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Abstract— In this paper, we present a review of 
the theory behind the Lattice Boltzmann method, 
utilized increasingly in the simulation of 
incompressible flows. The aim of this paper is to 
gather all the necessary data and be used as a 
guide and reference for anyone that wishes to 
apply the Lattice Boltzmann-Multiple Relaxation 
Time method (LB-MRT), well known for its 
stability, speed and accuracy. The paper includes 
all the necessary equations to build models both 
in two and three-dimensions and some of the 
obtained results are presented both for the 
standard LB-BGK and the LB-MRT method. 
Specifically, all the moment matrices and their 
inverses, as well as the equilibrium equations. To 
conclude, LB-MRT is a method well suited for 
parallelization, and when utilized on GPU, we can 
see fast speeds and benefits in running times and 
accuracy. We also discuss the treatment of 
boundary conditions and present a totalistic 
approach in treating inflow, no-slip, outflow or 
pressure boundary conditions. KYAMOS intends 
to release a proprietary software utilizing GPU-
InfiniBand, cloud computing environment for the 
utilization of LB-MRT method in various fields of 
engineering and physics.  

Keywords—Lattice Boltzmann; Multiple 
Relaxation Time; incompressible flows; 

I.  INTRODUCTION 

In this paper, we present the mathematical 
formulation of the Lattice Boltzmann, Multiple 
Relaxation Time method (LB-MRT). First, we provide 
an introduction on the Lattice Boltzmann method and 
the reason the MRT scheme has accumulated great 
attention. Then we present the limitations of the BGK 
method and the stability considerations solved by the 
MRT. Thereafter, we derive the MRT method 
mathematically, and present the various matrices 
which are necessary in conducting MRT simulations. 
This includes the transformation matrix M to revert 
from equilibrium distribution to moment space to 
conduct the collision step and the inverse 
transformation matrix M

-1
 to revert from the moment to 

equilibrium distribution space to conduct the streaming 
step. Stability issues are discussed and the matrices 
for various cases of two and three dimensions are 
listed, with an attempt for this manuscript to be used 
as a reference for anyone who wishes to conduct LB-
MRT simulations. Finally, we present some results 
obtained with using the LB-BGK and LB-MRT methods 

running on the GPU, which shows the real advantages 
of utilizing incompressible Lattice Boltzmann 
simulations on the GPUs due to their inherent data 
locality and prawn to parallelization. 

II. LITERATURE REVIEW OF MRT METHOD 

Tubbs et al. [1] use the MRT method to simulate 
multilayer shallow water flows with graphics 
processing units. The use of multiple relaxation times 
enabled the authors to  handle very low kinematic 
viscosity without causing a stability issues in the 
shallow water equations. They solve the multilayer 
Saint-Venant equations to obtain horizontal flow 
velocities in various depths, with good speedup and 
scalability for large problems.  
Sato et al. [2] study free-surface flow problems that 
usually occur in numerous disaster simulations, such 
as tsunami inland penetration in urban areas. The 
authors stress the complexity in solving the pressure 
Poisson equation in incompressible Navier-Stokes 
fluid modeling in large scale in 3-dimensions,  and 
present the lattice Boltzmann method, and specifically 
MRT collision model, along with the piecewise linear 
interface calculation (PLIC) approach. Through classic 
dam-break problems, they validate the appropriate 
parameter settings, including the weak 
compressibility, for tsunami simulations. The authors 
verify through benchmark tests that the method 
accurately simulates the three-dimensional dam-break 
flow and controls the compressibility drop in the 
second-order value of the Mach number. 
Purqon [3] implements BGK and MRT Lattice 
Boltzmann solutions for incompressible two-
dimensional lid-driven cavity. A stability analysis is 
performed  by finding the maximum Reynolds number 
and velocity for the solution to converge. The velocity 
profile is compared with the benchmark results from 
Ghia, et al. and conclude that MRT is more stable 
than BGK, with a similar accuracy, with the maximum 
Reynolds number for convergence being 3,200 for 
BGK and 7,500 for MRT. 
Yang et al. [4] study the flow pattern in a two-
dimensional lid-driven semi-circular cavity using the 
MRT method by varying the Reynolds number from 
5,000 to 50,000. It is shown that with the increase of 
the  Re number, the flow experiences a complex 
transition (from steady to the periodic flow, and finally 
to the chaotic flow), with the MRT depicting superiority 
in numerical stability at high Reynolds number. 
Bouarnouna et al. [5] study the laminar natural 
convection in a horizontal channel with porous blocks 
periodically distributed on its lower adiabatic surface 
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using the MRT method. The D2Q9 is used to solve 
the flow field, while the D2Q5 is used to solve for the 
temperature field. The Darcy number effect (10.1 ≤ Da 
≤ 10.6), the Rayleigh number (103 ≤ Ra ≤ 107) and 
the relative porous blocks height (1/8 ≤ D ≤ 1/2) are 
varied, and the results obtained show the significance 
of the  above parameters for both flow and heat 
transfer structures. 
Chai et al. [6] present a unified framework of MRT 
method for the Navier-Stokes and non-linear 
convection-diffusion equations, where they introduce 
a block-lower-triangular-relaxation matrix and an 
auxiliary source distribution function. A direct 
comparison between Chapman-Enskog, Maxwell 
iteration, direct Taylor expansion, and recurrence 
equations techniques that are used show that they are 
able to recover the macroscopic Navier-Stokes and 
the non-linear convection-diffusion equations.  
De Rosis et al. [7] propose a D3Q27 discretization, 
where the quantities relax towards an elegant Galilean 
invariant equilibrium by including the effect of external 
accelerations. In another later paper, they investigate 
the usage of the D3Q19 model [8], and the results are 
compared in terms of stability and accuracy on single, 
multi-phase, and magnetohydrodynamics flow 
simulations. It is shown that there is little impact on 
the accuracy and stability for moderate Reynolds 
number flows in the weakly compressible regime, 
when the D3Q19 is used. 
Razzaghian et al. [9] study the lid driven cavity flow 
between MRT-D2Q9 and Single-relaxation-time (SRT-
D2Q9) and compare them in terms of speed and 
stability with the Reynolds number ranging from 100 
to 3,200 and show that the MRT produces more 
stable and accurate results than the SRT model.  
Luo et al. [10] present a unified Lattice Boltzmann 
model that integrates the BGK, MRT, central-moment 
or cascaded lattice Boltzmann method and multiple 
entropic operators (KBC) methods. They analyze the 
relations between the above four operators  and 
demonstrate the flexibility of the Unified LBM 
framework (ULBM) in three multiphase flow problems: 
(a) the rheology of an emulsion, (b) splashing of a 
droplet on a liquid film, and: (c) dynamics of pool 
boiling.  
Jahanshaloo [11] et al. use the MRT model coupled 
with a Large Eddy Simulation (LES) to study the lid 
driven cavity flow at different Reynolds number 
(1,000-10,000) and the results are compared with 
other papers that solve the Navier stokes equation 
directly. The results show that the MRT with LES 
solves the complex flows with reasonable accuracy 
and reliability, when compared to traditional Navier-
Stokes solutions.  
Ammar et al. [12] propose a 3D MRT model for 
multiphase flows at large density ratios, with the 
model being capable of adjusting the surface tension 
independently of the density ratio, and the proposed 
scheme is validated by verifying Laplace's law and by 
analyzing its thermodynamic consistency and the 
oscillation period of a deformed droplet. Thereafter, it 
is used in the simulation of the impact of a droplet on 

a dry surface, where impact dynamics and maximum 
spread factor are calculated for different Reynolds and 
Weber numbers. Finally, they apply the model on the 
impact of a droplet on a wet surface and the 
propagation of transverse waves on the liquid surface 
are analyzed successfully. 

III. MATHEMATICAL FORMULATION OF MRT 

A. Introduction 

Since the invention of the Boltzmann equation in 
1872, many attempts to find a proper mathematical 
expression for the collision term have been 
conducted. This was mainly due to complexities and 
difficulties to solve the collision term. A BGK model 
has been introduced to simplify the solution with low 
significant errors of the outcome of the Lattice 
Boltzmann equation, expressing the collision term as 
a linear relationship between the distribution function 
in the non-equilibrium state with its equilibrium state: 

𝛺𝑖 = −
𝑓𝑖 − 𝑓𝑖

𝑒𝑞

𝜏
 

     
(1) 

The equation can be interpreted as the tendency of 
the non-equilibrium distribution function to relax to its 

equilibrium state after a time 𝜏 called relaxation time. 
It is a very simple mathematical expression to express 
the collision term, but  ta the cost of accuracy and 
stability.s 
Multiple-relaxation-time (MRT) method has been 
introduced to solve the issues relating to the stability 
and accuracy, since it offers multiple relaxation times 
to be adjusted accordingly. The main difference 
between the BGK and the MRT methods is that the 

BGK contains one relaxation time 𝜏  for all the 
population of distribution functions, whereas the MRT 

uses different relaxations times 𝜏 for the population of 
distribution function, which leads to more freedom to 
adjust the relaxation time parameters to get more 
stability. 

B. Derivation of the MRT method   

One starts from the conversation of the mass where 
the following equation can be formulated: 

∑𝛺𝑖
𝑖

= −∑
𝑓𝑖 − 𝑓𝑖

𝑒𝑞

𝜏
𝑖

 
(2) 

The 1/𝜏  can be expressed as 𝜔  and is called the 
relaxation rate. With the absent of the force, equation 
(1) can be written in the following form: 

 ∑Ω𝑖
𝑖

= −∑𝜔 (𝑓𝑖 − 𝑓𝑖
𝑒𝑞
) 

𝑖

= 0 (3) 

which leads to: 
−𝜔 (𝜌 − 𝜌𝑒𝑞) = 0 (4) 

where 𝜌 represents the density of the zeroth velocity 
moment. From the conversation of the momentum, 
the following equations can be formulated: 

∑Ω𝑖𝑐𝑖
𝑖

= −∑𝜔 (𝑐𝑖𝑓𝑖 − 𝑐𝑖𝑓𝑖
𝑒𝑞
) 

𝑖

= 0 (5) 

Equation (4) is converted into moment space: 

−𝜔 (𝑗 − 𝑗𝑒𝑞) = 0 (6) 

http://www.jmest.org/


Journal of Multidisciplinary Engineering Science and Technology (JMEST) 

ISSN: 2458-9403 

Vol. 8 Issue 10, October - 2021  

www.jmest.org 

JMESTN42353911 14694 

where 𝑗  represents the momentum of the first order 
velocity. In equation (4) and (6), all the momentum 
zeroth order and first order velocity are relaxed with 

one relaxation rate 𝜔. The main idea behind the MRT 
is to relax each moment with its relaxation rate to 
achieve better stability and accuracy. The MRT 
procedure is to map the collision term from the 
distribution space to the moment space, let them 
collide and then map the moment space back to 
distribution function, to perform the streaming step. To 
establish the mathematical steps in order to get the 
moment space, we will start from the fact that any 
function can be approximated by Taylor series or 
other polynomials. 
The distribution function can be approximated by 
using Taylor series expansion: 

𝑒𝑥 = 1 + 𝑥 +
𝑥2

2!
+
𝑥3

3!
+ ⋯ 

(7) 

 
The distribution function is: 

𝑓 =
3𝜌

2𝜋
𝑒
−

3
2(𝜉−𝑢)

2

 
(8) 

where 𝜌  is the density, the vector 𝜉  represents the 
velocity of the particle and the vector u is the 
macroscopic velocity. Equation (8) can be written as 
follows: 

𝑓 =
3𝜌

2𝜋
𝑒−
3𝜉2

2  𝑒
3(𝜉.𝑢−𝑢2)

2  
(9) 

We can use Taylor series to expand the exponential 
that contains the macroscopic velocity and truncate 
the second order and above, to get: 

𝑓 =
3𝜌

2𝜋
𝑒−
3𝜉2

2 [1 +
3

2
𝜉. 𝑢 −

3

2
𝑢2 ] 

(10) 

Hermite polynomial is a good choice to approximate 
the distribution function: 

𝐻𝑛 = (−1)𝑛 [
1

√2𝜋
𝑒−𝑥

2
]
−1 𝑑𝑛

𝑑𝑥𝑛
[
1

√2𝜋
𝑒−𝑥

2
] 

(11) 

where 𝐻𝑛 is Hermite polynomials and 𝑛 is the order of 
this polynomial. Equation (11) can be written as: 

𝐻𝑛 = (−1)𝑛[𝜔]−1
𝑑𝑛

𝑑𝑥𝑛
[𝜔] 

(12) 

where 𝜔 is the weight function. In three-dimensions, 
equation (12) can be written as: 

𝐻𝑛 = (−1)𝑛[𝜔(𝑥, 𝑦, 𝑧)]−1∇𝑛[𝜔(𝑥, 𝑦, 𝑧)] (13) 

where 𝜔(𝑥, 𝑦, 𝑧) is: 

𝜔(𝑥, 𝑦, 𝑧) =
1

(2𝜋)
3
2

𝑒−(𝑥
2+𝑦2+𝑧2) 

(14) 

Hermite polynomials corresponds to orthogonality: 

∫ 𝜔(𝑥)𝐻𝑛𝐻𝑚
∞

−∞

𝑑𝑥 = 𝑛! 𝛿𝑚𝑛 
(15) 

where 𝛿𝑚𝑛 is the Kronecker delta which is a function 
of two variables 𝑚  and 𝑛, with the function being 1 

when 𝑚 and 𝑛 are equal and 0 when 𝑚 and 𝑛 are not 
equal. Equation (15) can be extended to 3D: 

∭ 𝜔(𝑥, 𝑦, 𝑧)𝐻𝛼
𝑚𝐻𝛽

𝑛𝑑𝑥𝑑𝑦𝑑𝑧
∞

−∞

= 𝑛𝑥! 𝑛𝑦! 𝑛𝑧! 𝛿𝑚𝑛𝛿𝛼𝛽 

(16) 

where 𝛿𝛼𝛽  is 1 when 𝛼 is the permutation of 𝛽 . The 

distribution function can be approximated by using the 

Hermite polynomial as the basis functions multiplied 
by coefficients, a similar idea of the Fourier series: 

𝑓 = 𝜔(𝑥, 𝑦, 𝑧)∑
1

𝑛𝑥! 𝑛𝑦! 𝑛𝑧!

∞

𝑛=0

𝑎𝑛. 𝐻𝑛 
(17) 

The coefficient 𝑎𝑛  can be found by multiplying both 

sides with 𝐻𝑚 and integrate both sides as follows: 

∭ 𝑓𝐻𝑚𝑑𝑥𝑑𝑦𝑑𝑧
∞

−∞

= 𝑎𝑛
1

𝑛𝑥! 𝑛𝑦! 𝑛𝑧!
∑  ∭ 𝜔(𝑥, 𝑦, 𝑧)𝐻𝑛𝐻𝑚𝑑𝑥𝑑𝑦𝑑𝑧

∞

−∞

∞

𝑛=0

 

(18) 

It has a solution only when 𝑛 equals 𝑚 and 𝛼 is the 

permutation of 𝛽. Then equation (18) becomes: 

𝑎𝑛 =∭ 𝑓𝐻𝑛𝑑𝑥𝑑𝑦𝑑𝑧
∞

−∞

 
(19) 

We can assume the Hermite polynomial as a function 
of the velocity of the particles instead of the spatial 
dimensions: 

𝐻𝑛 = (−1)𝑛[𝜔(𝜉𝑥, 𝜉𝑦 , 𝜉𝑧 )]
−1
∇𝑛[𝜔(𝜉𝑥 , 𝜉𝑦, 𝜉𝑧)] 

(20) 

and equation (19) becomes: 

𝑎𝑛 =∭ 𝑓𝐻𝑛𝑑𝜉𝑥𝑑𝜉𝑦𝑑
∞

−∞

𝜉𝑧  
(21) 

which leads to: 

𝑎0 =∭ 𝑓𝐻0𝑑𝜉𝑥𝑑𝜉𝑦𝑑
∞

−∞

𝜉𝑧 → 𝑎
0

=∭ 𝑓𝑑𝜉𝑥𝑑𝜉𝑦𝑑
∞

−∞

𝜉𝑧 → 𝑎
0 = 𝜌  

(22) 

𝑎𝑥
1 =∭ 𝑓𝐻𝑥

1𝑑𝜉𝑥𝑑𝜉𝑦𝑑
∞

−∞

𝜉𝑧 → 𝑎𝑥
1

=∭ 𝑓𝜉𝑥𝑑𝜉𝑥𝑑𝜉𝑦𝑑
∞

−∞

𝜉𝑧 → 𝑎𝑥
1

= 𝜌𝑢𝑥  

(23) 

𝑎𝑦
1 =∭ 𝑓𝐻𝑦

1𝑑𝜉𝑥𝑑𝜉𝑦𝑑
∞

−∞

𝜉𝑧 → 𝑎𝑥
1

=∭ 𝑓𝜉𝑦𝑑𝜉𝑥𝑑𝜉𝑦𝑑
∞

−∞

𝜉𝑧 → 𝑎𝑦
1

= 𝜌𝑢𝑦  

(24) 

𝑎𝑧
1 =∭ 𝑓𝐻𝑧

1𝑑𝜉𝑥𝑑𝜉𝑦𝑑
∞

−∞

𝜉𝑧 → 𝑎𝑥
1

=∭ 𝑓𝜉𝑧𝑑𝜉𝑥𝑑𝜉𝑦𝑑
∞

−∞

𝜉𝑧 → 𝑎𝑧
1

= 𝜌𝑢𝑧  

(25) 

In the second order, there will be 9 configurations 
while in the third order, there will be 27 configurations. 
If we take a deep look at the resulting coefficients, we 
will find out that the coefficient of the Hermit 
polynomial equals the conserved moments, with 
zeroth order of the coefficient (zero order velocity) 
being the density, first order of coefficient being the 
first order moment etc. 
Hence, equation (21) can be discretized as follows: 

𝑎𝑛 =∑𝐻𝑖
𝑛𝑓𝑖

𝑖

  (26) 

where the coefficient 𝑎𝑛  with 𝑚𝑗  represents the 

conserved moments, the 𝐻𝑖
𝑛  with 𝑀𝑖

𝑗
represents a 

matrix 𝑗 × 𝑖 . Equation (21) can be written as follows: 
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𝑚𝑗  = ∑𝑀𝑖
𝑗
𝑓𝑖

𝑗

𝑖=0

 

 
(27) 

Equation (27) can be written in vector-matrix form: 

𝑚 = 𝑀𝑓 (28) 

If we have D3Q19, equation (28) becomes: 

(

𝑚0
..
𝑚18

) = (

𝑀0
0

..
𝑀0
18

 

.

..

.
 

.

..

.
 

𝑀18
0

..
𝑀18
18

)(

𝑓0
..
𝑓18

) 

 
 
(29) 

If we reconstruct the Lattice Boltzmann equation in 
discretized vector form: 

𝑓(𝑥 + 𝑐𝑥∆𝑡, 𝑦 + 𝑐𝑦∆𝑡, 𝑧 + 𝑐𝑧∆𝑡, 𝑡 + ∆𝑡)

− 𝑓(𝑥, 𝑦, 𝑧, 𝑡) = − 𝜔 (𝑓 − 𝑓𝑒𝑞) 
 

(30) 

we can create the matrix 𝑀  in equation (30) as 
follows: 

𝑓(𝑥 + 𝑐𝑥∆𝑡, 𝑦 + 𝑐𝑦∆𝑡, 𝑧 + 𝑐𝑧∆𝑡, 𝑡 + ∆𝑡)

− 𝑓(𝑥, 𝑦, 𝑧, 𝑡)
= −𝑀−1𝑀 𝜔 (𝑓 − 𝑓𝑒𝑞) 

 

(31) 

which leads to: 

𝑓(𝑥 + 𝑐𝑥∆𝑡, 𝑦 + 𝑐𝑦∆𝑡, 𝑧 + 𝑐𝑧∆𝑡, 𝑡 + ∆𝑡)

− 𝑓(𝑥, 𝑦, 𝑧, 𝑡)
= −𝑀−1𝜔𝐼 (𝑀𝑓 −𝑀𝑓𝑒𝑞) 

 

(32) 

which leads to: 

𝑓(𝑥 + 𝑐𝑥∆𝑡, 𝑦 + 𝑐𝑦∆𝑡, 𝑧 + 𝑐𝑧∆𝑡, 𝑡 + ∆𝑡)

− 𝑓(𝑥, 𝑦, 𝑧, 𝑡)
= −𝑀−1 S(𝑚 −𝑚𝑒𝑞) 

 

(33) 

where S is: 

(

𝜔0
0.
0

 

.
𝜔1.
.

 

.

..

.
 

0
..
𝜔18

) 

 
(34) 

Equation (33) is the workhorse for MRT method. To 
implement the MRT method, we need to determine 
two things: 

1-The matrix 𝑀 and the inverse of it. 
2-The matrix S which is the relaxation time. 

The matrix 𝑀  can be calculated from the Hermite 

polynomial where 𝑀𝑖
𝑗
 is equal to 𝐻𝑖

𝑛: 

IV. MRT IN D2Q9 

Regarding the D2Q9 model in the context of MRT, the 
M matrix is as follows: 

 

(

 
 
 
 
 
 

1 1 1 1 1 1 1 1 1
−4 −1 −1 −1 −1 2 2 2 2
4 −2 −2 −2 −2 1 1 1 1
0 1 0 −1 0 1 −1 −1 1
0 −2 0 2 0 1 −1 −1 1
0 0 1 0 −1 1 1 −1 −1
0 0 −2 0 2 1 1 −1 −1
0 1 −1 1 −1 0 0 0 0
0 0 0 0 0 1 −1 1 −1)

 
 
 
 
 
 

 

(35) 

 
 

Regarding the D2Q9 model in the context of MRT, the 
M

-1
 matrix is as follows: 

 

(

 
 
 
 
 
 
 

1/9 − 1/9 1/9 0 0 0 0 0 0
 1/9 −1/36 −1/18 1/6 −1/6 0 0 1/4 0
 1/9 −1/36 −1/18 0 0 1/6 −1/6 −1/4 0
 1/9 −1/36 −1/18 −1/6 1/6 0 0 1/4 0
 1/9 −1/36 −1/18 0 0 −1/6 1/6 −1/4 0
 1/9 1/18 1/36 1/6 1/12 1/6 1/12 0 1/4
 1/9 1/18 1/36 −1/6 −1/12 1/6 1/12 0 −1/4
 1/9 1/18 1/36 −1/6 −1/12 −1/6 −1/12 0 1/4
 1/9 1/18 1/36 1/6 1/12 −1/6 −1/12 0 −1/4)

 
 
 
 
 
 
 

 

(36) 

 
 

The moment vectors for vector m is as follows:  

𝒎 =  (𝜌, 𝑒, 𝜀, 𝑗𝑥, 𝑞𝑥, 𝑗𝑦 , 𝑞𝑦, 𝑃𝑥𝑥, 𝑃𝑥𝑦)
𝑇
  (37) 

 
The nine moments are defined as ρ being the fluid 
density, e is the energy, ε  is related to the square of 
energy, jx is the momentum of the fluid in the x-
direction, qx is moment related to flux in the x-
direction, jy is the momentum in the y-direction, qy is 
the moment related to flux in the y-direction, Pxx is the 
moment related to the stress-rate tensor term in the 
xx-direction and Pxy is the stress-rate tensor term 
related to the xy-direction. 
Moments ρ, jx and jy are the conserved moments, 
whereas e, ε, qx, qy, Pxx, Pxy are the non-conserved 
moments.  
In the Lattice Boltzmann context, in order to calculate 
the macroscopic density and velocities, we perform an 
addition of the distribution functions for the density 
and an addition of the distribution functions multiplied 
by the velocity directions at each Lattice Boltzmann 
node, as follows: 

ρ =∑𝑓𝑖

 

𝑖

 
(38) 

 

𝒋 = 𝜌𝐮 =∑𝑓𝑖𝒄𝒊

 

𝑖

 
(39) 

 
The equilibriums for the above 9 moments are as 
follows: 

𝑚0
𝑒𝑞
= 𝜌 (40) 

 

𝑚1
𝑒𝑞
= −2𝜌 + 3(𝑗𝑥

2 + 𝑗𝑦
2 ) (41) 

 

𝑚2
𝑒𝑞
= 𝜌 − 3(𝑗𝑥

2 + 𝑗𝑦
2 ) (42) 

 

𝑚3
𝑒𝑞
= 𝑗𝑥 (43) 

 

𝑚4
𝑒𝑞
= −𝑗𝑥 (44) 

         

𝑚5
𝑒𝑞
= 𝑗𝑦 (45) 

   
  

𝑚6
𝑒𝑞
= −𝑗𝑦 (46) 
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𝑚7
𝑒𝑞
= 𝑗𝑥

2 − 𝑗𝑦
2 (47) 

 

𝑚8
𝑒𝑞
= 𝑗𝑥𝑗𝑦 (48) 

        
and the momentums in the x and y-directions are 
defined as: 

j𝑥 = 𝜌𝑢𝑥 (49) 

 
j𝑦 = 𝜌𝑢𝑦 (50) 

The nine-velocity directions in two-dimensions are 
given as follows: 

𝑐 = (
0 1 0 −1 0 1 −1 −1 1
0 0 1 0 −1 1 1 −1 −1

) (51) 

 
The weights for all nine directions are as follows: 

 
(4/9 1/9 1/9 1/9 1/9 1/36 1/36 1/36 1/36) (52) 

V. FLOW PAST A CYLINDER USING THE BGK 

 
 

 
 

 

 

 

 
 

 

 
 

 
 

 
Fig. 1 Speed plot for the Poiseuille lid driven cavity flow using LB-BGK 

with uMax = 0.1 ms-1 at 0 time steps. 

 

 
Fig. 2 Speed plot for the Poiseuille lid driven cavity flow using LB-

BGK with uMax = 0.1 ms-1 at 50 time steps. 

 
Fig. 3 Speed plot for the Poiseuille lid driven cavity flow using LB-

BGK with uMax = 0.1 ms-1 at 100 time steps. 

 

 
Fig. 4 Speed plot for the Poiseuille lid driven cavity flow using LB-

BGK with uMax = 0.1 ms-1 at 150 time steps. 

 

 
Fig. 5 Speed plot for the Poiseuille lid driven cavity flow using LB-

BGK with uMax = 0.1 ms-1 at 200 time steps. 

 

 
Fig. 6 Speed plot for the Poiseuille lid driven cavity flow using LB-

BGK with uMax = 0.1 ms-1 at 250 time steps. 

 

 
Fig. 7 Speed plot for the Poiseuille lid driven cavity flow using LB-

BGK with uMax = 0.1 ms-1 at 300 time steps. 

 

 
Fig. 8 Speed plot for the Poiseuille lid driven cavity flow using LB-

BGK with uMax = 0.1 ms-1 at 350 time steps. 
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For the above simulation, the following parameters 
were used. The Reynolds number was set to 100 and 
the number of points in x and y-directions were set to 
lx=ly=400. The maximum velocity of the Poiseuille 
inflow was set to uMax=0.1 ms

-1
. The radius of the 

cylinder was r = ly / 10.0 + 1.0 and the kinematic 
viscosity alpha = uMax * 2.0 * r / Re. The equilibrium 
relaxation frequency ω was calculated by ω = 1.0 / 
(3.0 * alpha + 0.5) and the equilibrium relaxation time 

𝜏  was the inverse of ω. In this implementation, we 
have used the single relaxation BGK method.  
Below we provide a detail flow chart of the steps 
necessary to conduct a LB-BGK simulation. 
 

LB-BGK Solution Flow Chart 
1. Define number of points in x and y direction 

2. Define the lattice to use such as D2Q9  

3. Create the x and y lattice mesh point coordinates 

4. Define the weights, velocities of each x and y-

direction, as well as the opposite direction vectors 

5. Initialize macroscopic quantities such as densities 

at value rho and velocities  

6. Set uMax of the inflow and rho=1.0 

7. Set dx, dy and dt to 1 in lattice units 

8. Create a boundary condition for the inlet 

boundary and identify lattice mesh points on the 

inlet 

9. Create a boundary condition for the outlet 

boundary and identify lattice mesh points on the 

inlet 

10. Create a boundary condition for the top and 

bottom boundaries to apply no-slip boundary 

condition and identify lattice mesh points and 

mask them 

11. Define Reynolds number Re=rho*u0*L/alpha 

where alpha is viscosity and L is length of the 

cavity  

12. Calculate equilibrium relaxation frequency: ω = 

1.0 / (3.0 * alpha + 0.5); 

13. Calculate equilibrium relaxation time: 𝜏 = 1.0 / ω; 

14. Mask the boundary of the circle by setting 

position of the center of mass of the cylinder: 

obst_x = lx / 5.0 + 1.0 and obst_y = ly / 2.0 + 3.0 

15. Define number of times steps 

16. Initialize conserved variables rho and u 

17. Apply initial conditions for velocity in x-direction at 

u0 at lid  

18. Start the time loop 

19. Calculate macroscopic variables  

20. Perform collision 

21. Perform streaming  

22. Apply bounce back on west, east and south 

boundaries for no-slip boundary conditions 

23. Boundary condition on the lid needs treatment by 

applying rules on the distribution functions to 

obey mass and momentum conservation, as well 

as equal non-equilibrium moments between 

opposite directions on the boundary  

24. Calculate the macroscopic density  

25. Calculate the macroscopic momentums  

26. Divide macroscopic momentums by macroscopic 

densities to find macroscopic velocities 

27. End time loop 

VI. LID DRIVEN CAVITY FLOW USING THE MRT 

Here we show the results for the well-known lid driven 
cavity flow in two-dimensions using the LB-MRT 
model.   

 

 
Fig. 9 Speed plot for the Poiseuille lid driven cavity flow using LB-

BGK with uMax = 0.1 ms-1 at 400 time steps. 

 

 
Fig. 10 Speed plot for the Poiseuille lid driven cavity flow using 

LB-BGK with uMax = 0.1 ms-1 at 450 time steps 

 
Fig. 11 Speed plot for the Poiseuille lid driven cavity flow using LB-

BGK with uMax = 0.1 ms-1 at 500 time steps. 

 

 
Fig. 12 Speed plot for the lid driven cavity flow using LB-MRT with 

u0 = 0.1 ms-1 at 50 time steps. 
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Fig. 13 Speed plot for the lid driven cavity flow using LB-MRT with 

u0 = 0.1 ms-1 at 100 time steps. 

 

 
Fig. 14 Speed plot for the lid driven cavity flow using LB-MRT with 

u0 = 0.1 ms-1 at 200 time steps. 

 

 
Fig. 15 Speed plot for the lid driven cavity flow using LB-MRT with 

u0 = 0.1 ms-1 at 300 time steps. 

 

 
 

Fig. 16 Speed plot for the lid driven cavity flow using LB-MRT with 

u0 = 0.1 ms-1 at 400 time steps. 

 

 
Fig. 17 Speed plot for the lid driven cavity flow using LB-MRT with 

u0 = 0.1 ms-1 at 500 time steps. 

 

 
Fig. 18 Speed plot for the lid driven cavity flow using LB-MRT with 

u0 = 0.1 ms-1 at 1,000 time steps. 
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For the above simulation, the following parameters 
were used. The Reynolds number was set to 500 and 
the number of points in x and y-directions were set to 
256. The velocity of the lid was set to 0.1 ms

-1
 and the 

kinematic viscosity was calculated from 
Re=rho*u0*L/alpha, where L = 1. The equilibrium 
relaxation frequency ω was calculated by ω = 1.0 / 
(3.0 * alpha + 0.5) and the equilibrium relaxation time 

𝜏  was the inverse of ω. To achieve stability, the 
diagonal relaxation matrix S was populated with 𝜏.  
 

LB-MRT Solution Flow Chart 
1. Define number of points in x and y direction 

2. Define the lattice to use such as D2Q9  

3. Create the x and y lattice mesh points 

4. Define the weights, velocities of each x and y-

direction, as well as the opposite direction vectors 

5. Initialize macroscopic quantities such as densities 

at value rho and velocities at 0, M and M
-1

 

matrices 

6. Set uo of the lid and rho=1.0 

7. Set dx, dy and dt to 1 in lattice units 

8. Create a boundary condition for the lid and 

identify lattice mesh points on the lid 

9. Define Reynolds number Re=rho*u0*L/alpha 

where alpha is the viscosity and L is length of 

cavity  

10. Calculate equilibrium relaxation frequency: ω = 

1.0 / (3.0 * alpha + 0.5); 

11. Calculate equilibrium relaxation time: 𝜏 = 1.0 / ω; 

12. Define the diagonal matrix S (vector form) 

populated by relaxation parameters 

13. Calculate the M
-1

S 

14. Define number of times steps 

15. Initialize conserved variables rho and u 

16. Apply initial conditions for velocity in x-direction at 

u0 at lid  

17. Start the time loop 

18. Calculate equilibrium moments meq 

19. Calculate Moments m = Mf in all of the grid 

20. Perform collision in the moment space i.e. 

calculate post-collision operator f* by f*=f-M
-

1
*S[m-meq] 

21. Perform streaming  

22. Apply bounce back on west, east and south 

boundaries for no-slip boundary conditions 

23. Boundary condition on the lid needs treatment by 

applying rules on the distribution functions to 

obey mass and momentum conservation, as well 

as equal non-equilibrium moments between 

opposite directions on the boundary  

24. Calculate the macroscopic density  

25. Calculate the macroscopic momentums  

26. Divide macroscopic momentums by macroscopic 

densities to find macroscopic velocities 

27. End time loop 

 

VII. CONCLUSIONS 

In this paper, we provide firstly the incentive towards 
using Lattice Boltzmann BGK and MRT method. 
Secondly, we conducted a literature review with 
recent work on the application of LB-MRT in the 
various fields of engineering and physics. Thereafter, 
we included analytically the derivation of the LB-MRT 
method and applied BGK in flow past a cylinder and 
MRT in lid driven cavity flow and demonstrated clearly 
the necessary steps in conducting such simulations 
with the use of flowcharts, with an attempt for this 
paper to be used as a reference in conducting LB-
MRT simulations. Since the results were conducted 
on the GPUs (Tesla K80), it was found that utilizing 
the GPUs, one can produce results accurate and 
efficiently, with the potential to provide real live 
simulations, when simulated with faster GPU cards 
out there, such as the NVIDIA P100 or V100.  
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APPENDIX  

MRT IN D3Q15 

M-Matrix 
 

(

 
 
 
 
 
 
 
 
 
 
 
 

1 1 1
−2 −1 −1
16 −4 −4
0 1 −1
0 −4 4
0 0 0
0 0 0
0 0 0
0 0 0
0 2 2
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0

    

1 1 1
−1 −1 −1
−4 −4 −4
0 0 0
0 0 0
1 −1 0
−4 4 0
0 0 1
0 0 −4
−1 −1 −1
1 1 −1
0 0 0
0 0 0
0 0 0
0 0 0

        

1 1 1
−1 1 1
−4 1 1
0 1 −1
0 1 −1
0 1 1
0 1 1
−1 1 1
4 1 1
−1 0 0
−1 0 0
0 1 −1
0 1 1
0 1 −1
0 1 −1

   

1 1 1
1 1 1
1 1 1
1 −1 1
1 −1 1
−1 −1 1
−1 −1 1
1 1 −1
1 1 −1
0 0 0
0 0 0
−1 1 1
−1 −1 −1
1 −1 −1
−1 1 −1

     

1 1 1
1 1 1
1 1 1
−1 1 −1
−1 1 −1
1 −1 −1
1 −1 −1
−1 −1 −1
−1 −1 −1
0 0 0
0 0 0
−1 −1 1
−1 1 1
1 −1 1
1 1 −1

    

)
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 M−1 Matrix 
 

(

 
 
 
 
 
 
 
 
 
 
 
 
 

1/15 −1/9 2/45
1/15 −1/18 −1/90
1/15 −1/18 −1/90
1/15 −1/18 −1/90
1/15 −1/18 −1/90
1/15 −1/18 −1/90
1/15 −1/18 −1/90
1/15 1/18 1/360
1/15 1/18 1/360
1/15 1/18 1/360
1/15 1/18 1/360
1/15 1/18 1/360
1/15 1/18 1/360
1/15 1/18 1/360
1/15 1/18 1/360

    

0 0 0
1/10 −1/10 0
−1/10 1/10 0
0 0 1/10
0 0 −1/10
0 0 0
0 0 0

1/10 1/40 1/10
−1/10 −1/40 1/10
1/10 1/40 −1/10
−1/10 −1/40 −1/10
1/10 1/40 1/10
−1/10 −1/40 1/10
1/10 1/40 −1/10
−1/10 −1/40 −1/10

        

0 0 0
0 0 0
0 0 0

−1/10 0 0
1/10 0 0
0 1/10 −1/10
0 −1/10 1/10

1/40 1/10 1/40
1/40 1/10 1/40
−1/40 1/10 1/40
−1/40 1/10 1/40
1/40 −1/10 −1/40
1/40 −1/10 −1/40
−1/40 −1/10 −1/40
−1/40 −1/10 −1/40

   

0 0 0
1/6 0 0
1/6 0 0
−1/12 1/4 0
−1/12 1/4 0
−1/12 −1/4 0
−1/12 −1/4 0
0 0 1/8
0 0 −1/8
0 0 −1/8
0 0 1/8
0 0 1/8
0 0 −1/8
0 0 −1/8
0 0 1/8

     

0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
1/8 1/8 1/8
1/8 −1/8 −1/8
−1/8 1/8 −1/8
−1/8 −1/8 1/8
−1/8 −1/8 −1/8
−1/8 1/8 1/8
1/8 −1/8 1/8
1/8 1/8 −1/8

    

)
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MRT IN D3Q19 

M-Matrix 
 
 

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1 1
−30 −11

1 1
−11 −11

1 1
−11 −11

12 −4
0 1

−4 −4
−1   0

−4 −4
0 0

0 −4
0 0

4 0
0 1

0 0
−1 0

1 1
−11 8

1 1
8 8

1 1
8 8

−4 1
0 1

1 1
−1 1

1 1
−1 1

0 1
0 1

−1 1
1 −1

−1 1
−1 0

1 1
8 8

1 1
8 8

1 1
8 8

1 1
−1 1

1 1
−1 0

1 1
0 0

−1 1
0 0

−1 0
0 1

0 0
−1 1

 0 0
0 0

0 −4
0 0

4 0
0 1

0 0
0 2

0 0
2 −1

0 −4
−1 −1

0 −4
0 0

4 2
0 1

2 2
1 −1

0 1
−1 0

1 −1
0 0

−1 0
0 1

 4 0
−1 1

0 0
1 1

0 1
1 1

2 1
−1 1

1 1
1 1

1 1
1 −1

0 0
1 −1

0 1
−1 1

−1 1
1 −1

1 −1
1 1

−1 1
1 −2

1 −1
−2 −2

1 1
−1 −1

1 −2
−1  0

−2 −2
 0 0

0 0
0 0

0 −2
0 0

−2 2
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0
0
 
0
0

0 0

 
0
0

0
0

0 0
0
0

0
0

2 1
0 1

1 1
−1 −1

1 −1
1 0

0 0
0  0

0 0
0 0

0 0
0 1

0 1
0
0

−1
0

1 1
−1
0

1
0

−1 −1

  
1
0

  
0
1

−1 −1
0 0

−1 0
0 0

0 0
0 0

0 0
−1 −1

0 1
1 0

−1 −1
0 0

1 −1
0
1

 
0
−1

1 0
0
−1

1
−1

0 0
−1
−1

 
1
1

  1
8
1
0
0
−1
−`1
−1
−1
−2
−2
0
0
0
1
0
0

 
−1
1 )
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M−1 Matrix 
 

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1/19 −5/399 
1/19 −11/2394

1/21 0
−1/63 1/10

0 0
−1/10 0

1/19 −11/2394
1/19 −11/2394 

−1/63 −1/10
 −1/63   0

  
1/10 0
0 1/10

1/19 −11/2394
1/19 −11/2394

−1/63 0
−1/63 0

0 0
0 0

0 0
0 0

0 0
0 1/18

0 0
−1/18 0

0 0
−1/10 0

0 1/18
0 −1/36

−1/18 0
1/36 1/12

0 1/10
0 −1/10

−1/10 −1/36
 1/10 −1/36

1/36 1/12
1/36 −/12

0 0
0 0

0 0
0 0

0 0
0 0

0 0
−1/12 0

0 0
0 0

0 0
0 0

−1/12 0
1/12 0

0 0
0 0

0 0
0 0

1/19     −11/2394 
1/19  4/1197

−1/63 0
1/252 1/10

0 0
1/40 1/10

1/19 4/1197
1/19 4/1197 

1/252 −1/10
 1/252  1/10

−1/40  1/10
1/40 −1/10

1/19 4/1197
1/19 4/1197

1/252 −1/10
1/252 1/10

−1/40 −1/10
1/40 0

0 −1/10
1/40 0

1/10 −1/36
0 1/36

1/36 −1/12
1/72 1/12

1/40 0
−1/40 0

0 1/36
0  1/36

1/72 1/12
1/72 1/12

−1/40 0
0 1/10

0 1/36
1/40 1/36

1/72 1/12
1/72 −1/12

 

1/12 0
1/24 1/4

0 0
0 0

0 0
1/8 −1/8

1/24 −1/4
1/24 −1/4

0 0
0 0

−1/8 −1/8
1/8 1/8

1/24 1/4
−1/24 0

0 0
0  1/4

−1/8 1/8
−1/8 0

 

1/19  4/1197 
1/19  4/1197

1/252 −1/10
1/252 1/10

−1/40 0
1/40 0

1/19 4/1197
1/19 4/1197 

1/252 −1/10
 1/252  0

−1/40  0
0 1/10

1/19 4/1197
1/19
1/19

4/1197
4/1197

1/252 0
1/252
1/252

0
0

0 −1/10

0
0

1/10
−1/10

 

0 1/10
0 −1/10

1/40 1/36
−1/40 1/36

1/72 −1/12
1/72 −1/12

0 −1/10
1/40 1/10

−1/40 1/36
1/40 −1/18

1/72 −1/12
−1/36  0

−1/40 1/10
1/40
−1/40

−1/10
−1/10

1/40 −1/18
−1/40
−1/40

−1/18
−1/18

−1/36  0 
−1/36
−1/36

 
0
0

 

−1/24 0
−1/24 0

0 −1/4
0 −1/4

1/8 0
−1/8 0

−1/24 0
 0 0

0 1/4
1/4 0

1/8 0
0 1/8

 0 0

 
0
0

0
0

1/4 0
−1/4
−1/4

 
0
0

0 −1/8

 
0
0

1/8
−1/8

0
0
0
0
0
0
0
0
0
0
0
 1/8
1/8
−1/8
−1/8
−1/8

 

−1/8
1/8
1/8

)
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