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Abstract—Influence of the barrier dielectric 
properties on the electron-phonon interaction in 
quantum wells is studied theoretically. It is shown 
that the parameters of such interaction can 
change several times. This leads to a similar 
change in the binding energy and the radius of 
polaron states arising in the structure. An 
increase in the electron-phonon interaction is 
confirmed to be possible in both symmetric and 
asymmetric quantum wells. It is found under 
which conditions the electron-phonon interaction 
in the asymmetric quantum well changes more 
strongly than in the symmetric one. This makes it 
possible to efficiently control over the parameters 
of polaron states by choosing the dielectric 
properties and symmetry of the barriers. 
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I.  INTRODUCTION 

 Modern technologies give us the possibility to 
effectively change the phonon properties of 
semiconductor nanostructures. Phonon states 
engineering now is applied to a wide range of practical 
uses [1,2]. The most interesting in this regard is the 
modification of electrical, optical and thermal 
properties of nanostructures [3,4]. 

 Special attention should be paid to parameters of 
the electron-phonon interaction. These parameters 
can change significantly in quantum nanostructures 
compared with bulk materials. Our interest is the 
interaction of charged particles with polar optical 
phonons. The strong electron-phonon interaction can 
be realized in symmetric quantum wells when the 
large-radius polarons arise [5]. 

 In this paper, the charged particle interaction with 
optical phonons have been studied theoretically and a 
comparative analysis for quantum wells with 
symmetric and asymmetric barriers is performed. The 
structures under study contain quantum wells with the 
barriers made of materials with different dielectric 
properties. Most researches focus on the electronic 
properties of such structures. But such quantum wells 
may also have specific optical phonon spectrum 
properties. In our work, is studied three-layered 

structure consisting of the quantum well and two 
barriers. It was found that in structures with 
asymmetric barriers the electron-phonon interaction 
can be stronger than with symmetric barriers one. 
This occurs because several branches of optical 
phonon spectrum of asymmetric structures give a 
comparable contribution to the electron-phonon 
interaction. In the case of symmetric case, as a rule, 
only one phonon mode gives the main influence. 

II. SYMMETRIC QUANTUM WELL 

     To consider the interaction of charged particles 
with optical phonons of the quantum well and the 
barriers, as well as the interface phonons must be 
taken into account. Start with the case of complete 
localization of charged particles within a quantum well. 
Wherein the interaction of such particles with barrier 
material phonons can be neglected. However the 
influence of the barriers is very important. This effect 
is conditioned by the specific structure and properties 
of interface optical phonon spectrum. To define the 
properties of interface phonons, we use the continuum 
model from [6]. The spectrum of the symmetric mode 
of interface phonons is obtained from the solution of 
this equation: 
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Here l is the quantum well characteristic size, q is two-

dimensional wave vector; ( )w  , ( )b  are the 

dielectric functions of the quantum well and barriers, 
respectively. The dependencies frequency of the 
dielectric function in the phonon frequency region is 
determined as follows: 
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where LO , TO  are the frequencies of longitudinal 

and transverse optical phonons, respectively and   

is the high-frequency dielectric constant. The equation 
(2) shows that we use the approximation of dispersion 
less modes for bulk optical phonons. In such 
approximation the interface and bulk phonon modes 
can be considered independently [1]. The contribution 
of the antisymmetric mode of interface phonons 
vanishes when the Hamiltonian is averaged over the 
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wave function of the charged particle localized in a 
symmetric quantum well. We have taken the case of 
the electron polaron. The magnification of the 
electron-phonon interaction occurs in narrow quantum 
wells having a width l that is less than the polaron 

radius 0r : 

0l r .         (3) 

If the condition (3) is satisfied, the electron wave 

function ( ) ( )e
m r  can be written as: 

( ) ( ) ( ) ( )e
n n nz   r ρ,       (4) 

Where z is the transvers plane well variable, ( )n z  is 

the wave function determined by the quantum well 
potential, ρ is the two–dimensional plane well vector, 

( )n ρ  is yet unknown two-dimensional wave function 

which is determined by localization of an electron in 
the potential well created by polar optical phonons. 
     Using the expression for the wave function from (4) 
and solving the problem by minimizing the functional 

that we obtained in [7] the polaron binding energy p  

is written in the form:, 
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where b
opt  is the barrier optical dielectric function 

which is defined by the expression
0

1 1 1
b b b
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 
  

. 

Taken into account (5) one can obtain the polaron 

state radius 0r  in the form: 
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It is this quantity from (3) on which the adiabatic 
approximation used in our work is based. In the next 
order in the parameter from inequality (3) the 
corrections to (5) can be calculated. We can write its 
as follows: 

 ,

0

0.07pol well p V S
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r
    ,     (7) 

where the dimensionless coefficients VD  and SD  are 

determined by phonon frequencies combinations in 
the quantum well and barrier materials and are found 
similar to [7]. It should be noted that the corrections to 
the polaron binding energy are related to the 
interaction with both bulk and interface optical 

phonons. According to the expressions for VD  and 

SD  received in [7], these corrections may have 

different signs. Thus it turns out that the total value of 
the binding energy depends essentially on the 
dielectric properties of both the quantum well and the 
barrier materials. To calculate numerically the value of 

the quantity p  from (7) one has taking into 

consideration the phonon spectrum of the structure. 
 In quantum wells based on II-VI compounds, the 

polaron radius 0r  (6) falls within the range 20 100  Å. 

Just than the strong electron-phonon interaction 

condition can be satisfied. Hence, the quasi-two-
dimensional polaron state is possible in sufficiently 

narrow quantum wells with 20l   Å. 

       The heterovalent quantum wells based on II-VI/III-
V materials are more promising target for the 
experimental study of polaron effects in the case of 
strong electron-phonon interaction. For such 
structures, growth technologies have been developing 
successfully in recent times [8,9]. In the III-V 
compounds, effective masses of quantum well carriers 
are small. The optical dielectric function of the barriers 
fabricated from II-VI compounds is significantly small 

and values of polaron radius 0r  increase by two-three 

times. Hence, a quasi-two-dimensional polaron in 
heterovalent quantum wells can be observed for the 
well widths 50L   Å. Quantum wells of more complex 

configuration (for example, I-VII/III-V) can also 
become a promising object for the polaron study when 
strong electron-phonon interaction takes place. 

III. QUANTUM WELL WITH ASYMMETRIC BARRIERS 

We consider three-layered planar structure 
composed of a quantum well having a dielectric 

function ( )w   and two different barriers with the 

dielectric functions ( )
left
   and ( )

right
  . The 

dielectric functions of the left and right barriers are 
denoted by subscripts l and r, respectively. In the 
region of phonon frequencies, all dielectric functions 
have the form similar to expression (2): 
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where k
LO

  is longitudinal phonon frequency and 

k
TO

  is transverse phonon one. The index k 

corresponds to “left” (l), “right” (r) for the barrier 
materials and “well” (w) for the quantum well material. 
The interface optical phonons will be of the most 
interest for our study. Their spectrum can be 
determined using standard conditions at two 
boundaries of the quantum well [6]. For the structure 
under consideration, it is found by solving the 
following equation: 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

w l w r
l l

w l w r
e e
          


        

q q
,              (9) 

where q  is two-dimensional phonon wave vector in 

the well plane. Usually the solution of (9) corresponds 
to two branches of optical phonons localized near the 
left boundary of a quantum well and also two 
branches localized near the right one. These 
branches interact with each other that leads to a 
rather complicated picture for the electron-phonon 
interaction. The spectrum of optical phonons and the 
electron-phonon interaction nature are considerably 
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simplified for narrow quantum wells. Generally, the 

interaction in the region of polaron state radius 0r  is of 

the greatest interest. It corresponds to the values of 

the wave vector 1
0

q r . The condition 

1ql         (10) 

is usually realized in semiconductor wells with the 

width of 50l Å. The equation (9) becomes much 

easier. In the highest order in parameter (10), the 
dielectric properties of the quantum well material 
completely drop out of the (9). Thus, we can obtain 
from (3) the following equation: 

( ) ( ) 0r l      .                   (11) 

Equation (11) formally coincides with the equation for 
determining the spectrum of interface phonons at a 
single hetero-interface [6]. In the presence of 

asymmetric barriers with ( ) ( )r l     , it has two 

solutions for the interface phonons. Exact equation (9) 
contains two other spectrum branches that drop out of 
approximate equation (11). The solutions 

corresponding to (11) 1 and 2  are found to be in 

the following frequency intervals: 

1

2

l l
TO LO

r r
TO LO

    
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.                 (12) 

Applying the method used in [6] we can obtain the 
Hamiltonian of the electron-phonon interaction 

el phonH   for the quantum well. It can be represented 

in the same form as in the case of a symmetric 
structure [10] 
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In this equation i is the frequency interval number, S is 

the quantum well normalization area,  ia q  and 

 ia q  are the annihilation and creation operators of 

corresponding optical phonon branch. There are 4 
branches in the full spectrum and 2 ones in the region 

1ql . The factor  ,if zq  represents the distribution 

of the excitation intensity along the direction 
perpendicular to the quantum well plane. In the case 
under consideration, inside the quantum well at 

/ 2z l , it has the form: 

     1, qz qz
i i i i if z e e      q ,                (14) 

where the parameter  i i   is defined by the 

following expression: 
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            
         

.    (15) 

Equation (14) for  ,if zq  differs from analogous 

expressions for the structures with symmetric barriers 
in that it is impossible to distinguish symmetric and 
antisymmetric modes. The greatest difference from 
quantum well with symmetric barriers can be found for 

the coefficients  ,i iF q   which can be written through 

the quantities ( )as iR   as 

   
2 2 ( ) ( )

, ,
( ) ( )

r l
i i

as i i i r l
i i

R F q f z
   

  
   

q ,   (16) 

where the functions  i i   have the form [6]: 

 

2
2 2 2

, ,

2 2 2
, ,0

, ,

1 1 LO i TO i
i

i i
LO i TO i



    
     
          

   (17) 

The results of our numerical calculations of the 

parameters asR  for various dielectric properties of the 

barriers are shown in Fig. 1 and Fig. 2. These 
dependencies are depicted for the different ratios of 
dielectric constants. Expression (16) means that in 
sufficiently narrow quantum wells the energy of the 
electron-phonon interaction can be represented as a 
constant over the well width. This value corresponds 
to the polarization created by the barriers. In 
sufficiently narrow quantum wells, this polarization 
varies slightly over the quantum well width. The 
dielectric properties of the quantum well material in 
this approximation turn out to be insignificant. The 

expression for the parameter asR  should be 

compared with the analogous expression for symR , 

which can be written when the constant of the 
electron-phonon interaction in symmetric quantum 
wells is found. Earlier it was shown in [5] that for 
symmetric structures, under condition (3), this value 
turns out to be equal to 

0

1 1 1
sim

opt

R


  
  

,                 (18) 

where the dielectric constats   and 0  refer to the 

barriers. It is this quantity from the expression (5) for 
the polaron binding energy. Thus, the frequency of the 
interface mode is close to the frequency of 

longitudinal optical phonons LO  of the barrier 

material. The expressions for simR  should correspond 

to the well where either the right (r) or left (l) barrier of 
an asymmetric structure is used for both barriers. In 
the case of the asymmetric structure with different 
barriers, the phonon frequency will slightly differ from 

both ,LO l  and ,LO r . It is important to take this 

difference into account in order to find correctly the 

http://www.jmest.org/


Journal of Multidisciplinary Engineering Science and Technology (JMEST) 

ISSN: 2458-9403 

Vol. 8 Issue 12, December - 2021  

www.jmest.org 

JMESTN42353935 11836 

parameters of the electron-phonon interaction. 

 

        Fig. 1. Coefficients 1( )asR  for the interface phonon 

frequencies 1  from the interval 1
l l
TO LO     . 

 

       Fig. 2. Coefficients 2( )asR  for the interface phonon 

frequencies 1  from the interval 2
r r
TO LO     . 

 

 

      Fig. 3. Coefficients 2( )simR  for the interface phonon 

frequencies 2  from the interval 2TO LO     . 

For comparison, similar dependencies Fig. 3 for  

are calculated for quantum wells with symmetric by 
their dielectric properties barriers. The varying 
quantity x in Fig. 1 – Fig. 3 describes the change in 

the frequency ratio for the longitudinal and transverse 
optical phonons. 

      IV. RESULTS AND DISCUSSIONS 

    The interface optical phonons arise near the 
hetero-interface of the quantum well structure. 
The spectrum and dispersion law of such phonons 
may differ from ones for excitations arising in the 
bulk materials. The study of these excitations can 
give fundamentally new information about the 
optical and transport properties of quantum 
nanostructures. The theoretical method has been 
developed to taking into account the interface 
phonon influence. The enhancement conditions 
for electron-phonon interaction are found. It is 
shown that the barrier material dielectric 
properties give a decisive contribution to the 
polaron binding energy value for strong electron-
phonon interaction. The appearance of strong 
polaron effects confirms the interface phonon 
influence on optical and transport properties of 
nanostructures. It was found that the strongest 
interaction is realized when the barriers in the 
quantum well structure are fabricated from 
materials with different dielectric properties for the 
left and right barriers. At a significant difference in 
the phonon frequencies of the barrier materials, 
the coupling constant value can exceed the 
analogous one for the quantum wells with 
symmetric barriers. Changing the parameters of 
the barriers makes it possible to change the value 
of the electron-phonon interaction constant by 
several times. This gives us the instrument for the 
control of nanostructure characteristics that 
determines many of the thermal, electrical, and 
optical properties. 
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