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Abstract— In this paper, we present an 
introduction to the corona virus and the way the 
virus behaves and transmits between humans. We 
then conduct a literature review of the research 
conducted in the transmission and propagation of 
the corona virus using computational fluid 
dynamics. We give special emphasis on the 
methods used, and most importantly, their speed 
and accuracy. Thereafter, we present the theory 
behind corona virus transmission and explain on 
how to model corona virus propagation. A 
mathematical model capable of capturing the 
corona particle propagation, and specifically the 
infected aerosols attached to the air propagated 
particles is presented together with its 
mathematical formulation. We explain thoroughly 
the Lattice Boltzmann Multiple Relaxation Time, 
together with the Smagorinsky Large Eddy 
Simulation model used to capture the sub-grid 
turbulent dynamics. Finally, the model 
implemented in CUDA is discussed and results of 
the corona virus propagation inside a room are 
presented. We investigate different realistic 
scenarios such as having two persons in a room 
breathing and talking and we produce different 
aerosol concentration plots and air particle speed 
velocities.   

Keywords—Lattice Boltzmann; Multiple 
Relaxation Time; incompressible flows; 

I.  INTRODUCTION 

According to the World Health Organization, the 
coronavirus disease, also well known as COVID-19, is 
an infectious disease which is caused by the SARS-
CoV-2 virus. In most cases, the virus causes mild to 
moderate respiratory illness and patients recover 
without requiring any special treatment. However, in 
some cases, especially when people that are infected 
have a medical illness record, they become seriously ill 
and require medical attention, with most of them 
requiring respiratory support. It affects mainly the 
elderly people and those which suffer with 
cardiovascular disease, diabetes, chronic respiratory 
disease, or cancer, and are more likely to develop 
serious illness. The majority of the people at an elder 
age are more likely to die from such a virus, however 
the virus is mutating, affecting younger age groups and 
causing serious illness, and sometimes death, as time 
progresses due to different mutations of the virus.  

The virus is spread through an infected person’s 
mouth and nose through actions such as sneezing, 
coughing, speaking, breathing or singing. The size of 
this infectious particles which transmit the virus varies 
from large respiratory droplets to smaller aerosols. 
Even though inhalation/exhalation of particles occurs 
within 1-2 m distance, the aerosols of an infected 
person move throughout an entire room or an indoor 
space at much larger distances, and it is suspected 
that they remain air-born, even hours after the infected 
person has emptied the premises. On the other hand, 
transmission of the virus can occur through contact of 
infectious surfaces, even though it is considered less 
likely. If one wishes to limit the chance of getting 
infected from the virus, one needs to limit the exposure 
time and distances of exposure to other people and 
inside rooms that could potentially encompass 
infectious particles through respiratory action of people 
that occupied the room before or of people that are 
currently in that room.  
Since the main means of virus transmission is through 
the respiratory action, it is imperative to be able to 
comprehend the spreading of these infectious particles 
in closed rooms. Today, we have the necessary tools 
using numerical modeling to model the propagation of 
these particles and study their concentration and 
spreading inside closed rooms.  
 

II. LITERATURE REVIEW OF CORONA VIRUS CFD 

SIMULATIONS 

Due to the corona virus outbreak, there has been 
recently a number of papers related to the study of the 
corona virus. A great number of these papers focuses 
on the propagation of these infectious particles through 
simulation and specifically computational fluid 
dynamics simulations. In this section, we describe the 
work recently performed on the corona virus infection 
propagation and discuss the findings of the research 
and scientific community. 
In a paper by Mariam et al. [1], it is suggested that the 
airborne transmission of the COVID-19 virus is the 
major mode of transmission and its spatial 
transmission in an indoor typical office room is 
conducted through CFD simulation. Different 
respiratory actions are investigated of the infectious 
particles and the density profiles at a distance of 2 m in 
front of the emitter at 3 different ventilation rates (4, 6, 
and 8 air changes per hour (ACH)) were estimated for 
different combinations of inlet–outlet positions and 
emitter–receptor configurations. The authors utilize the 
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finite volume method, and specifically they solve the 
fully three-dimensional Navier-Stokes equations 
coupled with the RANS-type standard k-epsilon 
turbulence model. The study indicates that the ″rule of 
thumb based safe distance approach″ in itself is not 
adequate to prevent high concentration of particles 
persisting for long times and suggests ″air curtains″ as 
an appropriate approach to prevent prolonged high 
concentrations of infectious particles inside the room. 
Additionally, they stress that higher ventilation rate for 
better removal strategy is not always adequate to keep 
the room at low concentration rates. 
In a paper by Bhattacharyya et al. [2], they investigate 
the effectiveness of air released from air-conditioning 
machines mixed with aerosol sanitizer in an attempt to 
reach every point of the space of the isolation room so 
as to kill the COVID-19 virus and protect medical 
workers. The laminar-transitional flow is simulated 
using the transition SST k-ε model, that involves four 
transport equations. It is suggested that high turbulent 
fields could potentially be an effective way of 
distributing sanitizer effectively all across the room, in 
an attempt to kill the COVID-19 virus. 
In a paper by Obeidat [3], they use CFD simulations to 
evaluate the ventilation system design for an 
emergency department at a university hospital and 
identify the areas which were most susceptible to viral 
transmission, taking into consideration also the effect 
of pressure suction. They discovered that at critical 
areas such as overnight patient beds, surgical rooms, 
and resuscitation rooms, there was much higher air 
velocity, dispersion, and mixing levels than the rest of 
the spaces, with the possibility of the virus spreading in 
the surrounding areas to be increased. The finite 
volume method together with the k-epsilon model was 
used with 1.6 Billion mesh elements and each case 
study, lasted for 12h using the ANSYS 2020 CFX 
package.   
Blocken et al. [4] study the potential aerodynamic 
effects introduced by a moving person and investigate 
whether a nearby person at 1.5 m distance or beyond 
could cause droplet transfer to another person. 
Therefore, computational fluid dynamics simulations of 
droplet movement and evaporation and of airflow 
around a runner, are performed. The movement of 
droplets emitted by an exhaling walking or running 
person nearby another walking or running person is 
simulated with different person configurations and it is 
found that the largest exposure of a person occurs to a 
trailing person which is in line behind the leading 
person, hence suggesting to avoid running on the 
slipstream of the leading person. Another suggestion is 
to follow the 1.5 m distance rule in either staggered or 
side by side arrangement. Otherwise, it is always best 
to keep much larger distances between persons to 
allow for the aerosol droplets to diffuse or evaporate.  
Shekar et al. [5] model, using computational fluid 
dynamics, an isolation room with an 
effective ventilation system where 
a patient carrying acute air born disease is nurtured. 
The propagation of the droplets released due to 
sneezing of the patient are modeled by changing the 

various vent positions such as the  air inlet and outlets, 
by using flow across the room to direct it towards the 
outlet while maintaining a negative pressure. The 
negative strain helps in confining the air-
borne transmission of the deadly virus from spreading 
across the room and not letting them permeate outside 
the isolated region. An isolation room model has been 
studied using computational fluid dynamics, by setting 
up a discrete phase model by using injection spray 
modelling to observe the permeation of 
the virus droplets. The behavior of 
these aerosol droplets was altered by altering inlet and 
outlet locations and authors were able to minimize the 
spread of these harmful droplets by using the flow from 
the air inlet to go against the diffusing droplets.  
Dbhouk and Drikakis [6] deploy computational 
multiphase fluid dynamics and heat transfer to 
investigate the transport, dispersion, and evaporation 
of saliva particles arising from a human cough. A 
three-dimensional, fully coupled Eulerian–Lagrangian 
technique including relative humidity, turbulent 
dispersion forces, droplet phase-change, evaporation, 
and breakup in addition to the droplet–droplet and 
droplet–air interactions, is deployed. Additionally, the 
wind speed effect on social distancing is also 
investigated. It was found that the wind speed greatly 
affects the distance travelled of the droplets with a 
distance of 6 m with wind speeds varying from of 4 to 
15 km/h, whereas with no wind, the distance travelled 
was no more than the social distance recommended of 
2 m. 
There are simulations already out there that simulate 
the cough activity from humans and how this could 
affect the surrounding people. Some examples are 
people couching with and without a mask, sneezing 
and breathing close to other humans, virus spread 
while exercising, negative pressure rooms, operating 
ventilators, etc. However, there is a lack for a 
dedicated tool available to the general public that can 
be easily adjusted to anybody’s needs by drag and 
drop actions that can produce meaningful results 
easily and efficiently, even for non-engineers and 
scientists. Our ability to produce demanding COVID19 
simulations within minutes, makes us believe that 
KYAMOS tools is the new alternative to the very 
expensive software, that lack simplicity and speed, and 
the free open source software that lack friendliness 
and speed. KYAMOS software is committed in 
providing such a tool at affordable prices that can 
analyze such phenomena within minutes and not 
hours or days, using our cloud-based GPU InfiniBand 
infrastructure for convenience. 
 

III. LITERATURE REVIEW ON LATTICE BOLTZMANN 

TURBULENCE MODELS 

The LB methods have received immense interest 
recently when compared to the traditional finite 
difference, finite element and finite volume methods. 
Specifically, they provide a new attractive alternative 
which is generally applicable to transient flows. 
Instead of being based on a continuum assumption of 
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the macroscopic fluid properties, it uses a mesoscopic 
kinetic description from the Boltzmann equation. In 
contrast to the traditional methods above, there is no 
need for the solution of matrices which are ill-
conditioned and it is ideal for parallelization, especially 
on the GPUs.  

A review from Perumal et al. [7] states that the LB 
method has excellent numerical stability and 
constitutive versatility, hence receiving tremendous 
impetus with its spectacular use in incompressible and 
compressible fluid flow and heat transfer problems. 
From a computational point of view, LB equations can 
be solved locally, explicitly, and efficiently on parallel 
computers. 

Wang [8] deploys a 3D model using the LB-MRT 
method for Large Eddy Simulation of urban boundary 
layer atmospheric flows and the simulations compare 
favorably to both laboratory studies in terms of the 
mean wind fields.  Most importantly, they demonstrate 
that the numerical implementation using a GPU, show 
that real-time simulations are achieved. The Tesla 
V100 card is demonstrated to be 392 times faster than 
a single CPU processor. They discuss the fact that the 
LB is inherently adaptable to parallel processing, 
allowing one to take advantage of massively parallel 
computer architectures such as graphics processing 
units (GPUs). Moreover, they discuss that 
implementation of complex boundary conditions is 
straightforward and is easier than in classical methods 
[9] and LB has the potential to achieve real-time 
simulations on a typical desktop or laptop with a 
modern GPU for large computational domains with 
several millions of computation grid points [10], [11], 
[12], and [13]. Furthermore, the generation of 
computational grids for complex surface boundaries is 
very easy, and simple interpolation on immersed 
boundary methods can be applied [14]. 

Yasduda et al. [15] compare the Entropic LB model 
and Quasi-equilibrium LB models against LBGK 
traditional model in a two-dimensional, 
incompressible, homogenous, isotropic turbulence 
model and compare the stability, accuracy and 
computational effort. They observe enhancement of 
stability by using ELBM and QELBM. Specifically, it 
was found that in the case of simulation using coarse 
grid, ELBM is more stable, and in the case of 
simulation at high Mach regions, QELBM is more 
stable. 

Suga et al. [16] develop an accurate and robust LB 
method for calculating turbulent flows by direct and 
large eddy simulation. They utilize the D3Q27 model 
with an MRT scheme. To avoid unphysical kinks in 
turbulent quantities at grid interfaces by local mesh 
refinement, a correction method is developed.  

Jin et al. [17] couple the LB with the MRT collision 
model in three-dimensions using the D3Q19 model to 
resolve intermittent behaviors on small scales in 
isotropic turbulent flows. The high-order scaling 
exponents of the velocity structure functions, the 
probability distribution functions of Lagrangian 
accelerations, and the local energy dissipation rates, 

are investigated. This validation provides a solid basis 
for using the LB method to study more complex 
processes that are sensitive to small scales in 
turbulent flows, such as the relative dispersion of 
pollutants and mesoscale structures of preferential 
concentration of heavy particles suspended in 
turbulent flows. 

Chikatamarla et al. [18] present a three-dimensional 
direct numerical simulation (DNS) of the Kida vortex 
turbulent flow using a novel high-order LB model. It is 
shown that the LB-DNS method is a promising 
alternative for Direct Numerical Simulations (DNS), as 
it quantitatively captures all the computed statistics of 
fluid turbulence. 

Chen [19] conducts a LB simulation of a two-
dimensional turbulent flow around NACA0012 airfoil 
using the MRT method incorporated with Spalart-
Allmaras (SA) turbulence model with adaptive 
meshing. According to the results, LB gives pretty 
good predictions, and quite flexible domain size can 
be accepted, if the far field boundary condition is well 
posed. Compared to the 3D LES-LB simulations, two-
dimensional LB with SA turbulent model is of lower 
computational load, but with good accuracy. 

Youssef et al. [20] study turbulent flows around 
obstacles at high Reynolds number using the LB 
method and specifically the D2Q9 model, for modeling 
fluid flow in a horizontal channel and validated with 
Poiseuille flow. Thereafter, the scheme is applied for 
the simulation of a flow around a square cylinder 
using Large Eddy Simulation (LES) at high Reynolds 
number using the Smagorinsky model and verified 
with experimental data. 

Jahanshaloo et al. [21] perform a review of the various 
LB methods on three main groups of turbulence 
simulation: DNS, LES and RANS methods that could 
be potentially used for the simulation of turbulent flows 
in COVID19 applications, which show similar 
performance with the Navier-Stokes equations 
counterparts and are more convenient to implement 
due to their parallelable nature. 

Koda et al. [22] study a three-dimensional LB method 
for turbulent flow simulations through large eddy 
simulations (LES). In achieving this goal, the 3D LB 
code was first applied to compute the laminar flow 
over two tandem cylinders. After validating against 
literature data, the program was used to study the 
aerodynamic effects of the early 3D flow structures by 
comparing between 2D and 3D simulations. It was 
found that the span-wise instabilities have a profound 
impact on the lift and drag forces, as well as on the 
vortex shedding frequency. 

To conclude, we anticipate that the usage of state-of-
the-art software and hardware for LB-COVID19 
simulations that supports CUDA aware MPI with 
cloud-based, distributed GPU solutions will outstrip its 
conventional software counterparts, that utilize in the 
best-case scenario, desktop type GPU cards and 
pave the way for near, real-live simulations of large 
computationally intensive problems related to 
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COVID19 cough propagation, as well as other 
turbulent flow simulations in general.  
 

IV. MATHEMATICAL MODEL OF CORONA VIRUS 

SIMULATIONS 

A. Introduction 

Lattice Boltzmann MRT can be used to solve three-
types of equations, the incompressible Navier-Stokes, 
the advection-diffusion and the heat equations. Below, 
we analyze the solution of the above equations in the 
context of the LB-MRT method. 

B.  Incompressible air flow 

Regarding the air particles, we need to solve the 
incompressible Navier-Stokes equations, which are 
the continuity and momentum equations as follows: 

𝛁 ⋅ 𝒖 = 0 (1) 

 

𝜕𝒖

𝜕𝑡
+ (𝒖. 𝜵)𝒖 −  𝜵 ⋅ (𝜇𝜵𝒖) +

1

𝜌
𝜵𝑃 = 𝑭 

(2) 

where  u is the velocity, μ is the viscosity, P is the 
pressure, ρ is the density and F is the force acting on 
the body. Through Chapman-Enskog analysis, the 
incompressible Navier-Stokes equations can be 
recovered from the Lattice Boltzmann equations with 
the following assumptions:  

Since it is a common practice to use the pressure as 
an independent variable in the incompressible Navier-
Stokes equation, we introduce a local pressure 
distribution function 

𝑃 = 𝒄𝒔
𝟐 ⋅ 𝜌 (3) 

with 𝐜𝐬
𝟐 =

1

3
 in lattice units, where cs is the speed of 

sound. 

In order to conduct the LB simulations efficiently of the 
above equations, all the parameters are scaled 
according to a characteristic value and are made 
dimensionless.  

C. Incompressible aerosol flow 

The aerosols are solved using the advection-diffusion 
equation. The advection diffusion equation is: 

𝜕𝐶

𝜕𝑡
+ 𝜵 ⋅ (𝐶𝒖) − 𝜵 ⋅ (𝐷𝜵𝐶) = 𝑆 

(4) 

which can also be written as: 

𝜕𝐶

𝜕𝑡
+ 𝜵 ⋅ (𝐶𝒖) − 𝐷𝜵𝟐𝐶 = 𝑆 

(5) 

by assuming that the diffusion coefficient occurs 
homogeneously. The advection is a phenomenon as a 
result of the velocity of the fluid which transports the 
species along the streamlines of the flow, whereas the 
diffusion is a second order processes at which the 
concentration of the species spreads due to the 
differential in species concentration. These two 
phenomena can occur side by side, or only one of 
them can prevail, depending on the type of flow. 

In the above equation, C is the concentration of 
species which in this case is the aerosols particles, t is 
the time, u is the velocity of the aerosols in vector 
form, D is the homogeneous diffusion coefficient and 
S is the source term of the equation.  

One can utilize the incompressible Navier-Stokes 
equation solver for solving the advection-diffusion 
equation using the following assumptions [23]. 
Starting from the incompressible Navier-Stokes 
equations: 

𝜕(𝜌𝒖)

𝜕𝑡
+ 𝜵. (𝝆𝒖𝒖 + 𝑷𝑰) − 𝜇 𝜵𝟐(𝝆𝒖) = 𝑭 

(6) 

 

One can make the following assumptions: 

𝜌𝒖 → 𝐶, 𝜌𝒖𝒖 + 𝑷𝑰 → 𝐶𝒖, 𝝁 → 𝑫, 𝑭 → 𝑺 (7) 

which reverts to the advection-diffusion equation 
above, hence the same Lattice Boltzmann formulation 
for the incompressible Navier-Stokes can be used for 
the advection-diffusion equation, with the only 
difference that we do not have the incompressibility 
equation, hence the velocity must be input from 
another equation, which in this case, is calculated 
from the incompressible Navier-Stokes of air particles. 
In the case of the incompressible Navier-Stokes, there 
are two conserved variables, which are the density 
and the momentum, whereas in this case, it is only  
the density of the aerosol species.  It is not necessary 
in the advection-diffusion case to be 2

nd
 order 

accurate. Likewise with the incompressible Navier-
Stokes equations, but only first order accurate, 
however in our models, we utilize identical schemes of 
second order accuracy for both models. An 
assumption that the aerosols are purely passive and 
they are just dragged along with the fluid is assumed, 
without affecting the fluid flow of the air particles in the 
room, which is usually the case of a diluted species 
where any collisions between the majority carries (air 
particles) and minority carries (aerosol particles) can 
be neglected. 

D. Heat flow 

One can also use similar notation to recover the heat 
equation, when the following substitutions are 
performed: 

𝜌𝒖 → 𝑇, 𝜌𝒖𝒖 + 𝑷𝑰 → 𝑇𝒖, 𝝂 → 𝒌, 𝑭 → 𝑺 (8) 

 

to give: 

𝜕𝑇

𝜕𝑡
+ 𝜵 ⋅ (𝑇𝒖) − 𝜵 ⋅ (𝑘𝜵𝑇) = 𝑆 

(9) 

or: 

𝜕𝑇

𝜕𝑡
+ 𝜵 ⋅ (𝑇𝒖) − 𝑘𝜵𝟐𝑻 = 𝑆 

(10) 

 

where T is the temperature, k is the thermal diffusivity 
and is a property that is related to the rate of heat 
transfer through a fluid due to molecular motion. In the 
Navier-Stokes equation modeling, there is the 
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Reynolds number, which is the defining dimensionless 
number, which is also used to dictate the behavior of 
fluid flows, but also to revert between different units in 
the simulations. Similarly to the Reynolds number, in 
advection-diffusion dominated problems, one can 
define the Peclet number as follows: 

𝑃𝑒 =
𝐿𝑈

𝐷
 

(11) 

where L is the characteristic length, U the 
characteristic velocity of the flow and D the diffusion 
coefficient. The Peclet number is a ratio of advection 
and diffusion and a large number dictates that the flow 
is advection dominated, whereas a small number 
dictates that it is diffusion dominated.  

In the case of the heat equation, one can define the 
Prandtl number: 

𝑃𝑟 =
𝑣

𝑘
 (12) 

where ν is the kinematic viscosity. It is basically the 
ratio of momentum transport and heat transport. The 
Prandtl number is an example of a dimensionless 
number that is an intrinsic property of a fluid. Fluids 
with small Prandtl numbers are free-flowing liquids 
with high thermal conductivity and are therefore a 
good choice for heat conducting liquids, such as liquid 
metals [24]. 

E. Equilibrium distribution function 

It is worth noting that during the conversion of the 
incompressible Navier-Stokes to the Advection 
Diffusion Equation (ADE), only the 0

th
 moment of the 

distribution function is conserved, whereas the 1
st
 

moment of the distribution function is not conserved 
i.e. the momentum is not conserved by collision since 
it is calculated externally such as from the Navier 
Stokes equation. Regarding the equilibrium 
distribution function, one can choose two equilibrium 
for the distribution functions, one with low order 

𝑓𝑖
𝑒𝑞

= 𝑤𝑖𝐶(1 +
𝑐𝑖 . 𝒖

𝑐𝑠
2

) (13) 

 

or one with higher order accuracy:  

𝑓𝑖
𝑒𝑞

= 𝑤𝑖𝐶(1 +
𝒄𝒊. 𝒖

𝑐𝑠
2

+
(𝒄𝒊. 𝒖)2

2𝑐𝑠
4

−
𝒖. 𝒖

2𝑐𝑠
2

) 
(14) 

and the conserved macroscopic concentration C is 
recovered by: 

𝐶 = ∑ 𝑓𝑖

𝑖

 (15) 

In the corona simulations, we use the most accurate 
equilibrium function and no heat equation is included, 
hence we solve only the incompressible Navier-
Stokes equations for air particles and advection 
diffusion equations for aerosols. The heat equation is 
included in this paper only for completeness and 
future reference, if one wishes to include heating 
effects in incompressible flows. 

 

V. LARGE EDDY SIMULATION (LES) 

A. Smagorinsky 

The Smagorinsky model is the most widely used 
Large Eddy Simulation approach used in the Lattice 
Boltzmann-Multiple Relaxation simulations. It includes 
the turbulent viscosity as an extra term to the already 
existing laminar viscosity to calculate the total 
viscosity. 

𝑣𝑡𝑜𝑡 = 𝑣𝑜 + 𝑣𝑡 (16) 

The relationship between the non-dimensional 
relaxation time and the kinematic viscosity is: 

𝑣𝑜 =
1

3
(𝜏 − 0.5)𝑐2 𝛿𝑡 

(17) 

 
The turbulent viscosity is calculated to be: 

𝑣𝑡 = (𝐶𝑆𝛥)2√2 ∑ 𝑆𝑖𝑗𝑆𝑖𝑗 
(18) 

 
which results to:  

𝑣𝑡 = (𝐶𝑆𝛥)2 

√2(S𝑥𝑥S𝑥𝑥 + S𝑦𝑦S𝑦𝑦 + S𝑧𝑧S𝑧𝑧 + S𝑥𝑦S𝑥𝑦 + S𝑦𝑧S𝑦𝑧 + S𝑧𝑥S𝑧𝑥) 

(19) 

where ∆ is the discretization width or cut off length 
and is taken equal to 1 single spacing i.e. 1 in lattice 
units and Cs the Smagorinsky constant, which is taken 
equal to 0.1. The Smagorinsky constant can takes 
various values according to the problem being solved 
and it is set empirically usually varying between 0.1-
0.2. It also uses the strain rate tensor Sij which is a 
function of the spatial derivates of the filtered 
velocities as follows: 

𝑆𝑖𝑗 =
1

2
(
𝜕  𝑢

_
𝑖

𝜕𝑥𝑗
+

𝜕  𝑢
_

𝑗

𝜕𝑥𝑗
) 

 

(20) 

𝑣𝑜 + 𝑣𝑡 =
1

3
(𝜏 + 𝜏𝑒𝑑𝑑𝑦 − 0.5)𝑐2 𝛿𝑡 

(21) 

 
From above, we can conclude that: 

𝑣𝑡 =
𝜏𝑒𝑑𝑑𝑦

3
𝑐2 𝛿𝑡 (22) 

 

B. Stress-rate tensor 

 
For the D2Q9 model, the stress-rate tensors are 
calculated as follows: 

 

𝑆𝑥𝑥 =
1

4𝜌𝛿𝑡
(𝑠1 𝑚1

(1)
+ 3𝑠7𝑚7

(1)
) 

(23) 

 

𝑆𝑦𝑦 =
−1

4𝜌𝛿𝑡
(𝑠1𝑚1

(1)
− 3𝑠7𝑚7

(1)
) 

(24) 

 

𝑆𝑥𝑦 =
−3

2𝜌𝛿𝑡
(𝑠7𝑚8

(1)
) 

(25) 

 
For the D3Q15 model, the stress-rate tensors are 
calculated as follows: 
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𝑆𝑥𝑥 =
1

2𝜌𝛿𝑡
(𝑠1 𝑚1

(1)
+ 3𝑠9𝑚9

(1)
) 

(26) 

 

𝑆𝑦𝑦 =
−1

4𝜌𝛿𝑡
(2𝑠1𝑚1

(1)
− 𝑠9(𝑚9

(1)
− 3𝑚10

(1)
) 

(27) 

 

𝑆𝑧𝑧 =
−1

4𝜌𝛿𝑡
(2𝑠1𝑚1

(1)
− 𝑠9(𝑚9

(1)
+ 3𝑚10

(1)
) 

(28) 

 

𝑆𝑥𝑦 =
−3

2𝜌𝛿𝑡
(𝑠11𝑚11

(1)
) 

(29) 

 

𝑆𝑦𝑧 =
−3

2𝜌𝛿𝑡
(𝑠11𝑚12

(1)
) 

(30) 

 

𝑆𝑧𝑥 =
−3

2𝜌𝛿𝑡
(𝑠11𝑚13

(1)
) 

(31) 

 
For the D3Q19 model, the stress-rate tensors are 
calculated as follows: 
 

𝑆𝑥𝑥 =
−1

38𝜌𝛿𝑡
(𝑠1 𝑚1

(1)
+ 19𝑠9𝑚9

(1)
) 

(32) 

 

𝑆𝑦𝑦 =
−1

76𝜌𝛿𝑡
(2𝑠1𝑚1

(1)
− 19𝑠9(𝑚9

(1)
− 3𝑚11

(1)
)) 

(33) 

 

𝑆𝑧𝑧 =
−1

76𝜌𝛿𝑡
(2𝑠1𝑚1

(1)
− 19𝑠9(𝑚9

(1)
+ 3𝑚11

(1)
)) 

(34) 

 

𝑆𝑥𝑦 =
−3

2𝜌𝛿𝑡
(𝑠9𝑚13

(1)
) 

(35) 

 

𝑆𝑦𝑧 =
−3

2𝜌𝛿𝑡
(𝑠9𝑚14

(1)
) 

(36) 

 

𝑆𝑧𝑥 =
−3

2𝜌𝛿𝑡
(𝑠9𝑚15

(1)
) 

(37) 

 
In the above calculations for the strain rate tensors, 
we need to calculate derivatives of the momentums. 
In order to achieve this, we conduct forward, 
backward and center differentiation depending on the 
lattice points position. There are 27 distinct cases at 
which different derivatives should be accounted for in 
the cube box which need to be adjusted to conduct 
forward or backward differencing such as 12 sides, 8 
corner points, 6 boundary faces. The majority of the 
points are of course internal mesh points where 
central differencing is applied.  

 

C. Moments – Equilibrium and Non-Equilibrium   

 

In the context of the Lattice Boltzmann method, there 
is a particularly efficient way to compute the matrix Sij 
by calculating the non-equilibrium moments as 
follows:  

𝑓𝑛𝑒𝑞 = 𝑓 − 𝑓𝑒𝑞 (38) 

 

Equation (38) can be used to compute the non-
equilibrium moments used in the LES Smagorinsky 
model since f = Mf and feq is calculated through well-
known equations according to the stencil being used. 
Below, we summarize the equilibrium moment 
equations used for various two and three-dimensional 
stencils. 
 
D2Q9 equilibrium moments 
The moment vectors for vector m is as follows:  

𝒎 =  (𝜌, 𝑒, 𝜀, 𝑗𝑥, 𝑞𝑥, 𝑗𝑦 , 𝑞𝑦, 𝑃𝑥𝑥, 𝑃𝑥𝑦)
𝑇

  (39) 

 
where ρ is the fluid density, e is the energy, ε  is 
related to the square of energy, jx is the x-momentum, 
qx is moment related to flux in the x-direction, jy is the 
y-momentum, qy is the moment related to flux in the y-
direction, Pxx is the moment related to the stress-rate 
tensor term in the xx-direction and Pxy is the stress-
rate tensor term related to the xy direction. 
Moments ρ, jx and jy are the conserved moments, 
whereas e, ε, qx, qy, Pxx, Pxy are the non-conserved 
moments.  
The equilibriums for the above nine moments are as 
follows: 

𝑚0
𝑒𝑞

= 𝜌 (40) 

 

𝑚1
𝑒𝑞

= −2𝜌 + 3(𝑗𝑥
2 + 𝑗𝑦

2 ) (41) 

 

𝑚2
𝑒𝑞

= 𝜌 − 3(𝑗𝑥
2 + 𝑗𝑦

2 ) (42) 

 

𝑚3
𝑒𝑞

= 𝑗𝑥 (43) 

 

𝑚4
𝑒𝑞

= −𝑗𝑥 (44) 

         

𝑚5
𝑒𝑞

= 𝑗𝑦 (45) 

   
  

𝑚6
𝑒𝑞

= −𝑗𝑦 (46) 

 
 
  

𝑚7
𝑒𝑞

= 𝑗𝑥
2 − 𝑗𝑦

2 (47) 

 

𝑚8
𝑒𝑞

= 𝑗𝑥𝑗𝑦 (48) 

        
and the momentums in the x and y-directions are 
defined as: 

𝑗𝑥 = 𝜌𝑢𝑥 (49) 

 
𝑗𝑦 = 𝜌𝑢𝑦 (50) 
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D3Q15 equilibrium moments 
The moments in the D3Q15 case, are as follows: 

𝐦 = (ρ, e, ε, jx, qx, jy, qy, jz, qz, 3pxx, pww, pxy, pyz, pxz, mxyz) (51) 

where ρ is the density, e is the energy, ε is the energy 
square, j(jx, jy, jz) are the momentums in x, y, z 
directions, q(qx ,qy ,qz) is the heat fluxes, pxx, pww, pxy, 
pyz, pzx are the stresses, and mxyz is a 3

rd
 order 

moment. 
The equilibriums for the above 15 moments are as 
follows [25]: 

𝑚0
𝑒𝑞

= 𝜌 (52) 

 

𝑚1
𝑒𝑞

= −(𝜌 − 𝑟ℎ𝑜) +
1

𝑟ℎ𝑜
(𝑗𝑥

2 + 𝑗𝑦
2  + 𝑗𝑧

2 ) 
(53) 

 

𝑚2
𝑒𝑞

= −𝜌 (54) 

 

𝑚3
𝑒𝑞

= 𝑗𝑥 (55) 

 

𝑚4
𝑒𝑞

= −
7

3
𝑗𝑥 

(56) 

 

𝑚5
𝑒𝑞

= 𝑗𝑦 (57) 

 

𝑚6
𝑒𝑞

= −
7

3
𝑗𝑦 

(58) 

 

𝑚7
𝑒𝑞

= 𝑗𝑧 (59) 

 

𝑚8
𝑒𝑞

= −
7

3
𝑗𝑧 

(60) 

 

𝑚9
𝑒𝑞

=
1

𝑟ℎ𝑜
(2𝑗𝑥𝑗𝑥 − (𝑗𝑦𝑗𝑦 + 𝑗𝑧𝑗𝑧)) 

(61) 

 

𝑚10
𝑒𝑞

=
1

𝑟ℎ𝑜
(𝑗𝑦𝑗𝑦 + 𝑗𝑧𝑗𝑧) 

(62) 

 

𝑚11
𝑒𝑞

=
1

𝑟ℎ𝑜
(𝑗𝑥𝑗𝑦) 

(63) 

 

𝑚12
𝑒𝑞

=
1

𝑟ℎ𝑜
(𝑗𝑦𝑗𝑧) 

(64) 

 

𝑚13
𝑒𝑞

=
1

𝑟ℎ𝑜
𝑗𝑥𝑗𝑧 

(65) 

 

𝑚14
𝑒𝑞

= 0 (66) 

 
D3Q19 equilibrium moments 
The moments in the D3Q19 case, are as follows: 

𝒎 = (𝜌, 𝑒, 𝜀, 𝑗𝑥, 𝑞𝑥, 𝑗𝑦, 𝑞𝑦, 𝑗𝑧, 𝑞𝑧, 3𝑝𝑥𝑥 , 3𝜋𝑥𝑥, 𝑝𝑤𝑤 

𝜋𝑤𝑤 , 𝑝𝑥𝑦, 𝑝𝑦𝑧, 𝑝𝑥𝑧, 𝑚𝑥, 𝑚𝑦, 𝑚𝑧) 

(67) 

where ρ is the density, e is the energy, ε is the energy 
square, j(jx, jy, jz) are the momentums in x, y, z 
directions, q(qx ,qy ,qz) are the heat fluxes, pxx, pww, 

pxy, pyz, pzx are the stresses, and mx, my, mz are 3
rd

 
order moments and πxx and πww are fourth-order 
moments derived from products between energy 
mode and normal stress mode. 
The equilibriums for the above 19 moments are as 
follows: 

𝑚0
(1)

= 𝜌 (68) 

 

𝑚1
(1)

=
38𝛿𝑡

3𝑠1
𝜵. 𝒋 

(69) 

 

𝑚2
(1)

=
3(𝜔𝜀 + 2)𝛿𝑡

3𝑠2
𝜵. 𝒋 

(70) 

 

𝑚3
(1)

= 𝑗𝑥 (71) 

 

𝑚5
(1)

= 𝑗𝑦 (72) 

 

𝑚7
(1)

= 𝑗𝑧 (73) 

 

𝑚4
(1)

=
42𝛿𝑡

63𝑠4
𝜕𝑡𝒋 +

2(22 − 5𝜔𝑒)𝛿𝑡

63𝑠4
𝜵𝜌 

(74) 

 

𝑚6
(1)

=
42𝛿𝑡

63𝑠4
𝜕𝑡𝒋 +

2(22 − 5𝜔𝑒)𝛿𝑡

63𝑠4
𝜵𝜌 

(75) 

 

𝑚8
(1)

=
42𝛿𝑡

63𝑠4
𝜕𝑡𝒋 +

2(22 − 5𝜔𝑒)𝛿𝑡

63𝑠4
𝜵𝜌 

(76) 

 

𝑚9
(1)

=
−2𝛿𝑡

3𝑠9
(3𝜕𝑥𝑗𝑥 − 𝜵. 𝒋) 

(77) 

 

𝑚10
(1)

=
−𝛿𝑡

3𝑠10
(3𝜕𝑥𝑗𝑥 − 𝜵. 𝒋) 

(78) 

 

𝑚11
(1)

=
−2𝛿𝑡

3𝑠9
(𝜕𝑦𝑗𝑦 − 2𝜕𝑧𝑗𝑧) 

(79) 

 

𝑚12
(1)

=
−𝛿𝑡

3𝑠10

(𝜕𝑦𝑗𝑦 − 2𝜕𝑧𝑗𝑧) 
(80) 

 

𝑚13
(1)

=
−𝛿𝑡

3𝑠9
(𝜕𝑥𝑗𝑦 + 𝜕𝑦𝑗𝑥) 

(81) 

 

𝑚14
(1)

=
−𝛿𝑡

3𝑠9
(𝜕𝑦𝑗𝑧 + 𝜕𝑧𝑗𝑦) 

(82) 

 

𝑚15
(1)

=
−𝛿𝑡

3𝑠9
(𝜕𝑧𝑗𝑥 + 𝜕𝑥𝑗𝑧) 

(83) 

 

𝑚16
(1)

= 0 (84) 

 

𝑚17
(1)

= 0 (85) 
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𝑚18
(1)

= 0 (86) 

  

VI. RESULTS OF CORONA VIRUS SIMUATIONS 

 

A. Introduction 

The main reason for infectious transmission for 
corona virus is considered the small aerosols that 
attach into the air particles which remain air-born for 
long times in the room. For this purpose, we have 
decided to model their transmission and propagation 
inside a closed room of 4 x 4 x 4 m

3
 size.  

For testing purposes, we have placed a person at the 
edge of the room and assumed that is breathing from 
the mouth in and out at a characteristic frequency that 
humans inhale and exhale and study the propagation 
of the aerosols in the room. Since the aerosols are 
small particles and attach to the air particles which are 
inhaled or exhaled from the infectious person, we treat 
this simulation as a multiphysics solution which 
requires firstly the propagation of air particles inside 
the room, and secondly the aerosols which attach to 
these air-born particles. To model these two types of 
particles, one needs to solve a coupled system of 
equations and conduct a number of assumptions. 
Since the airflow inside a room is considered to be an 
incompressible flow since the Mach number of the air 
flow velocity is well below a value of Mach 0.3, we 
utilize an incompressible solver where we assume 
that the air particles have incompressible behavior. To 
study incompressible flows, one of the most promising 
techniques is the Lattice Boltzmann  method, which 
operates in the mesoscopic scale and has great 
accuracy and stability, and most importantly due its 
locality, it is highly parallelable. The incompressible 
equations for the Lattice Boltzmann will provide the air 
density and velocity of the particles. Since the air 
particles carry the aerosols inside a closed room, the 
velocity of the aerosols is identical to the velocity of 
the air particles and it is used as an input to the 
aerosol’s propagation. For the solution of the aerosol’s 
propagation, we deploy an advection-diffusion 
equation solution in the context of the Lattice 
Boltzmann, where the velocity of the aerosols is 
known.  
Whenever there is a multiphysics simulation involved, 
likewise in this case, one must consider the different 
timescales of the species or particles involved. In the 
case of COVID-19, the time scales of the two particles 
are identical, and it is not necessary to conduct 
multiple steps of one species for a single step of the 
other species, therefore at each time step, both the 
aerosols and air particle propagation are modeled and 
advanced in time.     
The model we deploy is considered a one-way 
simulation in the sense that there is no feedback from 
the aerosols back to the propagated air and only the 
other way around, hence it is a one-way effect in one 
direction i.e. from air particles to aerosols.  

The benefits of Lattice Boltzmann in scaling the 
simulations, mostly through weak scaling, by 
introducing more GPU cards, when larger domains 
are used, provides a clear advantage to other 
traditional methods used in incompressible flows 
which are those of finite difference, finite element and 
finite volume methods. 
Some assumptions are needed to be made regarding 
the respiratory action. First, one needs to assume the 
velocity of the outflow air from the mouth and also the 
breathing rate which is the frequency of breathing.  
It is extremely difficult to study the aerosol 
propagation inside a room experimentally and also 
know both the densities as well as velocities in great 
detail as time passes by. Computational modeling has 
the ability to provide real live insight into the 
propagation of these aerosols particles and give 
qualitative, but most importantly quantitative values of 
the aerosol’s physical characteristics. Different 
scenarios under different initial and boundary 
conditions can be implemented and studied in great 
fidelity both in space and time, which is impossible to 
be conducted experimentally. This is one of the 
reasons that the Computer Aided Engineering industry 
has an 8-10% growth rate, which is expected to 
increase even further, especially nowadays, where 
there is a great need for understanding of our 
environment in the mesoscopic and macroscopic 
scale to prevent global warming and prevent 
spreading of infectious diseases.  
In this paper, our intention is not to study thoroughly 
different scenarios of COVID-19 simulations, but to 
present the theory and model used for the successful 
modeling of COVID-19 simulations and demonstrate 
KYAMOS software capability to capture these 
phenomena.  
The authors intend to develop the software to be able 
to handle complex moving geometries and also treat a 
number of different boundary conditions and 
scenarios which are realistic so that real scenarios 
can thoroughly analyzed. This could potentially 
include multiple people breathing, running, coughing, 
sneezing and room boundary conditions such as open 
windows, air-conditions, air fans, connecting doors 
and multiple rooms, as well as ambient outside 
boundary conditions. These actions will be 
incorporated into a KYAMOS software module related 
to COVID-19 and will be easily and automatically set 
so that even non-engineers can build easily and 
quickly a realistic model of the COVID-19 propagation 
inside premises and assess the results, avoiding any 
science involvement from the customer.  We will 
provide drag and drop capability of different size of 
persons, doors and windows, air-conditions with 
different inflow air capabilities, ground as well as 
ceiling fans, the ability to include chairs, desks and 
offices inside the premises. Finally, we intend to 
provide dynamic boundary conditions that will change 
their behavior through time such as people walking in 
the room etc. 
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B. Relaxation parameters 

To produce the three-dimensional simulations, we 
have to choose the relaxation parameters for the MRT 
method. The parameters must obey the following 
rules: (a) sm3, sm5 and sm7 must be the same, sm4, 
sm6 and sm8 must be the same, sm10 and sm12 must 
be the same, and sm16, sm17 and sm18 are very 
important parameters and affect stability. For, sm16, 
sm17 and sm18, we have experienced stable results 
from 1.5 to 1.8 values, however anything higher, 
caused instabilities in the simulations. The values that 
were used are as follows: 

𝑠𝑚0  =  1.0 
 

(87) 

𝑠𝑚1  =  1.19 
 

(88) 

𝑠𝑚2  =  1.4 
 

(89) 

𝑠𝑚3  =  1.0 
 

(90) 

𝑠𝑚4  =  1.2 
 

(91) 

𝑠𝑚5  =  1.0 (92) 

𝑠𝑚6  =  1.2 
 

(93) 

𝑠𝑚7  =  1.0 
 

(94) 

𝑠𝑚8  =  1.2 
 

(95) 

𝑠𝑚10  =  1.4 (96) 

𝑠𝑚12  =  1.4 
 

(97) 

𝑠𝑚16  =  1.8 
 

(98) 

𝑠𝑚17 =  1.8 
 

(99) 

𝑠𝑚18  =  1.8 
 

(100) 

  
whereas sm9, sm11, sm13, sm14 and sm15 are 
calculated using the LES Smagorinsky method. 

C. Aerosol density and velocity plots when speaking 

 
In order to simulate the corona virus COVID19 
propagation, we have simulated a 4x4x4 m

3
 room with 

closed walls. In one case, two infected persons from 
COVID19 are talking, and in the other case,  they are 
breathing in the room at the same time. One of the 
persons stands at the edge left of the room facing 
right and the other person stands in the middle of the 
room also facing right. We have also placed a small 
open window on the right-side wall to see the effect 
that an open window would have on the aerosol 
propagation. We have conducted simulations with and 
without the window present. The simulation 
parameters assumed are that the kinematic viscosity 
of air is 1.5x10

-5
 m

2
s

-1
, that the maximum physical 

velocity is 0.9 ms-1 and 1.8 ms-1, respectively. The 
cross-sectional area of the mouth is assumed to be 

4.907x10
-4

 m
2
, and the volume of the mouth is 1x10

-3
 

m
-3

. During speaking, it is assumed that ¾ of the time, 
the person speaks and ¼ of the time, the person 
inhales, and that the period for the speech is 4.44 s. 
Regarding the breathing, we assume that we have a 
sinusoidal wave, with peak value of velocity of 1.4 ms

-

1
, whereas during speaking, the peak velocity is 

contact at 0.6 ms
-1

, and -1.8 ms
-1

 while inhaling, 
according to Baeuer et al. [26].  
Figs. 1-8 depict the simultaneous spreading of the 
aerosol particles in normalized values within the room, 
as time progresses in three-dimensions, when two 
people are speaking. We can see that aerosol 
particles slowly propagate within the room and the 
aerosols from the two persons speaking, quickly after 
1,000 time steps, they mix with each other. Onwards, 
a bubble is created, where it expands outwards until 
heating the walls of the room and occupies the whole 
space of the room. Thereafter, the longer the time the 
two persons speak, the higher the density of the 
aerosol concentration is in the room. Figs. 9-14 depict 
the velocity in x-direction of the air particles in 
normalized values within the room, as time 
progresses in two-dimensional plots. One can observe 
that the air particle velocity experiences slight 
turbulent behavior. Also one can observe the positive 
and negative velocity profiles of the air particles when 
exhaling and inhaling, respectively. One can see the 
air particles swirling around the mouth as expected in 
great detail and one can perform thorough direct 
comparisons of distancing of people and objects and 
draw useful conclusions of the spreading of the air 
particles inside the room.   
 

 
 

 

 

Fig. 1 Aerosol normalized  density plot within a closed wall room when 
two people are speaking at the same time at 100 time steps. 
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Fig. 2 Aerosol normalized  density plot within a closed wall room 

when two people are speaking at the same time at 1,000 time steps. 

 
Fig. 3 Aerosol normalized  density plot within a closed wall room 

when two people are speaking at the same time at 2,000 time steps. 

 
Fig. 4 Aerosol normalized  density plot within a closed wall room 

when two people are speaking at the same time at 3,000 time steps. 

 
 

Fig. 5 Aerosol normalized  density plot within a closed wall room 

when two people are speaking at the same time at 4,000 time steps. 
 

 

 
Fig. 6 Aerosol normalized  density plot within a closed wall room 

when two people are speaking at the same time at 5,000 time steps. 
 

 
Fig. 7 Aerosol normalized  density plot within a closed wall room 

when two people are speaking at the same time at 6,000 time steps. 
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Fig. 8 Aerosol normalized  density plot within a closed wall room 

when two people are speaking at the same time at 7,000 time steps. 

 

 
Fig. 9 Air velocity normalized plot within a closed wall room when 

two people are speaking at the same time at 100 time steps. 

 
Fig. 10 Air velocity normalized plot within a closed wall room when 

two people are speaking at the same time at 1,000 time steps. 

 
Fig. 11 Air velocity normalized plot within a closed wall room when 

two people are speaking at the same time at 2,000 time steps. 

 
Fig. 12 Aerosol normalized  density plot within a closed wall room 

when two people are speaking at the same time at 3,000 time steps. 

 
Fig. 13 Air velocity normalized plot within a closed wall room when 

two people are speaking at the same time at 4,000 time steps. 
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D. Aerosol density and velocity plots when breathing 

 
Fig. 15-19 depict the simultaneous spreading of the 
aerosol particles in normalized values within the room, 
when two infected people are breathing, as time 
progresses. The simulation is performed for a total 
time of 10,000 time steps. It is shown that in the 
beginning, the two persons infected aerosols’ are 
separated and then they combine into one, and slowly 
expand outwards, until they occupy the whole room, 
similarly to the case when two people are speaking. 
The simulations show that there is no great difference 
whether people are breathing or speaking and actions 
must be taken inside a room, not only to keep open 
ventilation, but to provide a more drastic means of 
extracting air to the environment, such as by using air 
fans directed towards the outlet windows or by using 
air-conditioning. To conclude, the purpose of this 
paper was not to study the corona virus propagation 
and infection/mitigation measures in detail, hence we 
have limited our simulations to minimal analysis, but 
to demonstrate the capabilities of the algorithms, 
software and hardware. We will soon be releasing an 
extremely useful tool that utilizes state of the art 
algorithms (LB-MRT with LES), software (CUDA 
aware MPI) and hardware (cloud-based InfiniBand 
GPU) for the fight of COVID19 pandemic.   
 

 

 
 

 

 
Fig. 14 Air velocity normalized plot within a closed wall room when 

two people are speaking at the same time at 5,000 time steps. 
 

 
Fig. 15 Aerosol normalized  density plot within a closed wall room 
when two people are breathing at the same time at 0 time steps. 

 
Fig. 16 Aerosol normalized  density plot within a closed wall room 

when two people are breathing at the same time at 500 time steps. 

 
Fig. 17 Aerosol normalized  density plot within a closed wall room 

when two people are breathing at the same time at 1,500 time steps. 
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VII. CONCLUSIONS 

In this paper, we provided an introduction to corona 
virus issues and a literature review on CFD 
simulations was conducted. Thereafter, a literature 
review was presented on the turbulence models used 
for Lattice Boltzmann equations. Thereafter, the 
mathematical model used to analyze the air and 
aerosol propagation in a confined room was 
presented, as well as the model for the LES 
development using the Smagorinsky model. 
Thereafter, the results of the aerosol and air 
propagation inside a room were presented, in two 
different cases, when two people are talking and when 
two people are speaking in the room. It was shown 
that our Lattice Boltzmann MRT model is capable of 
capturing the corona virus propagation using GPUs 
very efficiently, since we were able to conduct 10,000 
time steps, within only couple of minutes. We 
anticipate with the usage of faster GPU cards, the 
running times will decrease even further, paving the 
way for instant real live simulations with high fidelity in 
the future. Finally, we intend to release a specialized 
customize module within our software that will model 
efficiently the air and aerosol propagation in small, as 
well as large rooms or complexes, using our cloud 
based, InfiniBand GPU technology.   
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