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Abstract—A viscoelastic-plastic material model 
applicable to three-dimensional stress states has 
been considered as a viable alternative to 
describe the behavior of structural systems made 
of bituminous mixtures in a relatively simple way. 
Actually, this model, which takes into account 
both viscous and plastic strains, appears to be 
suitable for the numerical analysis of systems 
subjected to time-dependent loads of different 
nature, although it requires a limited number of 
parameters and can be implemented in traditional, 
robust algorithms developed for nonlinear 
materials. 

In this paper, we will make use of finite element 
meshes and, for each sample problem, will carry 
out an incremental analysis in order to compute 
the time-dependent viscous strains. To this aim, 
we will subdivide the load history into a finite 
number of time-steps. In addition, since the 
material model also includes plastic deformations, 
the computer code will exploit an iterative 
algorithm to determine the non-reversible strains 
during each time-step. 

The numerical examples will focus on the 
response of cylindrical test specimens subjected 
to compression loads, with special emphasis 
given to square-wave loading. However, static 
creep tests will also be considered, in order to 
check the response of the viscoelastic-plastic 
material model in the presence of different load 
conditions. More specifically, we will compare 
numerical results with experimental data, showing 
that a convenient choice of seven parameters can 
lead to accurate results in very different 
situations, even though the material model is 
relatively simple and can easily fit in any 
computer program designed for nonlinear 
structural analysis. 
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and isotropic stress/strain components; discrete 
numerical models; finite element method; 
repeated load axial tests; square-wave loading; 
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I. INTRODUCTION 

Viscoelastic-plastic materials have been the topic of 
research activities for several decades [1-5], but 

apparently their use in the analysis of pavements has 
been quite limited, even if today’s computational tools 
can easily deal with nonlinear problems. 

Essentially, this paper is part of a preliminary study 
on the three-dimensional analysis of viscoelastic-
plastic systems by using a material model, which is 
suitable to describe the response of bituminous 
mixtures and was discussed in a previous work [6]. 

On that occasion, we checked the performance of 
an algorithm for the estimate of parameters through 
the numerical simulation of static creep tests (i.e., by 
considering fictitious measurements and by adjusting 
some parameters in order to define a discrete model 
whose response was as close as possible to the 
experimental data). 

Here, instead, we will mostly focus on the 
performance of the same material model, when a 
repeated square-wave compression load is applied to 
a test specimen, with the aim of checking whether a 
relatively simple model can be considered for the 
structural analysis of pavements subjected to a variety 
of load conditions. 

As anticipated in the previous paragraph, the model 
we are talking about is quite simple (nonlinear, but 
characterized by only seven parameters) and assumes 
a macroscopically homogeneous, isotropic material. In 
consequence, we cannot expect extremely accurate 
results in the presence of any load condition, but some 
comparisons with experimental results suggest that the 
overall response of bituminous mixtures can be 
determined with a good degree of accuracy. Indeed, 
viscoplastic strains provide useful information about 
the time-dependent response of structural systems. On 
the contrary, it would be clearly impossible to describe 
the effects due to persistent loads or recovery or 
alternating loads by performing an elastic analysis [7-
9], as typically happens when a complex modulus or 
resilient modulus is estimated with the aim of 
introducing an average/equivalent elastic stiffness 
parameter. 

In addition, viscoelastic-plastic material models can 
simulate the permanent deformation of pavements 
(rutting) caused by repeated loads, since non-
reversible strains are taken into account. More in 
general, they can be used to study the response to 
quasi-static loads, load pulses (with convenient rest 
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periods), sinusoidal external forces and time-
dependent loads of any type. 

In the next Sections, we will compare numerical 
results with the experimental data related to a 
specimen subjected to repeated compression loads 
with a square-wave pattern. It will be shown that the 
actual response can be approximated with excellent 
accuracy. Perhaps more importantly, it will also be 
shown that it is possible to reach a compromise 
solution, which allows us to obtain satisfactory results 
in the presence of repeated loads and static creep 
tests as well, by selecting convenient values for the 
governing parameters. 

Therefore, it seems to be reasonable to assume 
that even a simple viscoelastic-plastic material model 
could be considered, whenever we are interested in a 
realistic analysis of pavements subjected to time-
dependent loads, which cannot be performed by using 
elastic models. 

II. A VISCOELASTIC-PLASTIC MATERIAL MODEL 

Here, we will give some general information about 
the viscoelastic-plastic material model, which will be 
used for the numerical tests. Further details can be 
found in a previous publication [6]. 

By assuming a macroscopically homogeneous, 
isotropic material, when viscous and plastic strains 
are considered, the stress vector can be defined as 
follows: 

       σ = σm + s = 3 K {εm–εm
P} + 2 G {e–e

P} = 

= 3 K* ξm + 2 G* d + 3 η
V
 ξm + 2 η

D
 d 

where σ and σm represent vectors of stresses and 
mean stresses, while εm and εm

P are vectors, which 
depend upon the volumetric strains εv and plastic 
volumetric strains εv

P, such that σm=3K{εm–εm
P}, if K 

denotes the bulk modulus. 

Similarly, s, e and eP represent vectors of deviatoric 
stresses, deviatoric strain and deviatoric plastic 
strains such that s=2G{e–e

P}, if G denotes the shear 
modulus. As for ξm, d, K* and G*, these quantities are 
fully analogous to εm, e, K and G, but are concerned 
with viscous strains. In addition, ηV and ηD are viscous 

coefficients, which govern the contribution to the 
stress vector given by the strain rates ξm and d. 

As usual, the stress and strain vectors will only 
include independent components. Therefore, after 
introducing the mean stress σm=(s11+s22+s33)/3, we 

have implicitly assumed the vectors σ=[σ11 σ22 σ33 σ12 

σ23 σ31]
T, σm=[σm σm σm 0 0 0]T and s=[s11 s22 s33 s12 s23 

s31]
T, as well as εm=[εv/3 εv/3 εv/3 0 0 0]T and e=[e11 e22 e33 

e12 e23 e31]
T. Of course, the vectors εm

P and ξm are 

analogous to εm, while eP and d are analogous to e. 

Since we shall need a few key relationships when 
we introduce finite element models, it is convenient to 
remind that an infinitesimal contribution to the strain 
energy per unit volume is given by σij(dεij–dεij

P) or, 
alternatively, σm(dεv–dεv

P)+sij(deij–deij
P) (with i and j 

ranging between 1 and 3). In consequence, keeping in 
mind how the vectors σm, s, εm, εm

P, e and eP have been 
defined, we shall set σm(dεv–dεv

P)=σm
T{dεm–dεm

P} for the 
isotropic components and sij(deij–deij

P)=s
T
M{de–dεP} for 

the deviatoric components, where M is a diagonal 
matrix, whose significant entries are M11=M22=M33=1 

and M44=M55=M66=2. 

It may also be of some interest to observe that 
eqns. (1), rewritten in a simplified way, would 
represent the governing equations for the mechanical 
model, which is shown in Fig. 1 and is concerned with 
a uniaxial stress state. Indeed, we can set 

Q = k (u – uP) = g u
V
 + h u

V
  (2) 

Here, u refers to the relative displacement between 
the points A and B, uP represents the non-reversible 
relative displacement that may occur in the element 
identified by a black square in Fig. 1 (element that is 
subjected to possible plastic strains) and u

V
 denotes 

viscous displacements. In addition, k and g are the 
stiffness parameters of the linear elastic springs, while 
h is a viscous coefficient. 

 
Fig. 1. Mechanical model for the viscoelastic-plastic material. 

Eqn. (2) can also be written in terms of stresses 
and strains by introducing the elastic moduli E and E*, 
together with a convenient viscous coefficient η and 
the relevant viscous strains ε*: 

σ = E (ε – εP) = E* ε* + η ε*  (3) 

It might also be interesting to observe that the 
viscous damper in parallel with a spring (on the right 
hand side of the schematic representation in Fig. 1) is 
typical of the classical Kelvin-Voigt model or Voigt 
model, which can be used to describe the behavior of 
viscoelastic systems. 

In order to use the material model discussed above 
in the framework of a finite element analysis, we can 
apply the principle of virtual displacements to each 
element. 

By following this approach, we need to compute 
some integrals concerned with the volume of every 
element and its surface (when a portion of an element 
belongs to the external surface of the discretized 
body). Thus, by observing that the scalar product 
between isotropic and deviatoric quantities is zero, we 
obtain 

{σm+s}T {δεm+M δe} dV = 

=  3K {εm–εm
P}T δεm dV +  2G {e–e

P}T M δe dV =      (4) 

= b
T δu dV + f

T δu dS 

Here, the vectors b and f refer to body forces and 
surface forces, while u denotes the displacements due 
to the reversible and non-reversible (plastic) strains. 

. 
(1) . . 

. . 

. 
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(8) 

(11) 

(5b) 

Then, by introducing a matrix of shape functions Φ, 
we can set (for each element) u=Φ uN, where uN 

collects the nodal displacements compatible with the 
reversible and non-reversible strains. 

Similarly, we can set εm=BV uN and e=BD uN, if the 

matrices BV and BD collect convenient derivatives of 

the shape functions. 

As for the plastic strains, we can consider (for each 

element) a convenient number of strain points, where 

the isotropic components εm
P and the deviatoric 

components e
P are defined. Such points are usually 

inside the element and can coincide with the points 

used for the numerical integration (e.g., Gauss points 

in the case of quadrilateral or hexahedral elements). If 

the values attained by εm
P and e

P at the strain points 

are collected into the vectors e and e, it is possible to 

introduce the relationships εm
P=ΦP e and e

P=ΦP e, 

where ΦP is another matrix of shape functions. 

At this stage, we obtain 

{σm+s}T {δεm+M δe} dV = δu
N

T [ 3K B
V

T B
V
 dV] u

N
 + 

+ δu
N

T [ 2G B
D

T M B
D
 dV] u

N
 +  (5a) 

– δu
N

T [ 3K B
V

T
 ΦP dV] e – δu

N

T [ 2G B
D

T
 M ΦP dV] e 

and, by introducing the equivalent nodal loads q
N
, 

 b
T δu dV +  f

T δu dS = 

= δu
N

T { ΦT b dV +  Φ
T f dS } = δu

N

T q
N
 

Eventually, the usual assembly process will lead to 
the governing equation 

K U – L
V
  – L

D
  = [K

V
+K

D
] U – L

V
  – L

D
  = Q (6) 

where u, ,  and Q collect the subvectors uN, e, e 

and qN, while the matrices KV, KD, LV and LD are 

obviously determined by considering the contributions 

given by the matrices obtained by solving the integrals 

on the right hand side of eqn. (5a). Of course, as 

clearly pointed out in eqn. (6), K=KV+KD. 

Eqn. (6) can also be written in incremental form: 

   K ΔU – L
V
 Δ – L

D
 Δ = ΔQ  (7) 

At each time-step, a solution that satisfies both the 

governing equation and the constitutive law can be 

found by implementing an iterative procedure. In fact, 

for a given ΔQ, we can compute a vector ΔU=ΔU1 by 

solving eqn. (7) for Δ=Δ=0. At this stage, it is 

possible to set Δ=Δ1 and Δ=Δ1, where Δ1 and 

Δ1 denote the isotropic and deviatoric components of 

the plastic strain increments, which would satisfy the 

constitutive law at the selected strain points if the 

actual incremental displacements were ΔU1. Given the 

updated vectors Δ=Δ1 and Δ=Δ1, we can solve 

eqn. (7) again and find a new vector ΔU=ΔU2. 

As obvious, a convenient termination criterion is 

needed to stop the process: for instance, it is possible 

to impose a proper threshold to the ratios a1/b1 and 

a2/b2, where a1={Δi–Δi-1}
T {Δi–Δi-1}, b1=Δi-1

T Δi-1, 

a2={Δi–Δi-1}
T {Δi–Δi-1}, b2=Δi-1

T Δi-1. 

In view of eqn. (1), we can also apply the principle 
of virtual works by considering (for each element) the 
viscous strains and the relevant, compatible nodal 
displacements û

N
. If we do so, we obtain 

{3 K* ξm + 2 G* d + 3 η
V
 ξm + 2 η

D
 d}T {δξm + M δd} dV = 

= δû
N

T q
N
 

By setting, as before, ξm=BV ûN and d=BD ûN, an 

obvious assembly process will lead to the linear 

system [SV+SD] Û+[HV+HD] Û=Q. 

In this equation, Û collects all the nodal viscous 

displacements, while the entries of the matrices SV, SD, 

HV and HD can be determined by considering the 

contributions given by the integrals on the left hand 

side of eqn. (8). More precisely, SV, SD, HV and HD are 

concerned with the integrals characterized by the 

parameters K*, G*, ηV and ηD, respectively. 

Now, we can compute the displacements due to 
viscosity by considering the following equation: 

[S
V
 + S

D
] {Ûo + ΔÛ (t–to)/Δt} + [H

V
 + H

D
] Û(t) = 

= Qo + ΔQ (t–to)/Δt} = K {Uo + ΔU (t–to)/Δt} +     (9) 

– L
V
 {o + Δ (t–to)/Δt} – L

D
 {o + Δ (t–to)/Δt} 

with totto+Δt. 

In the above equation, Uo, Ûo, Qo, o and o denote 
(known) values attained at the beginning the current 
time-step (which is supposed to occur during the time 

interval Δt), while ΔU, Δ and Δ are the increments 
that satisfy the governing equation (7) and the 
constitutive law. Clearly, the objective is to compute 
the (unknown) incremental vector ΔÛ. 

As suggested by eqn. (9), it is reasonable to 

assume a linear variation of ΔU, ΔÛ, Δ and Δ during 
the current time-step. In consequence, the relevant 
velocity Û(t) shall be constant. Therefore, we can set 
Û=ΔÛ/Δt and satisfy eqn. (9) at the time t=to+Δt/2, 

when the terms which depend on ΔU, ΔÛ, Δ and Δ 
attain their mean values. This implies the solution of 
the linear system 

          [S
V
 + S

D
] {Ûo + ½ΔÛ} + [H

V
 + H

D
] ΔÛ/Δt = 

  = K {Uo + ½ΔU} – L
V
 {o + ½Δ} – L

D
 {o + ½Δ} 

in which the only unknown is the vector ΔÛ. 

III. NUMERICAL TESTS 

The material model discussed in the previous 
Section, implemented in a finite element code, was 
applied to the analysis of a test specimen with the aim 
of comparing some numerical and experimental 
results. Namely, we considered a cylindrical specimen 
subjected to a uniformly distributed compression 

. . 

. 

. . 

. 
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force, first by performing a static creep test, next by 
imposing a repeated square-wave load. The thickness 
of the specimen was 130 mm and its radius 50 mm. 

As for the plastic strains, we only focused on time-
dependent increments, assuming that they could 
simply be proportional to the reversible strains through 

a dimensional coefficient . 

In order to do so, we simply set Δεp= (εm-εp) Δt and 

Δe
p= (e-ep) Δt, adding the condition that the plastic 

strain increments (at any strain point) could be non-

zero only when the parameter ={e+d}T
 M {e+d} 

turned out to be higher than any previous value. 

Incidentally, it may be worth noting that a more 
general model should include viscous strains, 
instantaneous elastic (reversible) and plastic (non-
reversible) strains, as well as time-dependent elastic 
and plastic strains. Instead, for the sample problems 
discussed below, we did not take into account 
instantaneous plastic strains. 

Thanks to the geometry of the test specimen and 
to the presence of planes of symmetry, it was possible 
to discretize just a small portion of the specimen, by 
using six 15-node pentahedral elements and twelve 
20-node hexahedral elements with a total number of 
128 nodes. 

With reference to Fig. 1a, we focused on the top 
portion schematically represented in grey and the 
required loads were applied to the upper surface in 
the model shown in Fig. 1b. In addition, x-
displacements, y-displacements and z-displacements 
were set equal to zero for all the nodes belonging to 
the planes x=0, y=0, and z=0, respectively. 

 
Fig. 2. Test specimen and discrete model. 

The first numerical tests were concerned with the 
square-wave repeated load, since an initial, 
reasonable estimate of the parameters was possible 
by means of a simple trial and error procedure. Of 

course, it would have been possible to obtain better 
results through a different approach, such as the one, 
which will be briefly discussed later with reference to 
static creep tests. 

In the case of square-wave loading, the influence 
of different values of the parameters can be 
immediately appreciated, as shown (for instance) by 
the graphs in Fig. 3, where we focused on the role 
played by the elastic moduli E and E*. 

Thus, for a given load sequence, we compared an 
initial solution obtained with E=1100 MPa, E*=250 

MPa, ηV=500 MPa s, ηD=5000 MPa s and =0.0053 s
-1

 

with the solutions given by changing E (set equal to 
1300 MPa) and E* (set equal to 230 Mpa). 

Note that Poisson’s ratio was assumed to be equal 
to 0.35 both for the contribution given to the 
instantaneous elastic response and for the 
contribution given to the viscoelastic response. 

As for the square-wave load, we made use of a 
load sequence measured during an actual test, when 
eighty cycles were applied by imposing compression 
surface forces that attained the value of about 0.1 
MPa in 0.015 s, remained nearly constant for 0.51 s, 
dropped to about 0.005 MPa in 0.015 s and remained 
nearly constant for 0.46 s. 

 
Fig. 3. Initial solution (solid line) compared with the solutions 
given by E=1300 MPa (dash-dotted line) and E*=230 MPa 

(dashed line). 

As shown in Fig. 3, higher values of E tend to 
reduce the largest relative displacements, while lower 
values of E* tend to increase both the largest and the 
smallest relative displacements. It can also be noted 
that the minimum values are hardly affected by the 
choice of E, since the lower solid and dash-dotted 
lines are practically coincident. 

Displacements [mm] 

Number of cycles 

http://www.jmest.org/


Journal of Multidisciplinary Engineering Science and Technology (JMEST) 

ISSN: 2458-9403 

Vol. 8 Issue 7, July - 2021  

www.jmest.org 

JMESTN42353841 14385 

 
Fig. 4. Initial solution (solid line) compared with the solutions 

given by ηD=3000 s
-1

 (dash-dotted line) and ηV=2000 s
-1

 

(dashed line). 

Next, we focused on different values of the viscous 
parameters: ηV=2000 MPa s and ηD=3000 MPa s. In 

spite of its significant increment, ηV only had minor 

consequences on the first part of the curves, as 
shown in Fig. 4, where the solid and dashed lines are 
mostly superimposed. 

Instead, lower values of ηD had the effect to 

increase both the largest and the smallest relative 
displacements. In practice, ηD and E* behave in a 

similar way, but there seems to be an interesting 
difference: lower values of ηD tend to decrease the 

radius of curvature of the plots, while lower values of 
E* tend to increase it. 

We also made a test to check the influence of the 

parameter , but we found that its role was negligible, 
since a percentage difference greater than 20% 

(=0.004 s
-1

) practically gave the same response in 
terms of minimum/maximum values. 

Next, as already pointed out, we focuses on 
experimental data obtained by considering a 
cylindrical specimen (130 mm thick with a 50 mm 
radius). The first test was carried out by imposing a 
periodic load characterized by the already mentioned 
square-wave pattern (with a compressive surface 
force ranging between 0.005 and 0.1 MPa). 
Measurements were taken every 0.001 s and the 
same time interval was used for the numerical 
analysis. 

The second test (a static creep test) involved a 
compressive surface force, which attained the value 
0.1 MPa in 4 s, decreased to 0.042 in 10 s and 
remained nearly constant for 2 s. In this case, 
measurements were taken every 0.01 s and the same 
time interval was used for the numerical analysis. On 
this occasion, we aimed at estimating parameters that 
could provide numerical results similar to the 
measured data that had been collected in both tests. 
Of course, we had to look for a compromise solution, 
since the model is relatively simple and cannot be 

expected to accurately describe any aspect of 
complex phenomena. 

 
Fig. 5. Square-wave repeated load: comparison between 

numerical results and experimental data (black solid line). 

Thus, after checking the influence of each 
parameter on both sample cases, we ended up with 
E=1100 MPa, ηV=500 MPa s, ηD=5000 MPa s and two 

possible sets of values for E* and : E*=250 MPa, 

=0.0053 s
-1

 and E*=230 MPa, =0.0049 s
-1

. 

The effects of these choices can be visually 
appreciated by examining the plots in Figs. 5 and 6, 
where the black solid lines are concerned with the 
experimental data (minimum and maximum values of 
the relative displacements during eighty cycles for the 
square-wave loading, relative displacements between 
the top and bottom surface of the cylindrical specimen 
for the static creep test). 

On the contrary, the dashed and dash-dotted lines 
correspond to the numerical responses obtained with 

E*=250 MPa, =0.0053 s
-1

 and E*=230 MPa, 

=0.0049 s
-1

, respectively. 

 
Fig. 6. Static creep test: comparison between numerical 

results and experimental data (black solid line). 

Clearly, the values E*=230 MPa and =0.0049 s
-1

 
represent a better solution for the square-wave 
loading, but imply a worse approximation for the static 
creep test. 

Displacements [mm] 

Number of steps 

Displacements [mm] 

Number of cycles 

Displacements [mm] 

Number of cycles 
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As obvious, when we wish to focus on the level of 

accuracy, it is convenient to make use of an objective 

error indicator. 

To this aim, we introduced the parameter =r with 

r=(c-m)T (c-m)/(m
T 

m), if c and m are vectors of the 

computed and measured values. More precisely, in 

this context, they must represent the minimum and 

maximum values related to each pair of plots in Fig. 5 

or the values needed for every plot in Fig. 6. 

Eventually, with reference to Fig. 5, we obtained 

=0.05618 and =0.0369 when we considered the 
results that correspond to the dashed and dash-dotted 
line, respectively. 

Instead, with reference to Fig. 6, we obtained 

=0.0696 for the numerical solution concerned with 

the dashed line and =0.0812 for the results related to 
the dash-dotted line. 

In other words, when we try to improve the 
accuracy of the numerical analysis related to the 
square-wave loading, we obtain worse results for the 
simulation of the static creep test and viceversa. 

This fact can be investigated further by looking for 
an optimal solution concerned with the static creep 
test and checking what happens if we try to simulate 
the square-wave loading case by using the same 
parameters. 

We actually estimated the optimal values of E*, ηV, 

ηD and  by considering the experimental results of 

the static creep test, by assuming E=1100 MPa (i.e., 
the elastic modulus needed to obtain a correct 
difference between the maximum and minimum 
displacements with the square-wave load) and by 
setting Poisson’s ratios equal to 0.35. 

For the estimate, we essentially made use of an 
iterative algorithm discussed in a previous work [6], 
which can be briefly describes as follows: 

1. For a given set of initial parameters, we started to 

adjust the value of E
*
 with the aim of reducing the 

error indicator ; in order to do so, we considered 

an increment 1=E
*
/2

7
>0 and kept increasing E

*
 if  

continued to decrease; similarly, if/when a greater 

value of  was found, a new increment 2=-1/2<0 

was considered; next, we set 3=-2/2>0, if/when   

began to increase, and so on; we stopped the 

process when the absolute value of the increment 

was less than the initial value of E
*
 divided by 

1,000 or when the absolute value of the difference 

between the last and the initial value of E
*
 was 

greater than the initial value of E
*
 divided by 10 

2. We did the same with the parameters ηD, ηV and  ; 

of course, during each phase of this process (i.e., 
while updating each parameter), we made use of 
the previous estimates of the other parameters 

3. After updating all the parameters for the first time, 

we defined an error indicator, say 1, in order to 

quantify the improvement due to this phase of the 
process 

4. We continued to update the same parameters by 
following the procedure describe above: each time, 
the initial value of every parameter to be modified 
was its last estimate; after estimating the fourth 

parameter, we also defined an error indicator k, 

with k=2,3,4,… 

5. The process continued until the ratio (k-1–k)/k-1 

was less than 0.0001 

We applied this procedure by considering (as initial 
values) the parameters that had been determined 
through a trial and error process and had implied the 
lower difference between the error indicators 
concerned with the square-wave loading and the 
static creep test. Thus, we set E*=250 MPa, ηV=500 

MPa s, ηD=5000 MPa s and =0.0053 s
-1

. Actually, in 

view of the plots corresponding to the dashed lines in 

Figs. 5 and 6 (characterized by =0.05618 and 

=0.0696, respectively), these parameters seemed to 
represent a sort of fair compromise. 

At the end of the parameter estimation procedure, 
we obtained the values E*=248.23 MPa, ηV=419.62 

MPa s, ηD=6730.72 MPa s and =0.00520811 s
-1

. The 

relevant error indicator turned out to be 0.0574. 

As shown in Fig. 7, the numerical response 
(dashed line) appears to represent a significant 
improvement (which can be clearly noticed), if we 
compare the relevant graph with the plots of Fig. 6. 
However (as obviously expected), the estimated 
parameters imply a poor performance, if they are 
utilized with the aim of simulating the static creep test. 

 
Fig. 7. Static creep test: comparison between the 

experimental data (black solid line) and the optimal solution. 

As a matter of fact, the response in terms of 
minimum/maximum displacements per cycle is 
reported in Fig. 8 with dashed lines and there appears 
to be an impressive difference with respect to the 
experimental data. Naturally, the extremely crude 
approximation is reflected by the value attained by the 

error indicator : =0.1443. 

Displacements [mm] 

Number of steps 
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Fig. 8. Square-wave repeated load: comparison between the 

experimental data (black solid line) and the numerical 
results obtained by using the parameters that provide an 

optimal solution for the static creep tests. 

Surely, it is worth noting that a slightly better 
compromise could be achieved by implementing a 
proper algorithm, which is aimed at estimating 
parameters that simultaneously minimize the 
difference between the error indicators concerned with 
the square-wave loading and the static creep test. 

However, the overall gain would certainly be rather 
poor, as suggested by the dash-dotted line in Fig. 6: in 
consequence of the improvement for the square-wave 

loading profile (=0.0369 instead of =0.05618 with 
E*=230 MPa in place of E*=250 MPa), we ended up 
with a definitely worse approximation for the static 

creep test (=0.0812 instead of =0.0696). 

Similarly, the optimal solution concerned with Fig. 
7 and the very bad results reported in Fig. 8, make it 
clear that a significant improvement of the numerical 
simulation of the static creep test can only lead to a 
poor performance when the square-wave load comes 
into play. 

IV CLOSING REMARKS 

The aim of this paper was a preliminary study 

(based on a comparison with experimental data) to 

investigate the potential of a viscoelastic-plastic 

material model, which is relatively simple, can be used 

with three-dimensional stress states and makes a 

clear distinction between deviatoric strains and 

volumetric strains. 

Since the research activity was carried out with the 

objective of giving a contribution in the field of 

pavement design, the experimental data were 

concerned with a cylindrical specimen which was 

made of a bituminous mixture. The relevant 

measurements were taken by considering a static 

creep test and a square-wave load. In this way, it was 

possible to check if the proposed model was actually 

able to describe the material response to different 

load conditions and, in consequence, could serve as a 

valuable alternative to more traditional elastic models, 

which can definitely be employed to assess the 

strength of a structure, but are obviously not adequate 

to simulate time-dependent phenomena. 

The numerical examples reported here confirm the 

results of a previous work [6], which showed that the 

model could describe time-dependent phenomena 

related to creep and pulse loads in an adequate way. 

Of course, it should be noticed that the model is 

relatively simple, requires a limited number of 

parameters and (in the present form) can only be 

used for macroscopically homogeneous materials. 

This means that we cannot expect to estimate a set of 

parameters, which provide excellent accuracy for any 

type of load condition. 

In consequence, even though it seems possible to 

define parameters which provide an optimal response 

for a specific load sequence, in general a compromise 

solution seems to be the best choice for general 

applications. 

In actual fact, the numerical results discussed in the 

previous Section show that the experimental measures 

concerned with a static creep test and a square-wave 

load can be approximated with a satisfactory level of 

accuracy by means of a convenient choice of the 

parameters. 

Therefore, it seems reasonable to claim that the 

model presented in this paper can be considered in 

any situation in which we are interested in studying the 

basic behavior of bituminous mixture in the presence 

of time-dependent load conditions. It is also worth 

noting that the proposed nonlinear analysis only 

requires a moderate computational effort and that 

time-dependent effects cannot be evaluated at all by 

assuming a more traditional and more elementary 

elastic material model. 

Finally, it is quite obvious that a more sophisticated 

model could be developed, with the aim of introducing 

elements which come into play in the presence of 

quasi-static loads and elements which only have an 

effect when time-dependent loads are considered. If 

we do so, more accurate results are to be expected for 

different load conditions. 
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