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Abstract— In this paper, a hybrid of power series 

expansion and one-time seeded secant approximation 

solution to Kepler’s equation applicable to satellite with 

keplerian orbits is presented. Specifically, the estimation 

error of an existing non-iterative power series expansion 

method for computing the eccentricity anomaly, E  

keplerian orbits is considered and the estimation error 

performance is enhanced by introducing a one-time 

seeded secant approximation. The results show that for 

eccentricity, e = 0.093, at mean anomaly,  M=3 degree, 

the estimation error of E for the power series expansion 

solution is -6.43𝒙𝟏𝟎−𝟏𝟎 whereas when the result of the 

power series expansion is enhanced by the onetime 

seeded secant approximation the estimation error is -

1.05 𝒙𝟏𝟎−𝟐𝟐. In all the various values of M considered, 

the enhanced version had significant reduction in the 

estimation error. 
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1.  Introduction 

In the telecommunication industry, determination of the 

spatio-temporal location of satellites in their orbits is very 

essential [1,2,3,4,5,6,7,8,9,10,11]. Accordingly, Kepler 

provided equation that can be used to determine some of 

the key parameters for defining the spatio-temporal location 

of the satellite in their orbits. Particularly, Kepler’s 

equation is a transcendental expression for computing 

eccentricity anomaly (E) of a satellite when the mean 

motion (M) or the satellite and the eccentricity of the orbit 

are known [12,13,14,15,16,17]. Generally, iterative solution 

to Kepler’s transcendental equation is more popular. 

However, researchers has over the years tried to develop 

non-iterative solution to the Kepler’s equation 

[18,19,20,21,22,23].  

Specifically, in this paper, an existing non-iterative solution 

approach to Kepler’s equation is examined and modified to 

improve on the accuracy of its results. The original method 

used power series expansion [19] to determine the solution 

for E when M and e are given. However, given the limited 

accuracy level of the results obtained from such approach 

when compared with the results obtained from iterative 

solution, in this paper, a onetime seeded secant computation 

[24,25] is performed on the output of the power series 

expansion solution. By doing so, the accuracy of the results 

obtained is greatly improved. Some numerical examples are 

used to demonstrate the effectiveness of the proposed 

method. 

 

2. Methodology 

2.1 The power series expansion solution 

Kepler’s equation for Keplerian orbit is given as; 

𝐸 = 𝑀 +  𝑒𝑆𝑖𝑛(𝐸)         (1) 

Where E is the eccentricity anomaly, e is the eccentricity of 

the orbit and M is the mean anomaly.  In order to solve the 

Kepler’s equation without iterative approach, Mikkola [19] 

used a series expansion method along with other 

approaches to arrive at the value of E for any given values 

of M and e. Particularly, Mikkola [19]  introduced the 

variable, s and presented the series expansion of sin(s) as 

follows; 

𝑠 = sin (
𝐸

3
)        (2) 

sin−1(𝑠) =
𝑀 𝑒(3𝑠−4𝑠3)         

3
        (3) 

An 11th order power series approximation of sin−1(𝑠) by 

Mikkola [19] is given as; 

sin−1(𝑠) ≈ 𝑠 +
𝑠3

6
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A third order truncation of the power series approximation 

is given by Mikkola [19]  as; 

𝑀 = 3(1 − 𝑒)𝑠0  + (4𝑒 +
1

2
) 𝑠0
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0.07925(𝑠0
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1+𝑒
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𝑆 = 𝑠𝑖𝑛 (
�́�0

́

3
)         (11) 

𝐸 = 3(𝑠𝑖𝑛−1(𝑆))         (12) 

2.2 The one time seeded secant approximation of E 

In order to improve on the accuracy of E obtained from the 

power series expansion solution presented by Mikkola [19], 
a seeded secant iteration formula is applied once to E. In 

this case, the starting point is the value of E obtained from 

the power series expansion solution presented by Mikkola 

[19], as follows; 

�́�0 = 3(𝑠𝑖𝑛−1(𝑆))         (13) 

�́�1  = 𝑀 + 𝑒(𝑆𝑖𝑛(�́�0))         (14) 

�́�0𝑓     = �́�0 − �́�1         (15) 

�́�1𝑓   = �́�1 − (𝑀 + 𝑒(𝑆𝑖𝑛(�́�1)))         (16) 
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𝐸 =
�́�0(𝑓(�́�1))−�́�1(𝑓(�́�0))

�́�1𝑓−�́�0𝑓
         (17) 

𝑓(𝐸) = 𝐸 − 𝑀 + 𝑒(𝑆𝑖𝑛(𝐸))         (18)    
      

3. Results and Discussion 

The results of the computation S, E', E, Eact versus M in 

degree for  e = 0.093  are presented in Table 1 , Table 2 and 

Figure 1, where Eact is the actual value of E obtained 

through fixed point iteration. The results show that for e = 

0.093, at M=3 degree, the estimation error for the power 

series expansion solution is -6.43E-10 whereas when the 

result of the power series expansion is enhanced by the 

onetime seeded secant approximation the estimation error is 

-1.05E-22 . In all the various values of M considered in 

Table 1 , Table 2 and Figure 1, the enhanced version had 

significant reduction in the estimation error. 

The results of the computation S, E', E, Eact versus M in 

degree for  e = 0.53  are presented in Table 3 , Table 4 and 

Figure 2. The results show that for e = 0.53, at M=3 degree, 

the estimation error for the power series expansion solution 

is 6.7451E-04  and when the result of the power series 

expansion is enhanced by the onetime seeded secant 

approximation the estimation error is also 6.7451E-04 . 

However, as the values of M increases in Table 3, Table 4 

and Figure 2, the enhanced version had significant 

reduction in the estimation error. 

The results of the computation S, E', E, Eact versus M in 

degree for e = 0.993 are presented in Table 5 , Table 6 and 

Figure 3. The results show that for e = 0.993, at M=3 

degree, the estimation error for the power series expansion 

solution is -4.9967E-04 and when the result of the power 

series expansion is enhanced by the onetime seeded secant 

approximation the estimation error is 3.3527E-05. Again, as 

the values of M increases in Table 5, Table 6 and Figure 3, 

the enhanced version had significant reduction in the 

estimation error. 

 

 

Table 1 The results of the computation S, E', E, Eact versus M in degree for e = 0.093 

e M    M  S E' E Eact Error 

Unit Degree Radian Radian Radian Radian Radian Eact-E' Eact-E  

0.093 3 0.05236 0.019240598 0.057725 5.77E-02 0.057725 -6.43E-10 -1.05E-22 

0.093 13 0.226893 0.083201214 0.249893 2.50E-01 0.249892 -9.18E-07 -7.16E-16 

0.093 23 0.401426 0.146519976 0.441148 4.41E-01 0.441133 -1.46E-05 -3.90E-13 

0.093 33 0.575959 0.208750229 0.630891 6.31E-01 0.63081 -8.06E-05 -1.45E-11 

0.093 43 0.750492 0.269511247 0.818656 8.18E-01 0.818386 -2.71E-04 -1.69E-10 

0.093 53 0.925025 0.328496747 1.004135 1.00E+00 1.003454 -6.80E-04 -9.54E-10 

0.093 63 1.099557 0.385472084 1.187158 1.19E+00 1.185748 -1.41E-03 -3.10E-09 

0.093 73 1.27409 0.440264168 1.367679 1.37E+00 1.36513 -2.55E-03 -6.69E-09 

0.093 83 1.448623 0.492748272 1.545736 1.54E+00 1.541584 -4.15E-03 -3.03E-08 

0.093 93 1.623156 0.542834894 1.721427 1.72E+00 1.715188 -6.24E-03 5.31E-08 

 

 

Table 2 The results of the computation for  Log of Error versus M in degree for e = 0.093 

 Log of Error  

M in degree LOG(|𝐸𝑎𝑐𝑡 − 𝐸′|) LOG(|Eact − E |) 

3 -9.1917 -21.9788 

13 -6.03735 -15.1451 

23 -4.83479 -12.4089 

33 -4.09358 -10.8394 

43 -3.56742 -9.77237 

53 -3.16733 -9.02035 

63 -2.85072 -8.50907 

73 -2.59377 -8.17472 

83 -2.38173 -7.51856 

93 -2.20492 -7.27491 
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Figure 1 The graph of Log of Error versus M in degree for e = 0.093 

 

Table 3 The results of the computation S, E', E, Eact versus M in degree  for  e = 0.53 

 

e M    M  S E' E Eact Error 

Unit Degree Radian Radian Radian Radian Radian Eact-E' Eact-E  

0.53 3 0.05236 0.037040236 0.111146 1.11E-01 0.111821 6.7451E-04 6.7455E-04 

0.53 13 0.226893 0.154114474 0.464193 4.64E-01 0.464169 -2.4179E-05 1.1433E-05 

0.53 23 0.401426 0.254169408 0.770966 7.71E-01 0.770643 -3.2380E-04 3.3533E-05 

0.53 33 0.575959 0.337147006 1.031654 1.03E+00 1.03046 -1.1944E-03 1.0122E-05 

0.53 43 0.750492 0.406758472 1.256709 1.25E+00 1.254142 -2.5666E-03 5.9519E-07 

0.53 53 0.925025 0.466371752 1.455554 1.45E+00 1.451241 -4.3128E-03 -3.1706E-07 

0.53 63 1.099557 0.518406573 1.63496 1.63E+00 1.62867 -6.2895E-03 3.2747E-07 

0.53 73 1.27409 0.564538956 1.799624 1.79E+00 1.791262 -8.3617E-03 1.8245E-06 

0.53 83 1.448623 0.605943631 1.952855 1.94E+00 1.94244 -1.0414E-02 3.6437E-06 

0.53 93 1.623156 0.643464176 2.097046 2.08E+00 2.084696 -1.2350E-02 5.2394E-06 
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Table 4 The results of the computation for  Log of Error versus M in degree for e = 0.53 

 

 Log of Error 

M in 
degree 

LOG(|𝐸𝑎𝑐𝑡 − 𝐸′|) LOG(|Eact − E |) 

3 -3.17 -3.17 

13 -4.62 -4.94 

23 -3.49 -4.47 

33 -2.92 -4.99 

43 -2.59 -6.23 

53 -2.37 -6.50 

63 -2.20 -6.48 

73 -2.08 -5.74 

83 -1.98 -5.44 

93 -1.91 -5.28 

 

 
Figure 2 The graph of Log of Error versus M in degree for e = 0.53 

 

 

Table 5 The results of the computation S, E', E, Eact versus M in degree  for  e = 0.993 

e M    M  S E' E Eact Error 

Unit Degree Radian 
Radian Radian Radian Radian 

Eact-E' Eact-E  

0.993 3 0.05236 0.220177354 0.665989 6.65E-01 0.665489 -4.9967E-04 3.3527E-05 

0.993 13 0.226893 0.365879183 1.123732 1.12E+00 1.121446 -2.2859E-03 2.2447E-04 

0.993 23 0.401426 0.443947304 1.379997 1.38E+00 1.375605 -4.3918E-03 4.2517E-05 

0.993 33 0.575959 0.501270777 1.5752 1.57E+00 1.568957 -6.2433E-03 2.4612E-08 

0.993 43 0.750492 0.547664283 1.73871 1.73E+00 1.730802 -7.9084E-03 -4.6666E-07 
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0.993 53 0.925025 0.587100489 1.882417 1.87E+00 1.872958 -9.4587E-03 -5.0900E-05 

0.993 63 1.099557 0.621631809 2.012473 2.00E+00 2.001574 -1.0899E-02 -1.7188E-04 

0.993 73 1.27409 0.652473375 2.132531 2.12E+00 2.120374 -1.2157E-02 -3.0336E-04 

0.993 83 1.448623 0.680411091 2.24497 2.23E+00 2.231817 -1.3153E-02 -3.7712E-04 

0.993 93 1.623156 0.705985973 2.351443 2.34E+00 2.33759 -1.3853E-02 -3.6680E-04 

 

Table 6 The results of the computation for  Log of Error versus M in degree for e = 0.993 

 

 Log of Error 

M in 
degree 

LOG(|𝐸𝑎𝑐𝑡 − 𝐸′|) LOG(|Eact − E |) 

3 -3.30 -4.47 

13 -2.64 -3.65 

23 -2.36 -4.37 

33 -2.20 -7.61 

43 -2.10 -6.33 

53 -2.02 -4.29 

63 -1.96 -3.76 

73 -1.92 -3.52 

83 -1.88 -3.42 

93 -1.86 -3.44 

 

 
Figure 3 The graph of  Log of Error versus M in degree for e = 0.993 

 

4. Conclusion 

A non-iterative approach to solve Kepler’s equation for 

satellite with keplerian orbits is presented. The approach 

considered in the paper used onetime seeded secant method 

to enhance an already existing power series expansion 

solution result for estimating the eccentricity anomaly of 

keplerian orbits. The analytical expressions and algorithms 

for defining the power series expansion solution and the 

combined onetime seeded secant method  and power series 

expansion solution are presented. The two methods were 

implemented in Matlab software and the results showed 

that in all the cases considered, the enhanced version had 

significant reduction in the estimation error when compared 

to the error obtained with the power series expansion 

solution alone. 

 

References 

1. Zehentner, N., & Mayer-Gürr, T. (2016). 

Precise orbit determination based on raw 

-8.00

-7.00

-6.00

-5.00

-4.00

-3.00

-2.00

-1.00

0.00

0 10 20 30 40 50 60 70 80 90 100

L
o

g
 o

f 
E

rr
o

r 
 

M in Degree 

LOG(Eact-E')

LOG(Eact-E )

http://www.jmest.org/


Journal of Multidisciplinary Engineering Science and Technology (JMEST) 

ISSN: 2458-9403 

Vol. 8 Issue 4, April - 2021 

www.jmest.org 

JMESTN42353903 14195 

GPS measurements. Journal of 

Geodesy, 90(3), 275-286. 

2. Markley, F. L., & Crassidis, J. L. 

(2014). Fundamentals of spacecraft attitude 

determination and control (pp. 361-364). New 

York, NY, USA:: Springer New York. 
3. Sośnica, K. (2014). Determination of precise 

satellite orbits and geodetic parameters using 

satellite laser ranging. Astronomical Institute, 

University of Bern, Switzerland. 

4. Ippolito Jr, L. J. (2017). Satellite 

communications systems engineering: 

atmospheric effects, satellite link design and 

system performance. John Wiley & Sons. 

5. Kalabić, U., Weiss, A., & Chiu, M. (2021, 

May). Orbit Verification of Small Sat 

Constellations. In 2021 IEEE International 

Conference on Blockchain and 

Cryptocurrency (ICBC) (pp. 1-5). IEEE. 

6. Curry, J. M. (2015). A Web of Drones: A 2040 

Strategy to Reduce the United States 

Dependance on Space Based Capabilities. 

AIR WAR COLL MAXWELL AFB AL. 

7. Dai, X., Ge, M., Lou, Y., Shi, C., Wickert, J., & 

Schuh, H. (2015). Estimating the yaw-attitude 

of BDS IGSO and MEO satellites. Journal of 

Geodesy, 89(10), 1005-1018. 

8. Lowrie, W., & Fichtner, A. 

(2020). Fundamentals of geophysics. 

Cambridge university press. 

9. Tzschichholz, T., Boge, T., & Schilling, K. 

(2015). Relative pose estimation of satellites 

using PMD-/CCD-sensor data fusion. Acta 

Astronautica, 109, 25-33. 
10. Cakaj, S., Kamo, B., Lala, A., & Rakipi, A. 

(2014). The coverage analysis for low earth 

orbiting satellites at low 

elevation. International Journal of Advanced 

Computer Science and Applications, 5(6). 

11. Li, X., Ge, M., Dai, X., Ren, X., Fritsche, M., 

Wickert, J., & Schuh, H. (2015). Accuracy and 

reliability of multi-GNSS real-time precise 

positioning: GPS, GLONASS, BeiDou, and 

Galileo. Journal of Geodesy, 89(6), 607-635. 

12. López, R., Hautesserres, D., & San-Juan, J. 

F. (2018). The solution of the generalized 

Kepler's equation. Monthly Notices of the 

Royal Astronomical Society, 473(2), 2583-

2589. 

13. Scheeres, D. J. (2016). Orbital motion in 

strongly perturbed environments: applications 

to asteroid, comet and planetary satellite 

orbiters. Springer. 
14. Sánchez, M. A., Jilete, B., Setty, S. J., & 

Flohrer, T. EMPLOYING FAST ORBIT 

PREDICTION FOR OPTIMISATION OF 

SATELLITE VISIBILITY COMPUTATION. 

15. Sánchez, M. A., Jilete, B., Setty, S. J., & 

Flohrer, T. EMPLOYING FAST ORBIT 

PREDICTION FOR OPTIMISATION OF 

SATELLITE VISIBILITY COMPUTATION. 
16. Gazzino, C. (2017). Dynamics of a 

geostationary satellite (Doctoral dissertation, 

LAAS-CNRS). 

17. Furber, R. D. (2014). Kepler accuracy model 

for co-periodic satellite separation 

extrema. Celestial Mechanics and Dynamical 

Astronomy, 118(3), 273-289. 
18. Esmaelzadeh, R., & Ghadiri, H. (2014). 

Appropriate starter for solving the Kepler’s 

equation. International Journal of Computer 

Applications, 975, 8887. 

19. Oltrogge, D. L. (2015). Efficient Solutions of 

Kepler’s Equation via Hybrid and Digital 

Approaches. The Journal of the Astronautical 

Sciences, 62(4), 271-297. 
20. Ibrahim, R. H., & Saleh, A. R. H. (2019). Re-

Evaluation Solution Methods for Kepler's 

Equation of an Elliptical Orbit. Iraqi Journal of 

Science, 2269-2279. 

21. Pulido, V. R., & Álvarez, J. P. (2016, March). 

An efficient code to solve the Kepler’s 

equation for elliptic and hyperbolic orbits. 

In International Conference on Astrodynamics 

Tools and Techniques. 

22. Turner, J.D., (2007)  “A Non-Iterative Solution 

for Kepler’s Equation,” AAS 07-282, 2007 

AAS/AIAA Astrodynamics Specialist 

23.  Mortari, D., & Clocchiatti, A. (2007). Solving 

Kepler’s equation using Bézier 

curves. Celestial Mechanics and Dynamical 

Astronomy, 99(1), 45-57. 

24. Simeon, O. (2017). Development Of Strict 

Differential Seeded Secant Numerical 

Iteration Method For Computing The Semi 

Major Axis Of A Perturbed Orbit Based On 

The Anomalistic Period. Development, 1(8). 

25. Simeon, O.(2015) Analysis Of Perturbance 

Coefficient-Based Seeded Secant Iteration 

Method. Vol. 2 Issue 1, January - 2015 

 

 

http://www.jmest.org/

