appear only in the rate of change, 
transfer, and propagation rates. Hence, if these 
sentences can be eliminated using relatively accurate 
approximations, the differential equation becomes an 

algebraic expression. The algebraic expression for 

𝑢𝑖𝑢𝑗 can be written as follows: 

𝐷(𝑢𝑖𝑢𝑗)

𝐷𝑡
− 𝐷𝑖𝑓𝑓𝑢𝑖𝑢𝑗 =  

𝑢𝑖𝑢𝑗

𝑘
(

𝐷𝑘

𝐷𝑡
− 𝐷𝑖𝑓𝑓𝑘) =

 
𝑢𝑖𝑢𝑗

𝑘
(𝑃𝑘 − 𝜀)                                                          (4)  

By placing the above relation in the transfer 

equation 𝑢𝑖𝑢𝑗 , the following relation is obtained for 

single stresses: 

𝑉′2

𝑘
=

2

3

1−(
𝑃𝑘
𝜀

)∅2

1+2∅5
                                                                                                                                        

(5)  

𝑢′2

𝑘
=

2

3
(1 + (

𝑃𝑘

𝜀
) ∅4) + ∅5

𝑉′2

𝑘
                                                                                                           

(6)  

𝑢′𝑣′ =  −∅1
𝑉′2

𝑘

𝑘2

𝜀

𝜕𝑢

𝜕𝑦
                                                                                                                               

(7)  

In the above relations: 

∅1 =
(1−𝑐2+1.5𝑐2𝑐2

′𝑓)

(𝛽+1.5𝑐1
′ 𝑓)

                                                                                                                                

(8)  

∅2 =
(1−𝑐2

′ +2𝑐2
′𝑐2𝑓)

(𝛽)
                                                                                                                                   

(9)  

∅3 =
(1−𝑐2+𝑐2𝑐2

′𝑓)

(𝛽)
                                                                                                                                  

(10)  

∅4 =
(2−2𝑐2+𝑐2𝑐2

′𝑓)

(𝛽)
. ∅5 =  𝑐1

′  
𝑓

𝛽
                                                                                                          

(11)  

𝑓 =  
𝑘

3
2𝐶𝜇

3
4

𝜀𝑦𝑘
                                                                                                                                                

(12)  

𝛽 =  𝑐1 + (
𝑃𝑘

𝜀
) − 1                                                                                                                                 

(13)  

𝑃𝑘 =  −𝑢′𝑣′ (
𝜕𝑢

𝜕𝑦
)                                                                                                                                       

(14)  

𝐶𝜇 =  ∅1
𝑣′2

𝑘
, (𝑐1 = 1.8, 𝑐2 = 0.6, 𝑐1

′ = 0.5, 𝑐2
′ = 0.3)                                                                         

(15)  

 

IV. FINITE DIFFERENCE EQUATIONS 

In the SMAC method, Reynolds equations are 
discretized using the FTCS method. In this method, 
the forward difference method is used for the time 
derivative and the central difference method is used for 
the spatial derivative. 

For example, the Reynolds equation is discretized 
in the x direction around the point (i + 1/2, j) as follows: 

http://www.jmest.org/
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1

𝛿𝑡
(𝑢

𝑖+
1

2
𝑗

𝑛+1 − 𝑢
𝑖+

1

2
𝑗
) =

1

𝛿𝑥
(𝑢

𝑖+
1

2
𝑗
. 𝑢

𝑖−
1

2
𝑗

− 𝑢
𝑖+

3

2
𝑗
. 𝑢

𝑖+
1

2
𝑗
) +

1

𝛿𝑦
[(𝑢𝑣)

𝑖+
1

2
𝑗−

1

2
− (𝑢𝑣)

𝑖+
1

2
𝑗+

1

2
] −

1

𝛿𝑥
(𝜃𝑖+𝑖𝑗 − 𝜃𝑖.𝑗) +  𝑔𝑥 +

𝑣 [
1

𝛿𝑦2 (𝑢
𝑖+

1

2
𝑗+1

+ 𝑢
𝑖+

1

2
𝑗−1
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𝑖+

1

2
𝑗
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1

𝛿𝑥𝛿𝑦
(𝑣

𝑖+𝑗+
1

2
−

 𝑣
𝑖,𝑗−

1

2
− 𝑣

𝑖,𝑗+
1

2
+ 𝑣

𝑖,𝑗−
1

2
)] −

1

2𝛿𝑥
(𝑢

𝑖+
3

2𝑗

′2 − 𝑢
𝑖−

1

2𝑗

′2 ) +

1

𝛿𝑦
(𝑣𝑡𝑖𝑗+1 − 𝑣𝑡𝑖+1,𝑗).

1

𝛿𝑦2 (𝑢
𝑖+

1

2
𝑗+1

+ 𝑢
𝑖+

1

2
𝑗−1

− 2𝑢
𝑖+

1

2
𝑗
)                                                                                                                  

(16)  

To discretize the equations k and ε depending on 
the value of the Reynolds number of the grid, the type 
of discretization will be different. The network 
Reynolds number indicates the transmission power 
relative to the transmission power in a transmission-
distribution equation. For governing equations, this 
number is defined as x and y: 

𝑅𝑒𝑥 =  
𝑢𝛿𝑥

𝑣𝑡
,   𝑅𝑒𝑦 =  

𝑢𝛿𝑦

𝑣𝑡
                                                                                          

(17)  

The FTUS method is used when the network 
Reynolds number is greater than 2 and the FTCS 
method is used when the network Reynolds number is 
less than or equal to 2. 

The subtitle ij corresponds to the position of the 
element within the Eulerian network, and the 
uppercase n + 1 indicates the quantity at time t = (n + 
1) δt. All quantities are without balances for time n. As 
shown in Figure (1), the variables θ, Ѱ, k and ε are in 
the center of the element and the velocity components 
u and v are on the element faces. 

 

figure 1. Position of flow variables in the element 

V. SOLVING STEPS 

In the first step, the initial velocity fields are 
calculated using the provided relations. In this step, 
each pressure field can be selected optionally, but in 
order to increase efficiency and speed, the hydrostatic 
pressure distribution is used as follows. 

θ_ij=  g_x x_i+ g_y y_j                                                                                                 
(18) 
For free surface elements of the fluid, the value of θ 

is equal to the vertical stresses plus the applied 
surface pressure. In this step, all velocities 

perpendicular to the rigid walls are considered zero. 
Also, velocity is not calculated on the empty face of 
surface elements. The value of velocity on this aspect 
is calculated in the third step based on satisfying the 
continuity condition. 

In the second step, the initial speeds are converted 
to the final speeds. This is done using the pressure 
potential function gradient (Ѱ) as follows: 
u_(i+1/2 j)^(n+1)= u ̃_(i+1/2 j)^(n+1)-1/δx (Ѱ_(i+1,j)-
Ѱ_(i,j) )                                                                            
(19) 
V_(i+1/2 j)^(n+1)= V ̃_(i+1/2 j)^(n+1)-1/δy (Ѱ_(i+1,j)-
Ѱ_(i,j) )                                                                           
(20) 

In the last step, the velocities obtained in the 
second step are used to move the Lagrangian particle 
set. These particles merely express the state of the 
fluid mass and its free surface. 

A free-slip boundary represents an axis of 
symmetry or a friction-free surface that exerts no 
shear stress on the fluid. The velocity component 
perpendicular to the wall is zero. The components of 
tangential velocity, potential function, kinetic energy of 
compression and energy loss without gradient are 
considered: 

u_(i-1/2,j)=0,     Ѱ_(i-1,j)= Ѱ_(i,j),     v_(i-
1/2,j+1/2)=v_(i.j-1/2),     k_(i-1,j)= k_(i,j),      v_(i-
1/2,j-1/2)= v_(i,j-1/2),     ε_(i-1,j)=ε_(i,j)                                                                                                
(21) 
A non-slip boundary represents an adhesive 

boundary that exerts a shear stress on the fluid. The 
tangential velocity component on this boundary is 
zero. 

u_(i-1/2,j)=0,     Ѱ_(i-1,j)= Ѱ_(i,j),     v_(i-1,j+1/2)=〖-

v〗_(i.j-1/2),     k_(i-1,j)= k_(i,j),      v_(i-1,j-1/2)= 

v_(i,j-1/2),     ε_(i,j)=(u_(i+1/2,j)^* )^3/0.2δx,      
k_(i,j)=  (u_(i+1/2 j)^* )^2/(cμ^0.5 )                                                                
(22) 

VI. RESULTS 

Solving equations using the finite difference 
method is associated with several errors that due to 
the existence of these errors, the calculated results 
differ from the actual results. The value of this 
difference is directly a function of the numerical 
method and the type of discretization used. In this 
research, we have tried to use the most appropriate 
method to reduce errors as much as possible. In this 
article, we have tried to use the most appropriate 
method to reduce errors as much as possible. The 
process of determining the type of discretization in the 
program is such that in the first step, the equations are 
discretized using the FTUS method, which in practice 
due to the existence of a numerical distribution that is 
due to the cut-off error, in practice none of the models 
converge. And does not lead to a definite result, of 
course, by considering the dimensions of the network 
smaller, the amount of numerical distribution can be 
reduced and the calculation error can be reduced, but 
in this case, the value of δt must be considered very 
small, which causes Increases the calculation time. 
Also, due to the limited memory of the device, the 

http://www.jmest.org/


Journal of Multidisciplinary Engineering Science and Technology (JMEST) 

ISSN: 2458-9403 

Vol. 9 Issue 5, May - 2022  

www.jmest.org 

JMESTN42354027 15313 

number of elements is limited in selection, and due to 
the very small ∆x and ∆y, the dimensions of the flow 
field are very small, which will not have a physical 
interpretation. 

If the central difference method is used in 
discretization, it causes unrealistic fluctuations in the 
response. Therefore, in discretizing the equations, a 
combined method consisting of Upwind and Central 
methods is used. 

In this research, the presented models have been 
implemented on two different options. Considering that 
the main purpose of this paper was to use different 
turbulence models on the flow field, the quiet, k-ε and 
ASM models were implemented on one option and the 
results were compared and the results of the 
mentioned models on another option. Has also been 
calculated and compared with existing laboratory and 
numerical data. 

In general, in this research, two types of 
sedimentation ponds have been considered, in which 
the location of the inlet flow is different and the outflow 
of the flow has been done from the overflow head. In 
the first case, where the results obtained from the 
SMAC method are compared with the k-ε and A.S.M 
models, the location of the inlet flow is from the floor 
and the height of the inlet flow is half the depth of the 
flow in the pond. The geometric characteristics of this 
pond are given in Figure (2) and Table (1). 

Table 1. Dimensions and hydraulic characteristics of the first 
geometry 

F
r 

h
(m) 

ℎ2(𝑚) ℎ1(𝑚) L
(m) 

∆𝑦(𝑚) ∆𝑥(𝑚) 

0
.56 

0
.16 

0.
08 

0.
08 

1
.0 

0.
02 

0.
1 

The results of model implementation for the first 
geometry are given in Figures (3) to (5). These 
diagrams show the velocity profile along the pond, the 
velocity vector in the solution field, as well as the flow 
lines due to the model run. 

 
figure 2. Geometric and hydraulic characteristics of the first 

geometry 

In the laminar flow model, the viscosity is 10,000 
times that of the actual viscosity, but it can be seen 
that in practice this model can not predict the effect of 
turbulence on the flow field. In Figures (4) and (5) it is 
clear that the turbulence in the A.S.M model is greater 
than k-ε and also in this case a rotational region is 
formed that the length of this region is somewhat 
different in the two mentioned countries. 

During the implementation of the program for 
different inlet conditions, it was found that in a field with 
a known depth of field, the smaller the ratio of the inlet 
flow depth to the total flow depth, the more intense the 

rotational zone is created, which will definitely have a 
greater effect on the flow pool. For the first geometry, 
where the flow inlet from the bottom of the pond is 
considered, the length of the rotational zone in the 
A.S.M model is 3 times the flow depth and in the k-ε 
model is about 2.7 times the flow depth. 

Figures (6) to (8) also show the velocity vectors for 
the computational field for the three modes of slow 
flow, the k-ε turbulence model and the A.S.M 
turbulence model. Figures (9) to (11) show the flow 
lines for the turbulence models, respectively. 

 
Figure 3. Horizontal velocity profiles in the pond for smooth flow 

and first geometry 

 
Figure 4. Horizontal velocity profiles in the pond for turbulent 

flow with model k-ε and first geometry 

 
Figure 5. Horizontal velocity profiles in the pond for turbulent 

flow with the A.S.M model and the first geometry 

 
Figure 6. Velocity vector profiles in the pond for smooth flow 

and first geometry 
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Figure 7. Velocity vector profiles in the pond for turbulent flow 

with model k-ε and first geometry 

 
Figure 8. Velocity vector profiles in the pond for turbulent flow 

with the A.S.M model and the first geometry 

 
Figure 9. Profiles of flow lines in the pond for smooth flow and 

first geometry 

 
Figure 10. Profiles of flow lines in the pond for turbulent flow 

with model k-ε and first geometry 

 
Figure 11. Profiles of flow lines in the pond for turbulent flow 

with A.S.M model and first geometry 

VII. CONCLUSION 

In this study, with the aim of simulating turbulent 
flow, the governing Reynolds equations have been 
solved using k-ε and A.S.M turbulence models. The 
governing equations are discretized using the finite 
difference method. The use of the A.S.M model has 

been shown to better predict eddy currents than the k-
ε model. 
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