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Abstract—Carbon and energy markets react to 
each other in many respects. This paper proposes 
directed and weighted transmission network 
models to indicate the dynamic features of these 
coupled time series. Trading data of carbon pilots 
and the coal market in China are selected as the 
sample. The coarse graining method is used to 
convert coupled time series into strip sequences. 
Transmission networks are then constructed by 
taking the strip as nodes and transformation as 
edges. Topological characteristics of the networks 
are employed to disclose the co-movement 
patterns and state, as well as community 
transmission capacity. Results of node strength 
show that more than 60% of co-movement 
patterns are predictable. The dominant co-
movement strips are identified to be two 
consecutive positive co-movements states 
intermediated by a negative state. Furthermore, 
the asymmetric transfer capacity reveals that 
communities have specific preferences in 
choosing their transmission targets. Finally, 
seasonal factors in the co-movements are found 
with strong positive linkage occurring most often 
in July and strong negative linkage in August. 
This study provides an alternative way to predict 
the co-movement state between the carbon price 
and energy price. 

Keywords—Carbon market; Coal market; 
Energy market; Price co-movement; Transmission 
network 

I.  INTRODUCTION  

Emissions Trading Scheme (ETS) is a ‘cap-and-
trade’ system to deal with greenhouse warming 
caused by energy combustion. Under such a system, 
allowances for emissions, primarily being carbon 
dioxide, are traded like ordinary commodities. In 1997, 
the ‘Kyoto Protocol’ first proposed the market 
mechanism as a new path to solve the problem of 
greenhouse gas emission reduction, then many 
countries and regions have established carbon trading 
systems. The European Union Emissions Trading 
Scheme (EU ETS), set up in 2005, is the first 
international emissions trading system in the world and 
the largest installation for reducing greenhouse gas 
emissions. The Japanese Tokyo ETS covers not only 
direct emissions from fuel combustion in the industrial 
sector, which are commonly targeted by other ETSs, 
but also indirect emissions from energy use 

(Wakabayashi and Kimura 2018). China is the world’s 
largest energy consumer and carbon emitter which 
pledged to reduce carbon intensity to hit peak carbon 
emissions by 2030 (Wen et al. 2021). China started 
the operation of carbon emission trading in seven pilot 
regions in 2013 and 2014. In addition, its national 
carbon market was launched at the end of 2017 and 
will start in the near future (National Development and 
Reform Commission of China 2017).  

Coal consumption is critically important in China’s 
carbon market. Coal is one of the most important fossil 
fuels, accounting for 60 % of China’s total primary 
energy consumption in 2017 (Li et al. 2019). In 
addition, China accounts for about 50% of the world’s 
coal consumption. The dominance of coal 
consumption is likely to continue. Therefore, the 
stability of coal price is not only related to the smooth 
operation of the economy but also has a significant 
impact on the daily life of the public. However, the coal 
industry is facing transformation due to serious losses 
in industries and high leverage since the end of 2012. 
Considering the current coal market conditions, the 
direction of coal price fluctuations is particularly 
important for carbon market. 

There are close relationships between the 
dynamics of energy price and carbon price since the 
main source of carbon emissions is energy 
consumption. A large number of studies believe that 
there is cointegration, equilibrium and causation 
between carbon price and energy price. However, 
these relationships can be generalized to the term of 
co-movement, which is a simple volatility mechanism. 
Co-movement describes the degree of consistency 
with which one indicator changes in the same or 
opposite direction as another indicator. Correlation 
coefficient is often used to measure bivariate co-
movement (de Carvalho and Gupta 2018) but can be 
biased by heteroscedasticity (Baur 2003). Complex 
network can not only examine the fluctuation of the co-
movement relationship between variables, but also 
study the evolutionary mechanism behind these 
fluctuations (An et al. 2014). 

The research motivation of this paper includes 
three aspects. First, studying the co-movement 
between carbon markets and energy markets is of 
great importance. Co-movement can reflect the 
characteristics of fluctuations. We can reveal the 
dynamic relationship between markets more expressly 
by capturing co-movement wave strips and co-
movement mechanism. The consumption of fossil 
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energies inevitably leads to carbon dioxide emission 
which makes the supply side of carbon markets. 
Controlled companies will adjust their energy usage 
strategies according to varying carbon prices to lower 
their cost. Second, the relationship between carbon 
markets and energy markets depends on individual 
markets. At present, China’s national carbon emission 
market has not yet been operated. If we can find a 
coupling way to reflect the national carbon price 
through the pilot price, it will play a positive role in the 
market research. Third, studying the co-movement 
during a time period is better than at the daily time 
instant. The main reason is that the carbon market is 
not a pure financial system. The carbon market has 
policy and environmental properties (Yi et al. 2018) 
which results in a lag effect on the co-movement 
relationship. 

II. LITERATURE REVIEW 

A. The co-movement between markets 

Over the past decades, many studies have 
examined the interconnection between different 
variables in carbon and energy markets.  The literature 
confirms that there is a strong relationship between 
futures prices and fundamental factors such as 
German electricity prices, natural gas, and coal prices 
(Aatola et al. 2013). The carbon market and the fossil 
energy markets have a significant positive correlation 
in time (Zhang and Sun 2016). Smale et al. (2006) 
believed that EU ETS can significantly induce power 
price increases by studying the impact of EU ETS on 
corporate profits and market prices. Furthermore, 
Chevallier (2012) claimed that energy prices are the 
main driver of the EU’s carbon emission allocation spot 
price. 

As well known, coal prices significantly affect 
carbon prices (Chevallier 2011). Batten et al. (2021) 
examined the negative correlation between the coal 
price and the carbon price. The increases in the coal 
price will cause utilities to switch from coal to gas, 
emitting less carbon in the process so that fewer 
carbon allowances are required, and this will put 
downwards pressure on the carbon price in Europe. 
Zhao et al. (2017) showed that coal prices played a 
leading role in carbon prices setting by studying the 
long-term cointegration relationship between China’s 
carbon pilot market prices and coal prices, economy, 
and temperature. 

Previous studies on the co-movement between the 
carbon market and coal market were mainly based on 
the price fluctuation of the two markets. A small 
number of scholars have studied the transmission 
mechanism of co-movement between the carbon 
market and energy market, but no scholars have 
considered the relationship between short-term co-
movement wave strips and seasons. In the past, 
econometric methods are common analytical methods 
used by researchers. Sousa et al. (2014) used 
multivariate wavelet analysis to describe the 
relationship between carbon prices, energy prices 
(electricity, natural gas, and coal), and economic 

activity. Hammoudeh et al. (2015) employed the 
nonlinear autoregressive distribution lag model to 
analyze the asymmetric and non-linear effects of crude 
oil price, natural gas price, coal price, and electricity 
price changes on CO2 emission limit price. 

Complex networks are powerful methods to model 
real-life systems in various fields such as life sciences, 
social sciences, economics (Souma et al. 2003), and 
finance. In recent years, complex networks have been 
applied in researching the co-movement transmission 
mechanism between markets. Chen et al. (2020) 
studied the interdependence between stocks to 
understand the common movement of the Chinese 
stock market and its temporal and spatial pattern. They 
found that the stability of the stock index is closely 
related to time. The provincial index grows sharply 
during bull and bear markets while moves in the 
opposite direction of the Shanghai Composite Index 
during normal market oscillation. Jia et al. (2018) 
investigated the transmission law of price fluctuations 
in five carbon pilot cities of Beijing, Shanghai, Tianjin, 
Shenzhen, and Guangdong based on complex 
network theory. To explore whether there is a certain 
linkage between China’s coal stock market, carbon 
market, and coal price, Li and An (2017) focused on 
the relationship between markets from a new 
perspective by constructing a matrix transmission 
network. They pointed out that when a linkage mode 
occurs, a corresponding linkage pattern will follow. 

B. Literature gap and contributions 

We note some research gaps in the present 
literature. First, few studies have been carried out 
taking China as an integrated market. The majority of 
researches focus on the relationship between EU 
carbon markets and energy markets. The analysis of 
the situation in China is mainly limited to some of 
China’s seven carbon pilots. Second, there lacks a 
general model of co-movement transmission 
mechanism about two markets. Most researches 
present merely the co-movement mechanism in 
specific markets. Third, the effects of seasonality have 
not been considered by scholars when applying 
transmission networks. Although this effect is 
significant to the reliability of the co-movement 
mechanism, almost all researches only analyze 
transmission mechanisms by the network structure. 
Fourth, using the coal market to replace the entire 
energy market to study the connection with carbon 
markets has potential application value. The reason 
lies in the prominent position of the coal market in 
energy markets. 

Based on the current research status, the 
contribution of this study to the literature is mainly 
reflected in three aspects. First, we analyze the co-
movement between carbon markets and energy 
markets, taking China as a whole research object. We 
integrate China’s seven pilot carbon markets into one 
market by averaging the pilot’s prices. We regard the 
average price as the situation of the national carbon 
market in China to discuss the relationship between 
carbon markets and energy markets. Second, this 
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paper constructs a directed and weighted transmission 
network model to analyze the transmission laws of co-
movement wave strips. Based on such a virtual 
integrated market, we analyze co-movement 
mechanisms between China’s carbon and energy 
markets. Third, we suggest an auxiliary aspect to study 
transmission mechanism. In addition to the common 
methods of analyzing network characteristics, this 
paper takes seasons as an example to reveal factors 
that affect the co-movement mechanisms between the 
carbon market and energy market. 

III. METHODOLOGY 

A. Co-movement wave strip 

We symbolize the time series and then coarse 
grain them to obtain the co-movement wave strips 
(Wackerbauer et al. 1994). For two connected 
markets, here we take a carbon market and a coal 
market as the example. Let  
{𝑋1(𝑡)} = {𝑋1(1), 𝑋1(2),⋯ , 𝑋1(𝑀)}   and {𝑋2(𝑡)} =
{𝑋2(1), 𝑋2(2),⋯ , 𝑋2(𝑀)} denote the price series of the 
carbon market and the coal market, respectively. 

The co-movement state is defined as the direction 
of daily returns of the two price series. The value of the 
state takes ‘P’ when two prices change in the same 
direction; ‘N’ when reverse directions; ‘O’ when either 
of the two prices is stable. Mathematically, letting 

△𝑋1(𝑡) = 𝑋1(𝑡 + 1) − 𝑋1(𝑡) and △𝑋2(𝑡) = 𝑋2(𝑡 + 1) −
𝑋2(𝑡) , the co-movement state series {𝑦𝑡}  is then 
written as 

 𝑦𝑡 = {

𝑁, △ 𝑋1(𝑡) ∗△ 𝑋2(𝑡) < 0

𝑂, △ 𝑋1(𝑡) ∗△ 𝑋2(𝑡) = 0

𝑃, △ 𝑋1(𝑡) ∗△ 𝑋2(𝑡) > 0.

  (1) 

A co-movement wave strip is a string of co-
movement states. The first strip starts from the initial 
co-movement state. Any other strip is obtained by 
sliding the previous one forward. Let L be the length of 
the string and s be the sliding step. Then, the r-th co-
movement wave strip is {𝑦(𝑟−1)𝑠+1 , 𝑦(𝑟−1)𝑠+2 , ⋯ , 

𝑦(𝑟−1)𝑠+𝐿}, 𝑟 = 1,2,⋯ , ⌊
(𝑀−𝐿)

𝑠
+ 1⌋, where ⌊𝑥⌋ represents 

the maximum integer not exceeding 𝑥. 

B. Transmission network model 

We define the transmission network to be the set 

𝐺 = (𝑉, 𝐸), where 𝑉 is the set of nodes and 𝐸 is the set 
of edges. We take co-movement wave strips as nodes 
and the transformation between strips as edges in this 

transmission network. There are at most 3𝐿  nodes in 
the network. The transformation among nodes 
generates an edge, that is, two consecutive strips lead 

to an edge between their corresponding nodes 𝑣𝑖 and 
𝑣𝑗. Then 𝑎𝑖𝑗, the element of the adjacent matrix of 𝐺, is 

evaluated to be 1. Obviously, there are rings when the 
two consecutive strips are identical. The weight of an 

edge, 𝑤𝑖𝑗 , is defined as the frequency of 

transformation from 𝑣𝑖 to 𝑣𝑗.  

C. Topological characteristics 

We introduce some topological characteristics of 
networks to study the transmission mechanism of the 
co-movement wave strips. Node strength measures 
the strength of nodes in terms of the total weight of 

their connections (Barrat et al. 2004). Let 𝑁𝑖
𝑖𝑛 (𝑁𝑖

𝑜𝑢𝑡) be 

the set of nodes directing to (from) 𝑣𝑖 . Then 𝑠𝑖
𝑖𝑛 =

∑ ‍𝑗∈𝑁𝑖
𝑖𝑛 𝑤𝑗𝑖 is the sum of weights of edges pointing to 

node 𝑣𝑖. Similarity, 𝑠𝑖
𝑜𝑢𝑡 = ∑ ‍𝑗∈𝑁𝑖

𝑜𝑢𝑡 𝑤𝑖𝑗. By adding them, 

then we have 

 𝑠𝑖 = ∑ ‍𝑗∈𝑁𝑖
𝑤𝑖𝑗 = 𝑠𝑖

𝑖𝑛 + 𝑠𝑖
𝑜𝑢𝑡 ,  (2) 

where 𝑁𝑖 represents the set of adjacent nodes of node 

𝑣𝑖. 
The weighted clustering coefficient of the node 𝑣𝑖 

(Barrat et al. 2004) is 

𝐶𝑤(𝑖) =
1

𝑠𝑖(𝑘𝑖−1)
∑ ‍𝑗,𝑡

(𝑤𝑖𝑗+𝑤𝑖𝑡)

2
𝑎𝑖𝑗𝑎𝑗𝑡𝑎𝑡𝑖 , (3) 

where 𝑘𝑖  represents the number of edges associated 
with node 𝑣𝑖. 

The definition of betweenness centrality 𝑓𝑘 
(Zhou et al. 2008) is as follows:  

 𝑓𝑖 = ∑ ‍(𝑗,𝑡)
𝜎𝑖(𝑗,𝑡)

𝜎(𝑗,𝑡)
, (4) 

 where 𝑓𝑖  represents the betweenness centrality of 

node 𝑣𝑖 ; 𝜎(𝑗, 𝑡)  represents the total number of the 
shortest paths between a pair of nodes (𝑣𝑗 , 𝑣𝑡). 𝜎𝑖(𝑗, 𝑡) 

represents the number of the shortest paths through 

the node 𝑣𝑖. The length of a path is the total weights of 
the edges which the path passes. 

Transfer capacity measures the degree of 
preference for nodes moving to others on the whole 
community level. Supposing there are 𝑛 communities, 
then the transfer capacity (Gao et al. 2014) from 
community 𝐶𝑠 to 𝐶𝑡 is 

𝑇𝐶𝑠→𝐶𝑡 = ∑ ‍𝑣𝑖∈𝐶𝑠,𝑣𝑗∈𝐶𝑡
𝑤𝑖𝑗(𝑠, 𝑡 = 1,2,⋯ , 𝑛). (5) 

IV. DATA AND RESULTS 

A. Data 

We take China as the study case. For the carbon 
variable, we average all the carbon pilot prices to be 
the carbon prices. The comprehensive carbon price 
situation of each pilot can well reflect the price 
changes in China’s carbon market since China’s 
national carbon market has not yet started trading. For 
energy variable, we use China Coal Price Index, which 
is the first coal price index in the country. Sample 
period covers from June 19, 2013, the initial day of 
carbon trading in China, to August 23, 2019. Data are 
obtained from the China Carbon Trading Network 
(http://k.tanjiaoyi.com/) and China Energy Network 
(https://www.china5e.com/energy-index/). We recover 
the missing data by the method of 5-day moving 
average since there are 5 trading days per week. 
Finally, we obtain a sample of 1,500 pairs of variables: 
average carbon prices (ACP) and coal index (CI). 

B. Co-movement transmission network 

This paper builds the directed and weighted 
network model to obtain the topological characteristics 
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of the network. We first identify the co-movement wave 
strips to be the nodes. We specify the sliding step to 
be 1 and the strip length to be 5 considering that there 
are 5 trading days in one week. Tab. 1 shows the 
process of identifying. Each node represents a 
segment of co-movement state between two markets. 
The node indexes are named by the chronological 
order of its corresponding strip. However, we only get 
85 wave strip patterns compared with the 243 possible 
patterns in theory. This phenomenon means that the 
co-movement strips appear in a certain sub-domain. 
Then, we use the methods in Section 3 to construct 
the co-movement transmission network. 

TABLE I.  ILLUSTRATION OF CO-MOVEMENT STRIPS AND THE NODE 

INDEXES 

Day 𝐴𝐶𝑃(𝑡) 𝐶𝐼(𝑡) 
Δ𝐴𝐶𝑃(𝑡)
∗ Δ𝐶𝐼(𝑡) 

𝑦𝑡 
Wave strip 

(Sliding 
window) 

Node 
index 

1 29 907.74 0 O OOOOO 1 
2 29 880.39 0 O OOOOO 1 
3 29 871.79 0 O OOOOO 1 
4 29 827.87 0 O OOOOO 1 
5 29 774.36 0 O OOOOO 1 
6 29 800.55 0 O OOOOO 1 
7 29 791.23 0 O OOOOO 1 
8 29 799.76 0 O OOOOO 1 
9 29 796.24 0 O OOOOO 1 

10 29 794.21 0 O OOOOO 1 

…
 

…
 

…
 

…
 

…
 

…
 

…
 

1491 32.60 808.47 － N NNPNN 72 

1492 32.93 802.35 － N NPNNP 65 

1493 32.01 807.19 + P PNNPN 74 

1494 32.10 810.44 － N NNPNN 72 

1495 31.65 813.60 － N NPNNP 65 

1496 31.49 832.97 + P   

1497 31.878 833.30 － N   

1498 31.884 831.76 － N   

1499 31.74 832.07 + P   
1500 31.87 834.92     

 

C. High predictable nodes 

We use strength distribution to locate the set of 
predictable nodes. Fig. 1 shows the strength 
distribution with a high head and a long thin tail. The 
head is located on the most left corner of the graph, 
and the corresponding strengths are 2 and 4. The 
smaller strength of nodes are easier to be predicted 
since the fewer types of co-movement modes may 
appear in the next stage. Therefore, those wave strips 
with smaller strength are higher predictable. 
Furthermore, those two nodes take more than 60% of 
the probability, which means that 60% co-movement 
patters almost are predictable accurately between the 
two markets. 

 

Fig. 1. Probability distribution of node strength 

We just sort the weighted out-degree of nodes 
since the aim of prediction is to find the subsequent 
wave strip. Then Tab. 2 shows the results of nodes 
ranking. Considering the length of this paper, only 
some nodes are listed. The nodes with weighted out-
degree 1 or 2 are on lines 34 to 85. This means that 
these nodes have merely one or two possibilities 
among the types of wave strip in history. When those 
nodes with 1 or 2 weighted out-degree appear, we can 
find the co-movement state most likely to occur in the 
next stage in Tab. 1 through the index in Tab. 2. 

TABLE II.  RANKING OF CO-MOVEMENT WAVE STRIPS ACCORDING 

TO WEIGHTED OUT-DEGREE 

Ranking Node index Node Weighted out-degree 

1 45 PNPPN 50 
2 46 NPPNN 50 
3 62 NNNPN 50 
4 72 NNPNN 49 
5 29 PPPNP 48 
6 30 PPNPP 47 
7 48 PNNPP 47 
8 42 PPNPN 46 

…
 

…
 

…
 

…
 

31 37 NNNNN 39 
32 59 PPPPP 34 
33 1 OOOOO 28 
34 2 OOOOP 2 
35 6 POOPP 2 
36 52 OOPPP 2 
37 53 OPPPP 2 
38 13 NOOOO 1 

…
 

…
 

…
 

…
 

85 85 OPNNP 1 

 

D. The dominant strips during transfer process 

The authors find the dominant nodes based on the 
measures of clustering coefficient and node strength. 
In complex networks, a node is called the dominant 
node if its clustering coefficient and strength are 
relatively high (An 2014). Fig. 2 shows the 
dependence of clustering coefficient and strength on 
nodes index. The left vertical axis is the node 
clustering coefficient and the right one is the node 
strength. We notice that there are 12 nodes with non-
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zero weighted clustering coefficients. This means that 
the dominant node should be selected from those 
nodes. Therefore, these 12 nodes have certain 
importance in the transmission process. Among the 
dominant candidate nodes, the clustering coefficient of 
node 37 is 0.5 while the others are concentrated 
around 0.1. However, node 37 is not the most 
dominant node when considering other criteria of node 
strength. We plot the strength of the dominant node 
candidates in the same figure. We find the strength of 
nodes distribute almost randomly. The strength peaks 
at nodes other than node 37, indicating that the 
strength and coefficient have not reached the 
maximum value at the same node. 

 

Fig. 2. Clustering coefficient and strength of nodes 

We constructed a comprehensive evaluation factor 
through the strength and clustering coefficient to find 
the dominant nodes. We assume that the clustering 
coefficient and strength of nodes have the same effect 
on the node’s dominance since no prior information 
has been given. First, we rank the clustering 
coefficients and strength of nodes respectively in 
descending order. The comprehensive evaluation 
factor is defined as the sum of the ranks of clustering 
coefficients and the strength of nodes. Dominant 
nodes are determined by smaller comprehensive 
evaluation factors. Tab. 3 shows the comprehensive 
evaluation factor. The average order of node 30 
(‘PPNPP’) is 3, which can be regarded as the 
dominant node. Pattern ‘PPNPP’ is almost strongest 
positive linkage, which indicates that positive linkage is 
nearly the theme of co-movement between the two 
markets. 

TABLE III.  THE MOST DOMINANT CO-MOVEMENT WAVE STRIPS 

Order 
Node 

(Node index) 

Clustering 
coefficient 

ranking 

Strength 
ranking 

Comprehensive 
evaluation 

factor 

1 PPNPP(30) 3 3 6 
2 PNPPN(45) 8 1 9 
3 PNNNN(36) 6 5 11 
4 NNNNN(37) 1 11 12 
5 PPPPN(33) 5 8 13 
6 NNNNP(38) 7 6 13 
7 NNPNN(72) 11 2 13 
8 NPPPP(32) 4 10 14 

9 NPPNP(41) 10 4 14 
10 PPPPP(59) 2 12 14 
11 NPNNP(65) 9 7 16 
12 PNNPN(74) 12 9 21 

 

E. Analysis of the transmission hub 

We choose the transport hub of transmission 
network using betweenness centrality. The higher the 
betweenness centrality, the greater the role of hub in 
the transmission network. When the most important 
hub node changes, the entire transmission network will 
be severely affected. The authors calculate the 
betweenness centrality using the equation (4). We find 
that the wave strip ‘POOPP’ has the highest 
betweenness centrality. There are shortest paths 
passing near the strip ‘POOPP’, which may indicate 
that the wave strip ‘POOPP’ plays a crucial role in 
maintaining the co-movement mechanism between 
markets. Furthermore, we note that the betweenness 
centrality of two wave strips is 0, namely ‘OOOOO’ 
and ‘NNNNN’. It means that there is no betweenness 
effect in the co-movement mechanism of markets. 

F. The community transmission capacity 

The authors analyze the transmission capacity 
between communities by the method of optimizing 
modularity (Blondel et al 2008). Modularity is a 
standard to measure whether the partitioning is 
effective (Newman 2004). Then we divide the co-
movement wave strips into 10 communities. We 
measure the transmission capacity between the 10 
communities by the equation (5). Fig. 3 shows the 
transmission capacity between communities. The 
highest energy value in Fig. 3 represents the strongest 
transmission between communities. This result is 
consistent with the notion that nodes in the same 
community have a higher connectivity relative to nodes 
that are not classified into the same community. In 
addition, most areas in Fig. 3 are dark blue indicating 
that there is no transmission relationship between 
most of these 10 communities. However, there is a 
one-way transmission relationship between 
communities (for example, between communities 8 
and 1) since Fig. 3 does not constitute a symmetrical 
graph about diagonals. This phenomenon means that 
there exists a preference for the transmission direction. 

Furthermore, we analyze the characteristics of 
each community itself. The future wave strips are more 
likely appearing in highly transmitted capacity 
communities. We regard capacity as the ability from 
one community to itself, scale as the number of one 
community members, and unit ability as the ratio of 
ability to scale of a same community in Tab. 4. The 
table shows that community 4 has the strongest 
transmission capacity, while communities 6 and 7 have 
the smallest transmission capacity. Community 4 
having the strongest transmission capacity can be also 
observed from Fig. 3, while community 4 has relatively 
few members. This means that the community 4 has a 
greater impact on the co-movement evolution of the 
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entire network. We underline that community 4 plays 
an active role in maintaining the stability of the co-
movement rule between the two markets. On the other 
hand, for the community that transmission capacity 
equal to scale, community transmission ways are 
simpler and better predictive. The transmission 
capacity of the community 1, 2, 6 and 7 are almost 
respectively equal to the scale of communities 
themselves. Therefore, when the community is one of 
1, 2, 6, and 7, we can predict the co-movement trend 
of the two markets in the next stage better. For 
enterprises, they can understand the price trend of the 
two markets so that saving costs and increasing 
profits. 

 

Fig. 3. Transmission capacity between communities 

 

TABLE IV.  SELF TRANSMISSION CAPACITY 

Community Capacity Scale Unit capacity 

1 24 24 1.00 
2 47 16 2.94 
3 231 10 23.10 
4 398 9 44.22 
5 321 7 45.86 
6 4 4 1.00 
7 4 4 1.00 
8 174 4 43.50 
9 174 4 43.52 

10 117 3 39.00 

 

G. Effect of seasonality on transmission 

Considering that both the coal market and the 
carbon market are affected by seasons, the 
relationship between market linkages and seasonal 
changes is then analyzed. This paper finds seasons 
has a prominent influence on the appearance of strong 
linkage wave strips. The strong linkage wave strips 
include a positive strong linkage wave strip ‘PPPPP’ 
and a negative strong linkage wave strip ‘NNNNN’. It 
represents a stable co-movement between two 
markets over a trading week and facilitates discovering 

long-term stable co-movement rule between the 
markets. First, we consider the effect of seasonality on 
the appearance of ‘PPPPP’. The result shows that 
‘PPPPP’ appears 34 times in the whole period in Fig. 
4. A red circle indicates the strip ‘PPPPP’ appearance 
on a certain day. Due to the limited width of the figure, 
the adjacent circles maybe overlap. We find the 
distribution of ‘PPPPP’ is concentrated in February, 
March, July and November every year. In China, the 
main power generation mode is still based on coal. 
March is the end of winter and November is the 
beginning of winter. People need coal for electricity 
and heat in winter. In July, the weather is very hot so 
there is a great demand for air conditioners. Therefore, 
these three months are the peak period of electricity 
consumption of the year. Then, we consider the effect 
of seasonality on the appearance of ‘NNNNN’. The 
result shows that ‘NNNNN’ appears 39 times in the 
whole period in Fig. 5. We find the distribution of 
‘NNNNN’ is scatter than ‘PPPPP’. However, August is 
the month with the highest frequency. This finding 
means that different strong wave strips appear in two 
adjacent months. The direction from ‘PPPPP’ to 
‘NNNNN’ is caused by the reverse change in coal 
demand from an increase to a decrease after the peak 
of electricity consumption. 

 

Figure  4: Distribution of positive strong linkage wave strip 

in each year. 

 
Figure  5: Distribution of negative strong linkage wave strip 

in each year. 
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V. CONCLUSIONS 

This paper takes China as a research example to 
study the co-movement mechanism between carbon 
markets and energy markets. A general method to 
construct directed and weighted transmission networks 
for co-movement mechanism analysis is proposed. In 
this method, the co-movement wave strips are 
regarded as nodes, the transformation between wave 
strips as edges, and the frequency of transformation 
as the weight of edges in the transmission network. 
Moreover, a comprehensive carbon market for China 
is built by averaging transaction prices of seven pilot 
carbon markets. Experimental results show that there 
are 243 types in theory, but only 85 types of nodes 
actually appear in the network. Then we analyze the 
transmission mechanisms from the view of topological 
characteristics. We identify the nodes with high 
predictability and find the dominant strips. Considering 
the transmission hub node, the community 
transmission capacity is investigated by calculating the 
node strength, strength distribution, clustering 
coefficient and betweenness centrality. Finally, we 
consider the annual distribution of positive and 
negative strong linkage wave strips. 

This study has important theoretical and practical 
significance. First, market participants can make 
specific investment decisions on the co-movement 
results. The number of predictable wave strips exceed 
60 %, which means that there are observable laws 
about the co-movement evolution of the markets. 
Second, this study confirms the common sense that 
there is a positive connection between carbon markets 
and energy markets. We find that positive co-
movement is the main theme between the carbon 
market and coal market by the dominant wave strip 
‘PPNPP’. Third, this paper suggests that marketing 
managers should pay close attention to certain types 
of wave strips. The shortest paths passing through the 
node ‘POOPP’, and the community 4 has the strongest 
transmission capacity. This result means that 
community 4 and hub node ‘POOPP’ contribute to 
stabilize the existing co-movement mechanisms of 
markets. Finally, seasonal factors are important parts 
that market participants should consider. The Co-
movement affected by seasonal factors provides the 
basis for controlled enterprises to allocate and trade 
carbon emission credits rationally. In addition, positive 
co-movements between the two markets are more 
likely to occur continuously during peak electricity 
consumption periods. This characteristic will help 
market managers and enterprises understand the 
dynamic markets better and adjust the corresponding 
policies timely. 

However, this study is far from perfect. Due to the 
data limitations, the co-movement mechanism 
between carbon markets and energy markets still 
needs to be further explored. In addition, this study 
only considers the effect of seasonal factors on co-
movement transmission. This perspective obviously is 

unsatisfactory for a deep understanding of the internal 
mechanism between markets. How to analyze the 
effects of co-movement mechanism between markets 
from multiple influencing factors will be our next 
research work. 

ACKNOWLEDGMENT 

This work is supported by the National Natural 
Science Foundation of China [No. 71673116] and the 
Priority Academic Program Development of Jiangsu 
Higher Education Institutions [No. PAPD-2018-87]. 

REFERENCES 

[1] Aatola P, Ollikainen M, Toppinen A (2013) 
Price determination in the EU ETS market: Theory 
and econometric analysis with market fundamentals. 
Energy Economics 36:380–395. 

[2] An H (2014) Linkage fluctuation in double 
variables of time series based on complex networks. 
Chinese Journal of Computational Physics 31:742–
750. 

[3] An H, Gao X, Fang W, Ding Y, Zhong W 
(2014) Research on patterns in the fluctuation of the 
co-movement between crude oil futures and spot 
prices: A complex network approach. Applied Energy 
136:1067–1075. 

[4] Barrat A, Barthelemy M, Pastor-Satorras R, 
Vespignani A (2004) The architecture of complex 
weighted networks. Proceedings of the national 
academy of sciences 101:3747–3752. 

[5] Batten JA, Maddox GE, Young MR (2021) 
Does weather, or energy prices, affect carbon prices? 
Energy Economics 96:105016. 

[6] Baur DG (2003) What is comovement? EUR 
working paper. 

[7] Blondel VD, Guillaume JL, Lambiotte R, 
Lefebvre E (2008) Fast unfolding of communities in 
large networks. Journal of statistical mechanics: 
theory and experiment 2008:P10008. 

[8] Chen H, Zheng X, Zeng DD (2020) Analyzing 
the co-movement and its spatial–temporal patterns in 
Chinese stock market. Physica A: Statistical 
Mechanics and its Applications 555:124655. 

[9] Chevallier J (2011) Evaluating the carbon-
macroeconomy relationship: Evidence from threshold 
vector error-correction and markov-switching var 
models. Economic Modelling 28:2634–2656. 

[10] Chevallier J (2012) Time-varying correlations 
in oil, gas and CO2 prices: an application using bekk, 
ccc and dcc-mgarch models. Applied Economics 
44:4257–4274. 

[11] de Carvalho PJC, Gupta A (2018) A network 
approach to unravel asset price comovement using 
minimal dependence structure. Journal of Banking & 
Finance 91:119–132. 

http://www.jmest.org/


Journal of Multidisciplinary Engineering Science and Technology (JMEST) 

ISSN: 2458-9403 

Vol. 9 Issue 2, February - 2022  

www.jmest.org 

JMESTN42354001 15131 

[12] Gao X, An H, Fang W, Huang X, Li H, Zhong 
W (2014) Characteristics of the transmission of 
autoregressive sub-patterns in financial time series. 
Scientific reports 4:1–9. 

[13] Hammoudeh S, Lahiani A, Nguyen DK, Sousa 
RM (2015) An empirical analysis of energy cost pass-
through to CO2 emission prices. Energy Economics 
49:149–156. 

[14] Jia J, Li H, Zhou J, Jiang M, Dong D (2018) 
Analysis of the transmission characteristics of China’s 
carbon market transaction price volatility from the 
perspective of a complex network. Environmental 
Science and Pollution Research 25:7369–7381. 

[15] Li H, An H (2017) How does the coal stock 
market, carbon market and coal price co-movement 
with each other in China: A co-movement matrix 
transmission network perspective. Energy Procedia 
105:3479–3484.  

[16] Li J, Xie C, Long H (2019) The roles of inter-
fuel substitution and inter-market contagion in driving 
energy prices: Evidences from China’s coal market. 
Energy Economics 84:104525. 

[17] National Development and Reform 
Commission of China (2017) National carbon 
emission trading market construction plan (power 
generation industry). Cited 5 May 2021 

[18] Newman MEJ (2004) Fast algorithm for 
detecting community structure in networks. Physical 
review, E Statistical, nonlinear, and soft matter 
physics 69:6133. 

[19] Smale R, Hartley M, Hepburn C, Ward J, 
Grubb M (2006) The impact of CO2 emissions trading 
on firm profits and market prices. Climate Policy 6:31–
48. 

[20] Souma W, Fujiwara Y, Aoyama H (2003) 
Complex networks and economics. Physica A: 
Statistical Mechanics and its Applications 324:396–
401. 

[21] Sousa R, Aguiar-Conraria L, Soares MJ 
(2014) Carbon financial markets: A time–frequency 
analysis of CO2 prices. Physica A: Statistical 
Mechanics and its Applications 414:118–127. 

[22] Wackerbauer R, Witt A, Atmanspacher H, 
Kurths J, Scheingraber H (1994) A comparative 
classification of complexity measures. Chaos, Solitons 
& Fractals 4:133–173. 

[23] Wakabayashi M, Kimura O (2018) The impact 
of the Tokyo Metropolitan Emissions Trading Scheme 
on reducing greenhouse gas emissions: findings from 
a facility-based study. Climate Policy 18:1028–1043. 

[24] Wen HX, Chen ZR, Nie PY (2021) 
Environmental and economic performance of China’s 
ETS pilots: New evidence from an expanded synthetic 
control method. Energy Reports 7:2999–3010. 

[25] Yi L, peng Li Z, Yang L, Liu J, ran Liu Y 
(2018) Comprehensive evaluation on the ‘maturity’ of 
China’s carbon markets. Journal of Cleaner 
Production 198:1336–1344.  

[26] Zhang YJ, Sun YF (2016) The dynamic 
volatility spillover between European carbon trading 
market and fossil energy market. Journal of Cleaner 
Production 112:2654–2663. 

[27] Zhao X, Zou Y, Yin J, Fan X (2017) 
Cointegration relationship between carbon price and 
its factors: evidence from structural breaks analysis. 
Energy Procedia 142:2503–2510. 

[28] Zhou L, Gong Z, Zhi R, Feng G (2008) An 
approach to research the topology of Chinese 
temperature sequence based on complex network. 
Acta Physica Sinica 57:7380–7389. 

http://www.jmest.org/

