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Abstract— The present investigation deals with 

two-dimensional problem in a non-homogeneous, 
micropolar thermoelastic medium possess cubic 
symmetry as a result of normal and tangential 
load. The non-homogeneous material properties 
are supposed to be graded in x-direction. The 
components of temperature field, displacement 
components and stresses are obtained by using 
normal mode technique. The formulation is 
performed in the context of the Lord-Shulman (LS) 
as well as Green Lindsay (GL) theories of 
thermoelasticity. The value of these expressions 
are calculated numerically and represented 
graphically for micropolar cubic crystal and 
micropolar isotropic medium. 
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1  INTRODUCTION  

Study related to generalized thermoelasticity have 
dragged considerable attention during last few 
decades due to its application in various practical 
aspects of life processes such as earthquake 
prediction, exploration of minerals, soil dynamics etc. 
First of all, uncoupled classical theory of 
thermoelasticity which supposed infinite speed of heat 
propagation was replaced by Biot [1] by considering 
theory of coupled thermoelasticity. Subsequently, 
generalized theories of thermoelasticity were 
developed by Lord and Shulman [2], Green and 
Lindsay [3], which were further assessed by Green 
and Nagdhi [4], Hetnarski and Ignaczak [5], and 
Ignaczak and Ostoja- Starzewski [6]. The linear theory 
of elasticity has gained much attention in the stress 
analysis of steel, which is frequently used material in 
engineering. The other common solid materials like 
concrete, wood, and coal barely explains the 
mechanical behavior of linear elasticity. The linear 
theory of thermoelasticity does not apply on many of 
new synthetic materials of the clastomer and polymer 
type. To express the behavior of such materials, linear 
theory of micropolar of elasticity is sufficient. The linear 
theory of micropolar elasticity was developed by 
Eringen and Suhubi [7] and Eringen [8]. Eringen [9] 

and Nowacki [10] established the linear theory of 
micropolar thermoelastic in continuation with the 
theory of micropolar continua which includes thermal 
effects. Different problems of micropolar theory of 
thermoelasticity was discussed by various authors 
[11], [12], [13], [14]. Kumar and Ailawalia [15,16] 
discussed the behavior and deformation in cubic 
crystal due to various sources. Kumar and Ailawalia 
[17] obtained the analytic expressions in micropolar 
thermoelastic medium which possesses cubic 
symmetry with one relaxation time. The 
thermomechanical interactions in the context of two-
temperature generalized thermoelasticity are analyzed 
by Lotfy and Hassan [18] under different types of 
heating. Kumar and Choudhary [19,20] have 
discussed various problems in orthotropic micropolar 
continua. Kumar and Ailawalia [21,22] studied the 
response of moving inclined load in micropolar theory 
of elasticity. The study of propagation of plane waves 
in micropolar thermos-diffusion elastic half-space in 
the context of generalized theories of thermoelasticity 
was presented by Kumar, Kaushal, Marin [23]. Deswal, 
Punia, Kalkal [24] discussed the effects of gravity field 
and micro polarity on wave propagation in a two-
temperature generalized thermoelastic medium within 
the framework of dual-phase-lag model. Othman, Abo-
Dahab, Alosaimi [25] studied the effect of inclined load 
and magnetic field in a micropolar thermoelastic 
medium possessing cubic symmetry.   

The concept of functionally graded materials 
(FGMs) was first introduced in 1984, in Japan during a 
space plane project. These materials are 
nonhomogeneous in which there is a variation of 
composition with position resulting in variation of 
material properties. In FGMs, elastic coefficients are 
no longer constant but are function of position. These 
materials are used as a thermal barrier due to their 
capability to withstand high temperature. Due to their 
excellent thermo-mechanical properties, they are 
widely used in aerospace, nuclear reactors, pressure 
vessels pipes and in chemical plants etc. In many 
applications, FGMs are found to be better substitute 
for the conventional homogeneous materials. Hence, 
the investigation of functionally graded materials have 
become a very active research area in the field of 
thermoelasticity. Wang and Mai [26] analyzed the one-
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dimensional transient temperature and thermal stress 
fields in nonhomogeneous materials such as plates, 
cylinders and spheres using a finite element method. 
Ootao and Tanigawa [27] studied a one-dimensional 
transient thermoelastic problem of a FGM hollow 
cylinder whose thermoelastic constants were assumed 
to vary with the power product form of a radial 
coordinate variable. Shao, Wang, Ang [28] solved a 
thermo-mechanical problem of an FGM hollow circular 
cylinder whose material properties were assumed to 
be temperature independent and vary continuously in 
the radial direction. Darabseh, Yilmaz, Bataineh [29] 
developed the idea of thermoelastic response of thick 
hollow cylinder made of functionally graded material 
subjected to thermal load in the context of GL theory. 
The problem of magneto-thermoelastic interactions in 
a functionally graded isotropic, unbounded rotating 
medium with a periodically varying heat source in the 
context of linear generalized thermoelasticity was 
discussed by Pal, Das, Kanoria [30]. Using Laplace 
transform method, Sherief and El-Latief [31] solved the 
problem of FGM thermoelastic half-space in which 
Lame’s moduli are the functions of vertical distance 
from the surface of the medium.  

The behavior of displacement, stress and 
temperature field in a ceramic FGM layer under 
uniform thermal shock was investigated by Nikolarakis 
and Theotokoglou [32] in the context of LS theory. 
Purkait, Sur, Kanoria [33] discussed the effects of 
gravity and magnetic field on a functionally graded 
thermoelastic half-space under GN theory. Abbas [34] 
discussed the thermoelastic interactions in an infinite 
fiber-reinforced anisotropic medium with a circular hole 
in the context of generalized theory of thermoelasticity. 
Abbas [35] presented a study on the natural 
frequencies, thermoelastic damping, and frequency 
shift of a thermoelastic hollow sphere in the context of 
the generalized thermoelasticity theory with one 
relaxation time. The forced vibrations of 
nonhomogeneous thermoelastic, isotropic, thin annular 
disk under periodic and exponential types of 
axisymmetric dynamic pressures were analyzed by 
Mishra, Sharma, and Sharma [36]. By using the 
Fourier and Laplace transforms, Xue, Tian, and Liu 
[37] investigated the effects of time delay, kernel 
function and non-homogeneity parameter in a 
functionally graded thermoelastic half-space with 
memory-dependent heat conduction model. Sur and 
Kanoria [38] studied a one-dimensional problem of a 
functionally graded fiber-reinforced thermoelastic 
medium in the context of TPL model. Sheokand, 
Kalkal, Deswal [39] investigated the disturbances in a 
functionally graded thermoelastic medium with DPL 
model under the effect of gravity and rotation.  

The aim of present research is to determine 
displacement, force stress, couple stress and 
temperature components in a non-homogeneous, 
micropolar thermoelastic functionally graded solid with 
cubic symmetry. The comparisons have been shown 
for the micropolar cubic crystal and micropolar 
isotropic solid.  

2 Basic Equations 

Following Minagawa, Arakawa, Yamada [40], 
Green and Lindsay [3],  the constitutive components of 
stress and couple stress for the micropolar generalized 
thermoelastic solid with cubic symmetry in the absence 
of body forces are: 

𝜎𝑥𝑥 = [𝐴1

𝜕𝑢

𝜕𝑥
+ 𝐴2

𝜕𝑣

𝜕𝑦
− 𝜈 (𝑇 + 𝑡1

𝜕𝑇

𝜕𝑡
)],               (1) 

𝜎𝑦𝑦 = [𝐴1

𝜕𝑣

𝜕𝑦
+ 𝐴2

𝜕𝑢

𝜕𝑥
− 𝜈 (𝑇 + 𝑡1

𝜕𝑇

𝜕𝑡
)],               (2) 

𝜎𝑥𝑦 = [𝐴4 (
𝜕𝑢

𝜕𝑦
− 𝜙3) + 𝐴3 (

𝜕𝑣

𝜕𝑥
+ 𝜙3)],                  (3) 

𝑚𝑖𝑗 = 𝐵1𝜙𝑝,𝑝𝛿𝑖𝑗 + 𝐵2𝜙𝑖,𝑗 + 𝐵3𝜙𝑗,𝑖 .                         (4) 

 

Stress equation of motion: 
 

𝜎𝑗𝑖,𝑗 = 𝜌𝑢𝑖̈  .                                                                    (5) 

 

Couple stress equation of motion: 
 

𝑚𝑖𝑝,𝑖 + 𝜖𝑖𝑗𝑝𝜎𝑖𝑗 = 𝜌𝑗𝜙�̈�                                               (6) 

 

Equation of heat conduction 
 

𝐾∗∇2𝑇 − 𝜌𝐶∗ (𝑛1 + 𝑡0
𝜕

𝜕𝑡
) �̇�

= 𝜈𝑇0 (𝑛1 + 𝑛0𝑡0
𝜕

𝜕𝑡
) �̇�,      (7) 

 

Where 𝐴1, 𝐴2, 𝐴3, 𝐴4  are elastic constant, 𝜈 =
(𝐴1 + 2𝐴2)𝛼𝑇, 𝛼𝑇 is the coefficient of linear expansion, 
𝜎𝑖𝑗  are the components of stress, 𝑚𝑖𝑗  are the 

components of couple stress, 𝜌 is the density, T is the 

absolute temperature, j is the microinertia, 𝐾∗  is the 
coefficient of thermal conductivity, �⃗�  is the 

displacement vector, �⃗�  is the microinertia vector , 𝐶∗ 

is the specific heat at constant strain; 𝐵1, 𝐵2, 𝐵3 are the 
micropolar material constants, 𝑡0  and 𝑡1  are the 
thermal relaxation times and 𝛿𝑖𝑗  is the Kronecker 

delta. 

 

3 Formulation of the Problem: 

We consider a non-homogeneous, micropolar 
generalized thermoelastic half space with cubic 

symmetry. A rectangular coordinate system (𝑥, 𝑦, 𝑧) 
having the origin on the surface 𝑥 = 0and the x-axis 
pointing vertically into the medium is assumed. The 

present study is restricted to 𝑥𝑦  plane with 
displacement vector �⃗� = (𝑢, 𝑣, 0) and the microrotation 

vector is �⃗� = (0,0, 𝜙3) and thus all the field quantities 
are independent of the space variable z. 

For a functionally graded composite, the 
parameters 𝐴1, 𝐴2, 𝐴3, 𝐴4, 𝐵3, 𝜈, 𝜌, 𝐾∗  are no longer 
constant but become space-dependent. Hence, we 
replace 𝐴1, 𝐴2, 𝐴3, 𝐴4,  𝐵3, 𝜈, 𝜌, 𝐾∗  by 

𝐴10𝑓(𝑥)⃗⃗⃗⃗⃗⃗ , 𝐴20𝑓(𝑥)⃗⃗⃗⃗⃗⃗ , 𝐴30 𝑓(𝑥)⃗⃗⃗⃗⃗⃗ , 𝐴40𝑓(𝑥)⃗⃗⃗⃗⃗⃗ , 𝐵30  𝑓(𝑥)⃗⃗⃗⃗⃗⃗ ,𝜈0  𝑓(𝑥)⃗⃗⃗⃗⃗⃗ , 

𝜌0 𝑓(𝑥)⃗⃗⃗⃗⃗⃗ , 𝐾0
∗𝑓(𝑥)⃗⃗⃗⃗⃗⃗   respectively, 𝐴10, 𝐴20, 𝐴30, 𝐴40 , 𝐵30 , 

𝜈0,  𝜌0,  𝐾0
∗ are supposed to be constant  and 𝑓(𝑥)⃗⃗⃗⃗  is a 
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given non-dimensional function of the space variable 

𝑥 = (𝑥, 𝑦, 𝑧) . It is also assumed that material 
properties vary only in x-direction. Hence, we take 

𝑓(𝑥)⃗⃗⃗⃗⃗⃗  as f(x).  
Using these values, the relations (1)-(7) reduces to: 
 

𝜎𝑥𝑥 = 𝑓(𝑥) [𝐴10

𝜕𝑢

𝜕𝑥
+ 𝐴20

𝜕𝑣

𝜕𝑦

− 𝜈0 (𝑇 + 𝑡1
𝜕𝑇

𝜕𝑡
)],               (8) 

𝜎𝑦𝑦 = 𝑓(𝑥) [𝐴10

𝜕𝑣

𝜕𝑦
+ 𝐴20

𝜕𝑢

𝜕𝑥

− 𝜈0 (𝑇 + 𝑡1
𝜕𝑇

𝜕𝑡
)],               (9) 

𝜎𝑥𝑦 = 𝑓(𝑥) [𝐴40 (
𝜕𝑢

𝜕𝑦
− 𝜙3)

+ 𝐴30 (
𝜕𝑣

𝜕𝑥
+ 𝜙3)],                   (10) 

𝑚𝑥𝑧 = 𝑓(𝑥) [𝐵30

𝜕𝜙3

∂x
],                                            (11) 

𝑚𝑦𝑧 = 𝑓(𝑥) [𝐵30

𝜕𝜙3

∂y
],                                            (12) 

 

Stress equation of motion: 
 

𝜎𝑗𝑖,𝑗 = 𝜌0𝑓(𝑥)𝑢𝑖̈  .                                                         (13) 

 

Couple stress equation of motion: 
 

𝑚𝑖𝑝,𝑖 + 𝜖𝑖𝑗𝑝𝜎𝑖𝑗 = 𝜌0𝑓(𝑥)𝑗𝜙�̈�,                                         (14) 

 

Equation of heat conduction: 
 

(𝐾0
∗𝑓(𝑥)𝑇,𝑖),𝑖 − 𝑓(𝑥)𝜌0𝐶

∗ (𝑛1 + 𝑡0
𝜕

𝜕𝑡
) �̇�

= 𝑓(𝑥)𝜈0𝑇0 (𝑛1 + 𝑡0𝑛0

𝜕

𝜕𝑡
) �̇�.       (15) 

Where, 𝜈0 = (𝐴10 + 2𝐴20)𝛼𝑇 

Here, the superposed dot denotes derivatives with 
respect to time and comma denotes derivative with 
respect to space variable. 
Substituting equations (8)-(11) in (13)-(14), equations 
of motion are obtained as: 
 

𝑓(𝑥) [𝐴10

𝜕2𝑢

𝜕𝑥2
+ (𝐴20 + 𝐴40)

𝜕2𝑣

𝜕𝑥𝜕𝑦
+ 𝐴30

𝜕2𝑢

𝜕𝑦2

+ (𝐴30 − 𝐴40)
𝜕𝜙3

𝜕𝑦
− 𝜈0 (1 + 𝑡1

𝜕

𝜕𝑡
)
𝜕𝑇

𝜕𝑥
]

+
𝜕

𝜕𝑥
𝑓(𝑥) [𝐴10

𝜕𝑢

𝜕𝑥
+ 𝐴20

𝜕𝑣

𝜕𝑦

− 𝜈0 (1 + 𝑡1
𝜕

𝜕𝑡
)𝑇]

= 𝜌0𝑓(𝑥)�̈�                                           (16), 

𝑓(𝑥) [𝐴10

𝜕2𝑣

𝜕𝑦2
+ (𝐴20 + 𝐴40)

𝜕2𝑢

𝜕𝑥𝜕𝑦
+ 𝐴30

𝜕2𝑣

𝜕𝑥2

+ (𝐴30 − 𝐴40)
𝜕𝜙3

𝜕𝑥
− 𝜈0 (1 + 𝑡1

𝜕

𝜕𝑡
)
𝜕𝑇

𝜕𝑦
]

+
𝜕

𝜕𝑥
𝑓(𝑥) [𝐴40

𝜕𝑢

𝜕𝑦
+ (𝐴30 − 𝐴40)𝜙3

+ 𝐴30

𝜕𝑣

𝜕𝑥
]

= 𝜌0𝑓(𝑥)�̈�                                         (17) 

𝐵30 [𝑓(𝑥)∇2𝜙3 +
𝜕

𝜕𝑥
𝑓(𝑥)

𝜕𝜙3

𝜕𝑥
]

+ (𝐴30 − 𝐴40)𝑓(𝑥) (
𝜕𝑣

𝜕𝑥
−

𝜕𝑢

𝜕𝑦
)

− 2(𝐴30 − 𝐴40)𝑓(𝑥)𝜙3

= 𝜌0𝑓(𝑥)𝑗𝜙3 ̈ ,                  (18) 

 
The heat conduction equation in non-homogeneous 
medium reduces to: 
 

𝐾0
∗ [𝑓(𝑥)∇2𝑇 +

𝜕

𝜕𝑥
𝑓(𝑥)

𝜕𝑇

𝜕𝑥
] −  𝑓(𝑥)𝜌0𝐶

∗ (𝑛1 + 𝑡0
𝜕

𝜕𝑡
) �̇�

= 𝑓(𝑥)𝜈0𝑇0 (𝑛1 + 𝑡0𝑛0

𝜕

𝜕𝑡
) (

𝜕𝑢

𝜕𝑥

+
𝜕𝑣

𝜕𝑦
).                                                  (19) 

Where, 

          ∇2=
𝜕2

𝜕𝑥2 +
𝜕2

𝜕𝑦2 

 

4 Exponential Variation: 

We consider 𝑓(𝑥) = 𝑒−𝑛𝑥 , where n is non 
dimensional parameter. Hence, the material 
properties vary exponentially along the x-direction. 
To rewrite the governing equations in a 
dimensionless form, introduce the following non-
dimensional parameters:  
 

𝑥�̅�=
𝜔∗

𝐶0
 𝑥𝑖,    𝑢�̅�

 =
𝜌0𝐶0𝜔∗

𝜈0𝑇0
𝑢𝑖`,  𝑡0̅ = 𝜔∗t0,  t ̅= 𝜔∗t,  �̅� = 

𝑇

𝑇0
 , 

𝑡1̅= 𝜔∗𝑡1,  ϕ3
̅̅̅̅ = 

𝜌0𝐶0
2

𝜈0𝑇0
 ϕ3,  σi̅j = 

𝜎𝑖𝑗

𝜈0𝑇0
 ,   m𝑖𝑗̅̅ ̅̅̅= 

𝜔∗

𝜈0𝐶0𝑇0
 m𝑖𝑗,   

𝜔∗=
𝜌0𝐶0

2𝐶∗

𝐾∗ ,  𝐶0
2 =

𝐴10

𝜌0
.                                      (20) 

 

Equations (8)-(12) and (16)-(19) take the following 
non-dimensional form (after dropping dashes for 
convenience) 
 

σxx =  𝑒−𝑛𝑥 [
𝜕𝑢

𝜕𝑥
 + l4

𝜕𝑣

𝜕𝑦
 –(1 + 𝑡1

𝜕

𝜕𝑡
)𝑇], (21) 

σyy = 𝑒−𝑛𝑥 [l4  

𝜕𝑢

𝜕𝑥
 + 

𝜕𝑣

𝜕𝑦
 – (1 + 𝑡1

𝜕

𝜕𝑡
)𝑇], (22) 

σxy = 𝑒−𝑛𝑥 (𝑙5
𝜕𝑢

𝜕𝑦
 + 𝑙2

𝜕𝑣

𝜕𝑥
+ 𝑙3𝜙3),  (23) 

𝑚𝑥𝑧 = [𝑙6 𝑒
−𝑛𝑥

𝜕𝜙3

∂x
],                     (24) 

𝑚𝑦𝑧 = [𝑙6𝑒
−𝑛𝑥

𝜕𝜙3

∂y
],                     (25) 

 

http://www.jmest.org/


Journal of Multidisciplinary Engineering Science and Technology (JMEST) 

ISSN: 2458-9403 

Vol. 9 Issue 4, April - 2022  

www.jmest.org 

JMESTN42353985 15230 

[
𝜕2𝑢

𝜕𝑥2 + l1 

𝜕2𝑣

𝜕𝑥𝜕𝑦
 + l2 

𝜕2𝑢

𝜕𝑦2 + 𝑙3
𝜕𝜙3

𝜕𝑦
− (1 + 𝑡1

𝜕

𝜕𝑡
)

𝜕𝑇

𝜕𝑥
] – n [

𝜕𝑢

𝜕𝑥
+ 

l4

𝜕𝑣

𝜕𝑦
 –(1 + 𝑡1

𝜕

𝜕𝑡
)𝑇] =  

𝜕2𝑢 

𝜕𝑡2 ,                                             (26) 

[
𝜕2𝑢2

𝜕𝑦2 + l1 

𝜕2𝑢

𝜕𝑥𝜕𝑦
 + l2

𝜕2𝑣

𝜕𝑥2  + 𝑙3
𝜕𝜙3

𝜕𝑥
  -(1 + 𝑡1

𝜕

𝜕𝑡
)

𝜕𝑇

𝜕𝑦
] – n [l5

𝜕𝑢

𝜕𝑦
 + 

l2 
𝜕𝑣

𝜕𝑥
 + 𝜙3l3] =  

𝜕2𝑣

𝜕𝑡2,                                                         (27) 

𝑙6 [ ∇ 2 ϕ3  – n
𝜕ϕ3

𝜕𝑥
 ] + l3(

𝜕𝑣

𝜕𝑥
 – 

𝜕𝑢

𝜕𝑦
) – 2l3 ϕ3  = 

l7

𝜕2ϕ3 

𝜕𝑡2 ,                                                                           (28) 

 

[∇2T – n
𝜕𝑇

𝜕𝑥
 ] – l8 (𝑛1 + 𝑡0

𝜕

𝜕𝑡
) 

𝜕𝑇

𝜕𝑡
 = l9  (𝑛1 + 𝑡0𝑛0

𝜕

𝜕𝑡
)

𝜕

𝜕𝑡
 (

𝜕𝑢

𝜕𝑥
 

+
𝜕𝑣

𝜕𝑦
)    = 0                                                           (29) 

where, l1 = 
𝐴20+𝐴40

𝜌0𝐶0
2 ,   l2 = 

𝐴30

𝜌0𝐶0
2,    l3= 

𝐴30− 𝐴40

𝜌0𝐶0
2 ,   l4 = 

𝐴30

𝜌0𝐶0
2,  l5 

= 
𝐴40

𝜌0𝐶0
2,  l6  = 

𝐵30𝜔∗2

𝜌0𝐶0
4 ,     l7 = 

𝑗𝜔∗2

𝐶0
2 ,    l8 = 

𝐶0
2𝜌0𝐶∗

𝐾0
∗𝜔∗ ,  l9 = 

𝜈0
2𝑇0

𝐾0
∗𝜔∗𝜌0

.                                                                                                 

(30) 
 

5 Solution of the Problem: 

In this section, normal mode technique is used to 
obtain the analytical expressions for displacement 
components, microrotation, stress components, 
temperature and couple stress. The solution of the 
considered physical variable can be decomposed 

in(𝑢∗, 𝑣∗, 𝑇∗, 𝜙3
∗ , 𝜎𝑖𝑗

∗ , 𝑚𝑖𝑗
∗ ) terms of normal mode in 

the following form:  
 

(𝑢, 𝑣, 𝑇, 𝜙3, 𝜎𝑖𝑗 , 𝑚𝑖𝑗)

= (𝑢∗, 𝑣∗, 𝑇∗, 𝜙3
∗ , 𝜎𝑖𝑗

∗ , 𝑚𝑖𝑗
∗ )(𝑥)𝑒𝜔𝑡+𝜄𝑏𝑦         (31) 

 

where 𝑢∗, 𝑣∗, 𝑇∗, 𝜙3
∗ , 𝜎𝑖𝑗

∗ , 𝑚𝑖𝑗
∗  are the amplitudes of the 

functions, 𝜔  is the angular frequency, 𝜄  is the 
imaginary unit, and b is the wave number in y 
direction. Using equation (31) in equations (26)-(29), 
we obtain  
 

(𝐷2 − 𝑛𝐷 − 𝑎1)𝑢
∗ + (𝑎2𝐷 − 𝑎3)𝑣

∗ − 𝑎4(𝐷 − 𝑛)𝑇∗

+ 𝑎5𝜙3
∗ = 0 ,                                 (32) 

 
       (𝑎2𝐷 − 𝑎6)𝑢

∗ + (𝑙2𝐷
2 − 𝑛𝑙2𝐷 − 𝑎7)𝑣

∗ − 𝑎8𝑇
∗

+       (𝑙3𝐷 − 𝑎9)𝜙3
∗

= 0,                                                          (33) 
 
        𝑎10𝑢

∗ − 𝑙3𝐷𝑣∗ + (𝐷2 − 𝑛𝐷 − 𝑎11)𝜙3
∗ = 0 ,           (34) 

 
        𝑎12𝐷𝑢∗ + 𝑎13𝑣

∗ − (𝐷2 − 𝑛𝐷 − 𝑎14)𝑇
∗ = 0.          (35) 

 
Where, 

𝐷 =
𝑑

𝑑𝑥
,   𝑎1 = 𝑙2𝑏

2 + 𝜔2,    𝑎2 = 𝜄𝑏𝑙1,   𝑎3 = 𝜄𝑏𝑛𝑙4,   

𝑎4 = (1 + 𝑡1𝜔),   𝑎5 = 𝑙3𝜄𝑏,   𝑎6 =  𝜄𝑏𝑛𝑙5,    𝑎7 = 𝑏2 + 𝜔2,  
𝑎8 = (1 + 𝑡1𝜔)𝜄𝑏,    𝑎9 = 𝑛𝑙3,   𝑎10 = 𝜄𝑏𝑙3,  𝑎11 = 𝑙6𝑏

2 +
2𝑙3 + 𝑙7𝜔

2,   𝑎12 = 𝑙9(𝑛1𝜔 + 𝑛0𝑡0𝜔
2),    𝑎13 =

𝑙9𝜄𝑏(𝑛1𝜔 + 𝑛0𝑡0𝜔
2),    𝑎14 = 𝑏2 + 𝑙8(𝑛1𝜔 + 𝑡0𝜔

2). 
 
The condition for the existence of a non-trivial solution 
of the system of equations (32)-(35) provides us 
 

(𝐷8 + 𝑁1𝐷
7 + 𝑁2𝐷

6 + 𝑁3𝐷
5 + 𝑁4𝐷

4 + 𝑁5𝐷
3 + 𝑁6𝐷

2 +
𝑁7𝐷 + 𝑁8)(𝑢

∗, 𝑇∗, 𝜙3
∗ , 𝑇∗) = 0                                          (36) 

 

Where 𝑁𝑖(𝑖 = 1,2, … . ,8)  are listed in Appendix A. 

 

The solution of equation (36) which is bounded as 

𝑥 → ∞, is given by 
 

𝑢∗(𝑥) = ∑𝑀𝑖(𝑎, 𝜔)𝑒−𝑘𝑖𝑥,

4

𝑖=1

                                       (37) 

𝑇∗(𝑥) = ∑𝐽1𝑖𝑀𝑖(𝑎, 𝜔)𝑒−𝑘𝑖𝑥,

4

𝑖=1

                                      (38) 

 

𝜙3
∗(𝑥) = ∑𝐽2𝑖𝑀𝑖(𝑎, 𝜔)𝑒−𝑘𝑖𝑥,

4

𝑖=1

                                      (39) 

𝑣∗(𝑥) = ∑𝐽3𝑖𝑀𝑖(𝑎, 𝜔)𝑒−𝑘𝑖𝑥,

4

𝑖=1

                                          (40) 

 

Where 𝑘𝑖
′𝑠  (𝑖 = 1,2,3,4) are the roots of the equation 

(36) and 𝑀𝑖(𝑎, 𝜔) (𝑖 = 1,2,3,4)  are the parameters, 

depending upon 𝑎 and 𝜔, and  
 

𝐽1𝑖

=
𝑡32𝑘𝑖

3 − 𝑡33𝑘𝑖
2 − 𝑡34𝑘𝑖 − 𝑡35

𝑡36𝑘𝑖
4 + 𝑡37𝑘𝑖

3 + 𝑡38𝑘𝑖
2 − 𝑡39𝑘𝑖 + 𝑡40

,             (41)            

 

𝐽2𝑖

=
(𝑎2𝑘𝑖

3 + 𝑡8𝑘𝑖
2 + 𝑡9𝑘𝑖 − 𝑡10)𝐽1𝑖 − (𝑡5𝑘𝑖

2 − 𝑡6𝑘𝑖 − 𝑡7)

𝑡11
,    (42) 

 

𝐽3𝑖 =  
−[𝑎10 + (𝑘𝑖

2 + 𝑛𝑘𝑖 − 𝑎11)𝐽2𝑖]

𝑙6𝑘𝑖
,                 (43)      

                                               , 𝑖 = (1,2,3,4)                         
 

In view of solutions given by (37)-(40), the stress and 
couple stress components are obtained as 
 

𝜎𝑥𝑥
∗ = 𝑒−𝑛𝑥 ∑𝑀𝑖(𝑎, 𝜔)𝑒−𝑘𝑖𝑥𝑊𝑖 ,

4

𝑖=1

                        (44) 

𝜎𝑦𝑦
∗ = 𝑒−𝑛𝑥 ∑𝑀𝑖(𝑎, 𝜔)𝑒−𝑘𝑖𝑥𝑈𝑖 ,

4

𝑖=1

                        (45) 

𝜎𝑥𝑦
∗ = 𝑒−𝑛𝑥 ∑𝑀𝑖(𝑎, 𝜔)𝑒−𝑘𝑖𝑥𝑉𝑖 ,

4

𝑖=1

                        (46) 

𝑚𝑥𝑧
∗ = 𝑒−𝑛𝑥𝑙6 ∑𝐽2𝑖𝑀𝑖(𝑎, 𝜔)𝑒−𝑘𝑖𝑥,

4

𝑖=1

                        (47) 

Where, 

𝑊𝑖 = −𝑘𝑖 + 𝑙4𝜄𝑏𝐽3𝑖 − 𝑎4𝐽1𝑖                                   (48) 

𝑈𝑖 = −𝑙4𝑘𝑖 + 𝜄𝑏𝐽3𝑖 − 𝑎4𝐽1𝑖                                   (49) 

𝑉𝑖 = −𝑘𝑖𝑙5 + 𝑙2𝜄𝑏𝐽3𝑖 + 𝑙3𝐽2𝑖                                   (50) 

 

6. Application: 
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To determine the constants 𝑀𝑖(𝑎, 𝜔)  (𝑖 = 1,2,3,4), the 

boundary conditions at the free surface  𝑥 = 0  are 
given by: 
 

𝑎) 𝜎𝑥𝑥 = −𝐹1𝑒
𝜔𝑡+𝜄𝑏𝑦,                   (51) 

𝑏) 𝜎𝑥𝑦 = −𝐹2𝑒
𝜔𝑡+𝜄𝑏𝑦,                   (52) 

𝑐) 𝑚𝑥𝑧 = 0,                                      (53) 

𝑑)
𝜕𝑇

𝜕𝑥
= 0,                                       (54) 

 

Where 𝐹1 is a normal line load acting in the positive x-

direction and 𝐹2  is the tangential load acting at the 
origin in the positive y direction. 
 
Using equations (37)-(40) and (44)-(47) in the 
boundary conditions (51)-(54), we get four equations 
in four unknowns as: 
 

𝑊1𝑀1 + 𝑊2𝑀2 + 𝑊3𝑀3+𝑊4𝑀4 = −𝐹1,                        (55) 

𝑉1𝑀1 + 𝑉2𝑀2 + 𝑉3𝑀3+𝑉4𝑀4 =      −𝐹2,                        (56) 

𝑃1𝑀1 + 𝑃2𝑀2 + 𝑃3𝑀3+𝑃4𝑀4 =          0,                          (57) 

𝑄1𝑀1 + 𝑄2𝑀2 + 𝑄3𝑀3+𝑄4𝑀4 =        0,                        (58) 

 

Where, 

 

𝑃𝑖 = 𝑙6𝐽2𝑖,     𝑄𝑖 = 𝑘𝑖𝐽1𝑖 

 

Equations (55)-(58), may be expressed in the matrix form 

as: 

 
𝑊1 𝑊2   𝑊3 𝑊4     
𝑉1 𝑉2 𝑉3 𝑉4

𝑃1 𝑃2 𝑃3 𝑃4

𝑄1 𝑄2 𝑄3 𝑄4

𝑀1

𝑀2

𝑀3

𝑀4

     =    

−𝐹1

−𝐹2

0
0

                              (59)     

 

Solution of the system (59) provides us the values of 

𝑀𝑖(𝑖 = 1,2,3,4) as follows: 

 

𝑀𝑖 = 
∆𝑖

∆
,     (𝑖 = 1,2,3,4)                   (60) 

 Where ∆ and ∆𝑖  are given in Appendix B. 
 
Substituting (60) into expressions (37)-(40) and (44)-
(47), we get the expressions for displacement 
components, temperature distribution, microrotation, 
force stress and couple stress for a functionally 
graded micropolar thermoelastic medium with cubic 
symmetry as: 
 

(𝑢∗, 𝑇∗, 𝜙3
∗ , 𝑣∗)(𝑥)

=
1

Δ
 ∑(1, 𝐽1𝑖 , 𝐽2𝑖 , 𝐽3𝑖)Δ𝑖𝑒

−𝑘𝑖𝑥,

4

𝑖=1

                    (61)         

 

(𝜎𝑥𝑥
∗ , 𝜎𝑦𝑦

∗ , 𝜎𝑥𝑦
∗ , 𝑚𝑥𝑧

∗ )(𝑥)

=
1

Δ
∑(𝑊𝑖 , 𝑈𝑖 , 𝑉𝑖 , 𝑃𝑖)Δ𝑖𝑒

−𝑘𝑖𝑥−𝑛𝑥.

4

𝑖=1

       (62) 

 

 

7. Particular Case: 
  

Substituting, 𝐴1 =  𝜆 + 2𝜇 + 𝑘,   𝐴2 =  𝜆,  𝐴3 =  𝜇 + 𝑘, 
𝐴4 =  𝜇,   𝐵3 =  𝛾  we obtain the results for 
thermoelastic micropolar isotropic medium. Where 
𝜆, 𝜇, 𝑘, 𝛾 are elastic constants of the medium. 

 

8. Numerical Results: 
 

For numerical computations, we take the following 
values of relevant parameters for a micropolar cubic 
crystal as: 
 

𝐴1 = 19.3 × 1011 𝑑𝑦𝑛𝑒 𝑐𝑚2,⁄  𝐴2 =
10.2 × 1011 𝑑𝑦𝑛𝑒 𝑐𝑚2,⁄   𝐴3 = 5.8 × 1011 𝑑𝑦𝑛𝑒 𝑐𝑚2,⁄   

𝐴4 = 4.7 × 1011 𝑑𝑦𝑛𝑒 𝑐𝑚2,⁄  𝐵3 = 1.1 × 10−4𝑑𝑦𝑛𝑒. 
For the comparison with a micropolar isotropic solid, 
following Eringen [41] we take the following values of 
relevant parameters for the case of a Magnesium 
crystal like material 
 

𝜌 = 1.74 𝑔𝑚 𝑐𝑚3,⁄  𝜆 = 9.4 × 1011 𝑑𝑦𝑛𝑒 𝑐𝑚2,⁄   𝜇 = 4 ×
1011 𝑑𝑦𝑛𝑒 𝑐𝑚2,⁄   𝑘 = 1.0 × 1011 𝑑𝑦𝑛𝑒 𝑐𝑚2,⁄   𝛾 =
0.779 × 10−4𝑑𝑦𝑛𝑒,   𝑗 = 0.2 × 10−15𝑐𝑚2,   𝑇0 =
23℃, 𝐶∗ = 0.23 𝑐𝑎𝑙 𝑔𝑚℃,⁄  𝐾∗ =
0.6 × 10−2 𝑐𝑎𝑙 𝑐𝑚𝑠𝑒𝑐℃⁄ . 
 

9. Discussion: 
 

The numerical values of displacement components u, 
v and normal stress components 𝜎𝑥𝑥 , 𝜎𝑥𝑦   and 

temperature T and the couple stress 𝑚𝑥𝑧  under 
normal load for micropolar cubic crystal are shown in 
Fig. 1 - Fig. 6. These figures represent the solution 
which is obtained by using the generalized theory with 
one relaxation time (Lord-Shulman (L-S) theory: 

𝑛0 = 0,    𝑛1 = 1,   𝑡0 = 0.02,   𝑡1 = 0  and generalized 
theory with two relaxation times (Green-Lindsay(G-L) 

theory: 𝑛0 = 0,    𝑛1 = 1,   𝑡0 = 0.02,   𝑡1 = 0.03. 
In Fig. 1 the tangential displacement under L-S theory 
for non-homogeneous medium remains stagnant at 

0 ≤ 𝑥 ≤ 10 but increasing at 10 ≤ 𝑥 ≤ 20 while under 
G-L theory displacement shows linear trend at 

beginning but increasing at 12 ≤  𝑥 ≤  20  and at 
homogeneous medium the variations of displacement 
under L-S and G-L theory are similar in nature for 
micro-polar cubic crystal (MCC) medium. From Fig. 2 
it is observed that the normal displacement under G-L 
and L-S theory for homogeneous and non-
homogeneous medium under MCC start decreasing 
after 𝑥 =  4  and follow the same trend till end. In 
context of two theories Fig. 3 and Fig. 4 indicates 
steep decrease in the normal stress 𝜎𝑥𝑥 and tangential 
stress𝜎𝑥𝑦 till 𝑥 =  1.8 after which it follows the linear 

trend at all values of 𝑥 . In Fig.5, temperature for 

homogeneous medium is increasing slightly as 𝑥 
increases but in non-homogeneous medium 

temperature (𝑇)  decreases as 𝑥  increases. With 
reference to L-S and G-L at 𝑛 =  0 , Fig. 6 follows 

linear trend throughout while for L-S and G-L at 𝑛 =  1 
the couple stress 𝑚𝑥𝑧 shows steep increase in values 
of 𝑥 from 𝑥 =  0  to 𝑥 =  1.7  and linear trend 
afterwards. 
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Fig.7 - Fig. 12 show the comparison between 

displacement components  𝑢, 𝑣, temperature 𝑇 , stress 
components 𝜎𝑥𝑥, 𝜎𝑥𝑦 and the couple stress 𝑚𝑥𝑧 under 

normal load for micropolar isotropic medium. From 

Fig. 7, it is observed that displacement component 𝑢 
starts increasing at 𝑥 =  8. In Fig. 8, the displacement 
component 𝑣  decreases sharply after 𝑥 =  6 for non-
homogeneous medium till end. The variations of 
normal stress 𝜎𝑥𝑥 and tangential stress 𝜎𝑥𝑦  as shown 

in Fig. 9 and Fig. 10 are opposite in nature. In Fig. 11, 
temperature shows linear trend for L-S and G-L theory 
for homogeneous medium and decreases for L-S and 
G-L for non-homogeneous medium. In Fig. 12 couple 

stress 𝑚𝑥𝑧 follows the same trend as followed by the 
couple stress for micropolar cubic crystal. 
 
9. Conclusion: 
 
1. An analytic solution of the problem on thermo-
elastic micropolar solid with cubic symmetry is 
developed. 
2. The homogeneous and non-homogeneous 
parameters has a significant effect on all the physical 
variables under different theories. 
3. The variations of normal force stress and tangential 
force stress are opposite in nature in the beginning. 
4. The couple stress of micropolar cubic crystal (MCC) 
and micropolar isotropic solid (MIS) depicted as the 
mirror image of each other. 
 

 

 Appendix A 
 

N1 = 
(𝑡22𝑡36−𝑡21𝑡37+𝑡33𝑡26−𝑡32𝑡27)

𝑡21𝑡36+𝑡32𝑡26
, 

N2 = 
(𝑡23𝑡36−𝑡22𝑡37+𝑡21𝑡38−𝑡34𝑡26− 𝑡33𝑡27+𝑡32𝑡28)

𝑡21𝑡36+𝑡32𝑡26
, 

N3 = 
(𝑡24𝑡36− 𝑡23𝑡37+𝑡22𝑡38+𝑡21𝑡39+ 𝑡35𝑡26+𝑡34𝑡27+𝑡33𝑡28+𝑡32𝑡29

𝑡21𝑡36+𝑡32𝑡26
, 

𝑁4 =
(𝑡25𝑡36−𝑡24𝑡37+𝑡23𝑡38+𝑡22𝑡39+ 𝑡21𝑡40−𝑡27𝑡35−𝑡34𝑡28+𝑡33𝑡29−𝑡32𝑡30)

𝑡21𝑡36+𝑡32𝑡26
, 

N5 = 

 
(−𝑡25𝑡37+ 𝑡24𝑡38+𝑡23𝑡39+𝑡22𝑡40+𝑡35𝑡28−𝑡134𝑡29−𝑡33𝑡30−𝑡32𝑡31)

𝑡21𝑡36+𝑡32𝑡26
 , 

N6 = 
(𝑡25𝑡38∓𝑡24𝑡39+𝑡23𝑡40+ 𝑡35𝑡29+𝑡34𝑡30−𝑡33𝑡31)

𝑡21𝑡36+𝑡32𝑡26
 , 

N7 = 
(𝑡25𝑡39+ 𝑡24𝑡40−𝑡35𝑡30+𝑡34𝑡31)

𝑡21𝑡36+𝑡32𝑡26
 , 

N8 = 
(𝑡25𝑡40−𝑡35𝑡31 )

𝑡21𝑡36+𝑡32𝑡26
, 

 

And 

𝑡1 = 𝑎12𝑙6,   𝑡2 = 𝑎10𝑎13,   𝑡3 = 𝑎14𝑙6,   𝑡4 = 𝑎11𝑎13, 

𝑡5 = 𝑎13 − 𝑎2𝑎12,  𝑡6 = 𝑎3𝑎12 − 𝑛𝑎13,  𝑡7 = 𝑎1𝑎13,  
𝑡8 = 𝑎3 + 𝑛𝑎2,  𝑡9 = 𝑛𝑎3 − 𝑎2𝑎14 − 𝑎4𝑎13,  𝑡10 = 𝑎3𝑎14 +
𝑛𝑎4𝑎13,  𝑡11 = 𝑎5𝑎13,   𝑡12 = −𝑎12𝑙2,   𝑡13 = 𝑛𝑙2𝑎12,  
𝑡14 = 𝑎2𝑎13 + 𝑎7𝑎12,  𝑡15 = 𝑎6𝑎13,  𝑡16 = (𝑛2 − 𝑎14)𝑙2 −
𝑎7,  𝑡17 = 𝑛(𝑙2𝑎14 + 𝑎7),   𝑡18 = 𝑎8𝑎13 + 𝑎7𝑎14,   𝑡19 =
 𝑙3𝑎13,  𝑡20 = 𝑎9𝑎13,  𝑡21 = −𝑡5𝑎13,  𝑡22 = (𝑛𝑡5 − 𝑡6)𝑎13, 
𝑡23 = 𝑡1𝑡11 + 𝑎13(𝑡7 + 𝑛𝑡6) + 𝑡5𝑡14, 𝑡24 = 𝑡6𝑡14 − 𝑛𝑡7𝑎13, 
𝑡25 = 𝑡2𝑡11 − 𝑡7𝑡14 , 𝑡26 = 𝑎2𝑎13,   𝑡27 = (𝑡8 + 𝑛𝑎2)𝑎13,  
𝑡28 = 𝑙6𝑡11 + (𝑡9 + 𝑛𝑡8)𝑎13 − 𝑎2𝑡14,  𝑡29 = 𝑡8𝑡14 −
𝑛𝑙6𝑡11 + (𝑡10 − 𝑛𝑡9)𝑎13,     𝑡30 = 𝑡3𝑡11 + 𝑛𝑎13𝑡10 + 𝑡9𝑡14,    

𝑡31 = 𝑡10𝑡14,    𝑡32 = 𝑡5𝑡19 − 𝑡11𝑡12,      𝑡33 = 𝑡6𝑡19 −
𝑡5𝑡20 − 𝑡11𝑡13,   𝑡34 = 𝑡7𝑡19 + 𝑡6𝑡20 + 𝑡11𝑡14,    𝑡35 =
𝑡7𝑡20 + 𝑡11𝑡15,    𝑡36 = 𝑎2𝑡19 + 𝑙2𝑡11,   𝑡37 = 𝑡8𝑡19 +
𝑎2𝑡20 + 2𝑛𝑙2𝑡11,   𝑡38 = 𝑡9𝑡19 + 𝑡8𝑡20 + 𝑡11𝑡16,   𝑡39 =
𝑡10𝑡19 − 𝑡9𝑡20 + 𝑡11𝑡17,  𝑡40 = 𝑡11𝑡18 − 𝑡10𝑡20, 
 

 

Appendix B 
 

∆= 𝑊1[𝑉2(𝑃3𝑄4 − 𝑄3𝑃4) − 𝑉3(𝑃2𝑄4 − 𝑄2𝑃4)
+ 𝑉4(𝑃2𝑄3 − 𝑄2𝑃3)]
− 𝑊2[𝑉1(𝑃3𝑄4 − 𝑄3𝑃4)
− 𝑉3(𝑃1𝑄4 − 𝑄1𝑃4) + 𝑉4(𝑃1𝑄3 − 𝑄1𝑃3)]
+ 𝑊3[𝑉1(𝑃2𝑄4 − 𝑄2𝑃4)
− 𝑉2(𝑃1𝑄4 − 𝑄1𝑃4) + 𝑉4(𝑃1𝑄2 − 𝑄1𝑃2)]
− 𝑊4[𝑉1(𝑃2𝑄3 − 𝑄2𝑃3)
− 𝑉2(𝑃1𝑄3 − 𝑄1𝑃3)
+ 𝑉3(𝑃1𝑄2 − 𝑄1𝑃2)],                         (63) 

∆1= −𝐹1[𝑉2(𝑃3𝑄4 − 𝑄3𝑃4 ) − 𝑉3(𝑃2𝑄4 − 𝑄2𝑃4)
+ 𝑉4(𝑃2𝑄3 − 𝑄2𝑃3)
+ 𝐹2[𝑊2(𝑃3𝑄4 − 𝑄3𝑃4)
− 𝑊3(𝑃2𝑄4 − 𝑄2𝑃4)
+ 𝑊4(𝑃2𝑄3 − 𝑄2𝑃3)],                  (64) 

∆2= −𝐹1[𝑉1(𝑃3𝑄4 − 𝑄3𝑃4) − 𝑉3(𝑃1𝑄4 − 𝑄1𝑃4)
+ 𝑉4(𝑃1𝑄3 − 𝑄1𝑃3)]
+ 𝐹2[𝑉1(𝑃3𝑄4 − 𝑄3𝑃4)
− 𝑉3(𝑃1𝑄4 − 𝑄1𝑃4)
+ 𝑉4(𝑃1𝑄3 − 𝑄1𝑃3)],                    (65) 

∆3= −𝐹1[𝑉1(𝑃2𝑄4 − 𝑄2𝑃4) − 𝑉2(𝑃1𝑄4 − 𝑄1𝑃4)
+ 𝑉4(𝑃1𝑄2 − 𝑄1𝑃2)]
+ 𝐹2[𝑉1(𝑃2𝑄4 − 𝑄2𝑃4)
− 𝑉2(𝑃1𝑄4 − 𝑄1𝑃4)
+ 𝑉4(𝑃1𝑄2 − 𝑄1𝑃2)],                     (66) 

∆4= −𝐹1[𝑉1(𝑃2𝑄3 − 𝑄2𝑃3) − 𝑉2(𝑃1𝑄3 − 𝑄1𝑃3)
+ 𝑉3(𝑃1𝑄2 − 𝑄1𝑃2)]
+ 𝐹2[𝑉1(𝑃2𝑄3 − 𝑄2𝑃3)
− 𝑉2(𝑃1𝑄3 − 𝑄1𝑃3)
+ 𝑉3(𝑃1𝑄2 − 𝑄1𝑃2)].                    (67) 
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