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Abstract—Building on our previous publications, this 

paper develops further the full-cycle-growth model of a 

fission yeast cell. The paper is divided into two main 

parts.  

The first part models the pressurization of the New End 

(NE) as the primary septum is fully digested. At this stage, 

the secondary septum/NE thickness is taken to be half the 

wall thickness. However, it is assumed that while the Old 

End (OE) is growing, the wall material of the NE will 

build up so that the thickness of the NE becomes twice its 

current value. Subsequently, both ends will continue to 

grow till the new septum wall is formed again. 

The second part deals with the growth of both ends, which 

is based on a growth function that was derived previously 

from the self-similarity growth principle. The spatial 

distribution of this growth function was mainly limited to 

the OE/NE. 

Numerically, the growth of the cell was modeled using the 

finite element method. Since growth almost doubles the 

cell length, and is mostly restricted to the top/bottom of the 

cell, the original mesh needs to be updated as growth 

progresses. This was accomplished by an element division 

scheme as described in the paper. 
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 I. Introduction  

The full-cycle growth of a fission yeast cell involves 

five main processes [1-9], as summarized in Fig. 1 

[1,2]. 

a. The digestion of the primary septum wall and the  

    division of the cell. 

b. The NE pressurization. 

c. Growth of the OE. 

d. The delayed growth of the NE. 

e. The formation of new septum wall. 

 

These processes occur under high turgor pressure, 

which may exceed 1 MPa.  

 

The previous publications [1,2] dealt with determining 

the growth function α.Φ(s) for part (c), which was 

based on the principle of self-similarity of growth. 

This growth function related the rate of viscous strain 

to the elastic strain through the relation 

 
dεv/dt = α.Φ(s).εe                                     (1) 

 
where α is a growth factor, Φ(s) is the growth function 

that depends on the meridional distance, s, the arc 

length measured from the tip of the OE/NE. The value 

of Φ(s)|s=0 is 1.  

 
 
Fig. 1. Fission yeast cell growth cycle [1,2] 

 
Building on our previous work, we further develop in 

this paper the full-cycle-growth model of a fission 

yeast cell. The paper is divided into two main parts.  

The first part models the pressurization of the New 

End (NE) as the primary septum is fully digested. At 

this stage, the secondary septum/NE thickness is taken 

to be half the wall thickness. However, it is assumed 

that while the Old End (OE) is growing, the wall 

material of the NE will build up so that the thickness 

of the NE becomes twice its current value. 

Afterwards, both ends will continue to grow till the 

new septum wall is formed again. 

The second part deals with the growth of both ends, 

which is based on a growth function that was derived 

previously from the self-similarity growth principle. 
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The spatial distribution of this growth function was 

mainly limited to the OE/NE. 

Numerically, the growth of the cell was modeled 

using the finite element method. Since growth almost 

doubles the cell length, and is mostly restricted to the 

top/bottom of the cell, the original mesh needs to be 

updated as growth progresses. This was accomplished 

by an element division scheme as described in the 

paper. 

 
II. New End Pressurization - Nonlinear Elastic 

Analysis – Total Lagrangian formulation  

In formulating the problem of NE pressurization the 

Total Lagrangian method [10-12] was used.  

The cell was assumed to be axisymmetric and the 

deformation as well. 

The motion of the body could be represented 

graphically as shown in figure 2, below. 

 

Fig.2  Motion of the axisymmetric body 

The formulation of body motion was based on a 

general curvilinear coordinate system (CS), which 

was later restricted to the cylindrical CS. 

The curvilinear coordinates, in this case, are:                                                        

   Θ =(Θ1,Θ2,Θ3)=(R,Z,θ)                                  (2) 

For the undeformed configuration, which corresponds 

to time “0”, the position vector R could be expressed 

as 

R = R.cos(θ).I + R.sin(θ).J + Z.K = R.eR  + Z.eZ   (3) 

where   
              eR (θ) = cos(θ).I + sin(θ).J  , eZ = K , and  

   eθ (θ) = -sin(θ).I + cos(θ).J               (4) 

 

The corresponding covariant base vectors are given 

by: 

 
o
g 1 = ƏR/ƏΘ1 = ƏR/ƏR = cos(θ).I + sin(θ).J = eR    (5) 

o
g 2 = ƏR/ƏΘ2 = ƏR/ƏZ = K = eZ 

o
g 3 =ƏR/ƏΘ3 =ƏR/Əθ = -R.sin(θ).I+R.cos(θ).J = R.eθ 

 

The metric tensor for the undeformed convected 

system is given by:  
                           ogij =

   o
gi . 

o
gj                                                  (6) 

The determinant of ogij is  
                          og = det[ogij ]                                              (7) 

and, in the case of a cylindrical CS, 
                           o

g =R
2                           

                             (8) 
 

The contravariant base vectors satisfy the relation:  
o
g 

A. og B=δA
B  , which leads to: 

 

             o
g 

1 = eR  ;   
o
g 

2 = eZ  ;  
o
g 

3 = (1/R).eθ                     (9) 

 

The strains, stresses and stress-strain relations are as 

follows: 

 

a. Convariant Components of Strains  

The strains at time t could be expressed as: 
    t

oϒ = toϒAB . 
o
g

A⊗o
g

B                                   (10) 

where the symbol  ⊗ represents the tensor product. 

 

The physical components of the strain are written as  

< t
oϒAB> with their values determined by the 

following equation: 

< t
oϒAB> = toϒAB . ||

 o
g

A||. || ogB||            (11) 

where || ogA|| is the norm of the contravariant base 

vector. 

 

b. “ Second Piola-Kirchhoff”  Stress Tensor 

A “ first Piola-Kirchhoff”  stress tensor could be 

expressed as  
                   t

oP = toP
Ab. ogA⊗

t
gb                                      (12) 

and a “ second Piola-Kirchhoff”  stress tensor could 

be defined by the following relation: 
t
oS = { toP

Ab. ogA⊗
t
gb } . { tgc ⊗o

gC  } =  
t
oP

Ab. ogA⊗
o
gB   

=  toS
AB. ogA⊗

o
gB                                                        (13) 

 t
oSAB = toPAb 

 

The physical components of the stress tensor are 

written as < t
oS

AB>  with values determined by the 

following equation: 

      < t
oS

AB> = toS
AB

 . ||
 o
gA||. || ogB||                         (14) 

 

where || ogA|| is the norm of the covariant base vector. 

 

b. The stress-strain relation is assumed to be the 

isotropic Saint-Venant-Kirchhoff model 

between physical components (which has its 

own limitations [10 ]) 

 

  < t
oS

AB> = [E/(1+ν)]* < t
oϒAB> - [ν*E/(1-2ν)]*< t

oϒCC>*δAB  (15) 

with  
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         E = Elastic modulus  

         v = Poisson’s ratio 

 

c. Applying the method of weighted residual to 

the equation of motion leads to (with neither 

body forces nor acceleration) 

 

{  ov [
 t

oPAb (Θ) . tgb(Θ) . Ə/Ə (Θa) [ w ]  ]  } dov  

= {  oa [  
t
oT (Θ). w ]   }  doa                                    

(16) 

where w is the weight function and toT (Θ) is the 

traction vector (= dt
oF/doa where toF is the applied 

load at time “t” and oa is the original surface area). 

 

 

d. Finite Element Discretization 

By discretizing the domain, the weight function is 

expressed as   

w = w(Θ) . e = N(Θ) . wN . e    ,  = 1,2 (=R,Z) 

where 

N= the shape function of node “N” and Θ = [or,oz] 
=[R,Z]                                                                               (17) 
 

Since wNis arbitrary, we get 

 

  ov Ə/Ə (Θa) [N(Θ).e] . t
oPAb (Θ) .tgb(Θ)]dov  

=   oa N(Θ) . [ toT (Θ). e  ]  doa                                    (18) 

 

The above equation could be written in matrix form 

as: 

 ov (B)T . toP . dov    = toF(p,tu)   or  K(tu)=F(tp,tu)     (19) 

 

where 
t
oP = [ toP11    t

oP22    t
oP33  toP12   ]T            ,     tp= pressure ,    

and    tu = deformation                                                                            (20) 

 

e. Linearization of Linear Momentum Equation:  

K(tu)=F(tp,tu) 

For the static analysis, the residual RN is expressed as: 

            RN  = ov { BN
T . toP } dov - toFN = 0                    (21) 

 

Linearization about u* leads to: 

   ov  {L {  [(ƏBN
T/Ət 

o u
L) ] .t

oP   

+  BN
T.[(Ət

oP/Ət 
o u

L)} dov  }|*.Δ(t 
ouL)  

- L [(ƏFN/Ət 
o u

L)] |*.Δ(t 
ouL)=- ov { BN

T.t
oP } dov|*+ toFN |*                                                                                                 

(22) 

 

f. The applied load vector is expressed as: 

  t
oFN = oa

tp .onA . [ 
tg/og ](1/2)

 .N(R,Z).[ tga . e]doa (23) 

 
where  
t
p = pressure at time “t” 

 onA = normal vector in the undeformed configuration 
og = determinant of metric tensor at time “0” 

 tg = determinant of metric tensor at time “t” 

N(R,Z) = shape function of node “N” 
 tga = contravariant base vector at time “t” in direction “a” 

 e  = unit vector in direction “” 

doa  = original differential area 

 

Fig. 3 shows the pressurization of a flat NE into a 

curved end due to a pressure of 1.5 MPa. 

 

 
Fig. 3 Pressurization of NE with a pressure of p=1.5 

MPa 

 

III. Viscous Growth of Cell 

After the division of the cell and pressurization of the 

New End the OE starts to grow, followed by the 

growth of the NE (by about an hour) [5]. 

 
Fig. 4 Material deposition along ends of cell 
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The growth of the cell is the result of material 

deposition that diffuses into the cell wall and leads to 

the breakage of bonds, as shown in fig. 4. This in turn 

reduces the stiffness of the wall and increases its 

viscous flow. 

 

Mathematically, this process was expressed by a rate 

function of viscous strain [1,2] 

 
                dε

v/dt=α.Φ(s).εe                                  (24) 

 
where α is a growth factor, Φ(s) a growth function that 

depends on the meridional distance “s”, the arc length 

measured from the tip of the OE/NE. The value of 

Φ(s)|s=0 is 1.  

 

In modeling the growth of a fission yeast cell three 

configurations were used, as shown in Fig. 5 [1,2] :  

a) The plasmolysed configuration “0”.  

b) The elastically deformed cell configuration by 

turgor pressure “1”.  

c) The configuration where material deposition and 

growth occur within the cell under turgor pressure“2”.  

The plasmolysed configuration “0” when subjected to 

turgor pressure expands to configuration “1” with 

large elastic deformations. Material deposition, which 

softens the cell wall, leads to configuration “2” when 

coupled with the turgor pressure.  

 

 
 
Fig. 5 The three configurations of growth of a fission 

yeast cell [1,2] 

 
Modeling the viscous growth of the “spherical” parts 

of the fission yeast cell follows the steps described 

below for an interval of time [t1,t2] : 

 

a. The plasmolysed configuration was pressurized and 

the elastic strains εe(R,Z)  were computed at the Gauss 

points (gp) using the finite element method.  

 
                   ε

e(Rgp,Zgp) = B(Rgp,Zgp).u                     (25) 

where 

 

B(Rgp,Zgp) = strain matrix (gradient of shape 

functions) at the Gauss points, u = nodal deformations 

b. The increase in the viscous strain is calculated at 

the Gauss points of part “a” as follows: 

- Calculate the arc-length (s) of the Gauss point 

starting from the tip. 

- Compute α.Φ(s) as in the previous publications [1,2]. 

- Calculate the viscous strain increment of a Gauss 

point,  

 Δε
v(Rgp,Zgp) = α.Φ(s). εe(Rgp,Zgp). Δt        (26) 

- Determine the nodal loads due to viscous strains, Fv : 

                     F
v = ʃ BT . D. Δε

v .dV                    (27) 

where  

D = elastic constitutive matrix 

 

- Solve for the viscous deformations using  

KT . Δu
v  = Fv                             (28) 

 
IV. Growth and Mesh Update 

The simulation of growth in the interval [t1,t2] of the 

previous section is repeated until full growth is 

achieved. 

At the end of each interval [t1,t2], the ratio of 

length(L)/width(w) of each element is checked: 

 

a. If L/W < ratio_allowed , the mesh is not 

modified. 

b. If L/W > ratio_allowed, the element is split 

into two elements.  

 

It is assumed that the material properties (E,ν) return 

to original values after each interval of growth. 

Consequently, there is no issue with specifying the 

new material property for each new element. 

The element used was a 9-node axisymmetric 

element. It was divided as follows: 

i- Specify new six nodes, three on the 

middle left and three on the middle right 

of each element to be divided. 

ii- Divide the element in question into two, 

with the middle nodes becoming the new 

boundaries. 

 
The resulting mesh is shown in Fig. 6, below. 

 

 
Fig. 6     Division of elements 
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When the above growth process is applied to the 
fission yeast cell, the growth of the OE after the 
first 24 minutes, and the division of the top 
element into two, are shown in Fig. 7. 
 
Since the speed of growth is around 2μm/hr, for 24 

minutes the growth is Δ ~ 2μm/hr*(24/60) = 0.8 μm. 

The viscous growth computed from the finite element 

solution was around 0.84 μm.  

 
 

 
 
Fig. 7 Growth of OE and division of top element 

 
 V. CONCLUSIONS 

 

This paper modeled two processes from the full-cycle-

growth model of a fission yeast cell.  

The first process was the pressurization of New End, which 

involves large elastic deformations. The Total Lagrangian 

formulation, based on the cylindrical convected coordinate 

system, was used for this purpose. 

The second process involved modeling the growth of the 

Old End/New End due to viscous flow. The rate of the 

viscous strains was assumed to be proportional to the elastic 

strain by a factor representing the growth function. Since 

growth occurs mostly at the ends, with a doubling in cell 

length, updating the mesh was deemed necessary. This is 

needed to prevent excessive element distortion and to better 

capture the viscous strain distribution at both ends. The 

mesh was updated through element division as growth 

progressed. 
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