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Abstract—General methodology for system 
design was elaborated by means of the optimal 
control theory approach. The problem of analog 
system design can be formulated in this case as a 
classical problem of the optimal control for some 
functional minimization. In this context the aim of 
the optimal control is to result to minimum point a 
cost function of the design process and to 
minimize the total computer time. The minimal 
time system design algorithm was defined as the 
problem of functional minimization. By this 
definition the aim of the system design process 
with minimal computer time is presented as a 
transition process of some dynamic system that 
has the minimal transition time. The optimal 
sequence of the control vector switch points was 
determined as a principal characteristic of the 
minimal-time system design algorithm. The 
conception of the Lyapunov function was 
proposed to analyze the behavior of design 
process. The special function that is a 
combination of the Lyapunov function and its time 
derivative was proposed to predict the design 
time of any strategy by means of the initial time 
interval analysis. 

Keywords—System design; optimal control 
theory; circuit optimization; control vector; 
Lyapunov function 

I. INTRODUCTION 
 

The problem of the computer time reduction of a 
large system design is one of the essential problems 
of the total quality design improvement. Besides the 
traditionally used ideas of sparse matrix techniques 
and decomposition techniques [1]-[5] some another 
ways were proposed. The interaction of the circuit 
analysis block and the optimization procedure block 
forms the circuit optimization process. Optimization 
methods for systems of various natures can be 
divided into two main groups: deterministic 
optimization algorithms and stochastic search 
algorithms. Some of the weaknesses of classical 
deterministic optimization algorithms are the 
requirement for a good starting point in the parameter 
space, the difficulty of finding the global minimum, and 
a long execution time. 

 

To overcome these problems some special 
methods were developed. For example, a method that 
determines initial point of the optimization process by 
centering [6], geometric programming methods [7] that 

guarantee the convergence to a global minimum, but, 
on the other hand,  this require a special formulation 
of the design equations to which additional difficulties 
accompany. Other approach based on the idea of 
space mapping technique [8-9], which achieves a 
satisfactory solution. 

 Some alternative stochastic search algorithms, 
especially evolutionary computation algorithms, can 
solve the problem of finding the global minimum and 
have been developed in recent years. An analysis of 
various stochastic algorithms for system optimization 
allowed select some groups: simulated annealing 
method [10-12], evolutionary computing techniques 
that produce some different approaches as 
evolutionary algorithms [13-16] particle swarm 
optimization (PSO) method, GA, differential evolution, 
genetic programming. A PSO technique [17-19] is one 
of the evolutionary algorithms that competes with 
genetic algorithms. This method has been 
successfully used to solve electromagnetic problems 
and to optimize microwave systems. 

A more general formulation of the circuit 
optimisation problem was developed on a heuristic 
level some decades ago [20]. This approach ignored 
Kirchhoff’s laws for all or part of a circuit during the 
optimization process. The practical aspects of this 
idea were developed in works [21]-[22] in an extreme 
case where all the equations of the circuit were not 
solved during the optimisation process. 

The generalized approach for the analog system 
design on the basis of control theory formulation was 
elaborated in some previous works, for example [23]. 
This approach serves for the minimal-time design 
algorithm definition. On the other hand this approach 
gives the possibility to analyze with a great clearness 
the design process while moving along the trajectory 
curve into the design space. The main conception of 
this theory is the introduction of the special control 
functions, which, on the one hand generalize the 
design process and, on the other hand, they give the 
possibility to control design process to achieve the 
optimum of the design cost function for the minimal 
computer time. This possibility appears because 
practically an infinite number of the different design 
strategies that exist within the bounds of the theory. 
The different design strategies have the different 
operation number and executed computer time. As 
shown in [23] the potential computer time gain that 
can be obtained by the new design problem 
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formulation increases when the size and complexity of 
the system increase. However it is realized only in 
case when the algorithm for the optimal strategy of 
design is constructed.  

 II. PROBLEM FORMULATION 

The design process for any analog system design 
can be defined in discrete form as the problem of the 

generalized cost function  UXF ,  minimization by 

means of the equation (1) with the constraints (2): 
 

s

s

ss HtXX 1
,        (1) 

 
     01  Xgu jj

, Mj ,...,2,1 ,       (2) 
 

where 
NRX  ,  XXX  , , KRX   is the vector of 

the independent variables and the vector 
MRX   is 

the vector of dependent variables ( MKN  ),  Xg j
 

for all  j presents the system model, s is the iterations 

number, 
st is the iteration parameter, 1Rts  , 

HH(X,U) is the direction of the generalized cost 

function  UXF ,  decreasing, U is the vector of the 

special control functions  muuuU ,...,, 21 , where 

ju ;  1;0 . The generalized cost function 

 UXF ,  is defined as: 
 

     UXXCUXF ,,          (3) 
 

where  XC  is the non negative cost function of the 

design process, and  UX ,  is the additional penalty 

function: 
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This formulation of the problem permits to redistribute 
the computer time expense between the solution of 
problem (2) and the optimization procedure (1) for the 

function  UXF , . The control vector U is the main tool 

for the redistribution process in this case. Practically 
an infinite number of the different design strategies 
are produced because the vector U depends on the 
optimization procedure current step. The problem of 
the optimal design strategy search is formulated now 
as the typical problem for the functional minimization 
of the control theory. The functional that needs to 
minimize is the total CPU time T of the design 
process. This functional depends directly on the 
operations number and on the design strategy that 
has been realized. The main difficulty of this definition 
is unknown optimal dependencies of all control 

functions 
ju . 

  

 The continuous form of the problem definition is 
more adequate for the control theory application. This 
continuous form replaces Eq. (1) and can be defined 
by the next formula: 
 

 UXf
dt

dx
i

i , ,   Ni ,...,2,1         (5)       

 

 This system together with equations (2), (3) and (4) 
composes the continuous form of the design process. 
The structural basis of different design strategies that 
correspond to the fixed control vector includes 2

M
 

design strategies. The functions of the right hand part 
of the system (5) are determined for example for the 
gradient method as: 
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to  dttxi  ;  Xi  is the implicit function (  Xx ii  ) 

that is determined by (2).  

The control variables 
ju  have the time 

dependency in general case. The equation number j is 

removed from (2) and the dependent variable 
jKx 
  is 

transformed to the independent when 
ju =1. This 

independent parameter is defined by the formulas (5), 
(6'). In this case there is no difference between 
formulas (6) and (6'). On the other hand, the equation 
(5) with the right part (6') is transformed to the identity 

dt

dx

dt

dx ii  , when 
ju =0, because 

      iii

s

ii dxdttxtxxX  . It means that at 

this time moment the parameter xi  is dependent one 

and the current value of this parameter can be 
obtained from the system (2) directly. This 
transformation of the vectors X   and X    can be 
done at any time moment. 

The function  UXf ,0
 is determined as the 

necessary time for one-step integration of the system 
(5). This function depends on the concrete design 

strategy. The additional variable 0x  is determined as 

the total computer time T for the system design. It is 
necessary to find the optimal behavior of the control 

functions u j  during the design process to minimize 

the total design computer time. 

Now the analog system design process is 
formulated as a dynamic controllable system. The 
time-optimal design process can be defined as the 
dynamic system with the minimal transition time in this 
case. So we need to find the special conditions to 
minimize the transition time for this dynamic system. 
 

 III. LYAPUNOV FUNCTION OF OPTIMIZATION PROCESS 

On the basis of the analysis in previous section we 
can conclude that the minimal-time algorithm has one 
or some switch points in control vector where the 
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switching is realize among different design strategies. 
As shown in [24] it is necessary to switch the control 
vector from like modified traditional design strategy to 
like traditional design strategy with an additional 
adjusting. 

A Lyapunov function of dynamic system serves as 
a very informative object to any system analysis in the 
control theory. We suppose that the Lyapunov 
function can be used for the revelation of the optimal 
algorithm structure. First of all we can compare the 
behavior of the different design strategies by means of 
the Lyapunov function analysis. 

There is a freedom of the Lyapunov function 
choice because of a non-unique form of this function. 
Let us define the Lyapunov function of the design 
process (2)-(6) by the following expression: 

    rUXFUXV ,,          (7) 
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i ix
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2

,
,         (8) 

 

where F(X,U) is the generalized cost function of the 
design process. The formula (7) can be used when 
the general cost function is non-negative and has 
zero value at the stationary point A. Formula (8) can 

be used always because all derivatives 
ixF  /  are 

equal to zero in the stationary point A. 

We can define now the design process as a 
transition process for controllable dynamic system 
that can provide the stationary point (optimal point of 
the design procedure) during some time. The problem 
of the time-optimal design algorithm construction can 
be formulated now as the problem of the transition 
process searching with the minimal transition time. 
There is a well-known idea [25]-[26] to minimize the 
time of transition process by means of the special 
choice of the right hand part of the principal system of 
equations, in our case these are the functions 

 UXfi , . We define informative function as a 

relatively time derivative of the Lyapunov function 

VVW /


 . This function serves well to analyze a 

designing process. Below some practical examples 
were analyzed to support the ideas of developed 
methodology. 

 IV. NUMERICAL RESULTS 
 

All examples were analyzed for the continuous 
form of the optimization procedure (5). Functions V(t) 
and W(t) were the main objects of the analysis and its 
behavior has been analyzed for different strategies 
that compose the structural basis of generalized 
methodology.  

 

 Another passive nonlinear network with three 
nodes (Fig. 1) was analyzed below. The vector X 

includes seven components:
1

2

1 yx  , 
2

2

2 yx  , 
3

2

3 yx  , 

4

2

4 yx  , 
15 Vx  , 

26 Vx  , 
37 Vx  . The nonlinear 

elements have been defined by following formulas: 

 2

21111 VVbay nnn  ,  232222 VVbay nnn  . 

The model of this network (2) includes three 
equations (M=3) and the optimization procedure (5) 
includes seven equations. This network is 
characterized by three dependent parameters and the 
control vector includes three control functions: 
U=  321 ,, uuu . In this case we have a system of seven 

equations playing the role of the optimization 
algorithm.  
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The network model can be expressed by three 
nonlinear equations: 
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 This system can be transformed into the following 
one: 
 

    0,,,,,,1 7654321  xxxxxxxgu jj
, j =1,2,3.    (11)  

 

 The structural basis of design strategies includes 
eight design strategies: 000, 001, 010, 011, 100, 101, 
110 and 111. The results of the analysis of complete 
structural basis of different strategies of designing for 

network in Fig. 1 and initial point 10 ix , i = 

1,2,…,7 are shown in Table 1. The behavior of the 
functions V(t) and W(t) for this network is shown in 
Fig. 2.  
 

 We can conclude that for this example the speed 
of decreasing of the Lyapunov function is inversely 
proportional to the design time. 
 
 

 
Fig. 1. Three-node nonlinear passive network. 
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TABLE I. DATA OF COMPLETE STRUCTURAL BASIS OF DESIGNING 

STRATEGIES 

_______________________________________ 
         N           Control           Iterations   CPU 
                        vector            number      time (s) 

_______________________________________ 
1  ( 0 0 0 ) 104961        5.721 
2  ( 0 0 1 ) 270001        5.660 
3  ( 0 1 0 ) 74428        1.652 
4  ( 0 1 1 ) 80317        0.931 
5  ( 1 0 0 ) 102500        2.534 
6  ( 1 0 1 ) 253473        4.342 
7  ( 1 1 0 ) 157583        2.633 
8  ( 1 1 1 ) 246776        1.921 

_______________________________________ 
 
 

 
 

Fig. 2.  Behavior of the functions V(t) and W(t) for eight 

design strategies during the design process. 
 
 The minimal value of the Lyapunov function that 
corresponds to the maximum precision is in the limits 
from 1.210-5 for strategy 000 to 5.910-5 for strategy 
111. We can see from Fig. 2 that a large absolute 
value of the function W(t) corresponds to a more rapid 
decreasing of the function V(t) and a smaller 
computer design time. The strategies 3, 4, 5, 7 and 8 
have a large value of the function W(t) during all 
design process till a small value of the function V(t). 
That is why these strategies have a relative little 
computer time. 
 

 Other example corresponds to the passive 
nonlinear network with four nodes (Fig. 3).  
The vector X includes nine components. Five 
components correspond to the admittances 

 54321 ,,,, xxxxx , where 
1

2

1 yx  , 
2

2

2 yx  , 
3

2

3 yx  , 

4

2

4 yx  , 
5

2

5 yx  , and four parameters are the nodal  

voltages  9876 ,,, xxxx , where 
16 Vx  , 

27 Vx  , 

38 Vx  , 
49 Vx  , The nonlinear elements are defined 

as:  221111 VVbay nnn  ,  232222 VVbay nnn  . The 

control vector U includes nine components 

 921 ,...,, uuu . 

 
 

Fig. 3. Four-node nonlinear passive network. 
 
 The model of circuit (2) includes 4 equations and 
functions  Xg j

 are defined by the next system:  
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 The optimization procedure (1) includes nine 
equations. The cost function C(X) of the design 
process is defined by the following form: 

       2287

2

176

2

09 kxxkxxkxXC  . 
 

 The results of the analysis of complete structural 
basis of different strategies of designing for network in 
Fig. 3 are shown in Table 2. The behavior of the 
functions V(t) and W(t) for the complete set of 
structural basis is shown in Fig. 4. 
 

TABLE 2. DATA OF COMPLETE STRUCTURAL BASIS OF DESIGNING 

STRATEGIES FOR NETWORK IN FIG. 3 
_____________________________________ 

        N           Control         Iterations     CPU 
                      vector         number        time (s) 

_____________________________________ 
1   ( 0 0 0 0 ) 32371          5.441 
2   ( 0 0 0 1 ) 31726          2.970 
3   ( 0 0 1 0 ) 11598          1.263 
4   ( 0 0 1 1 ) 21486          0.611 
5   ( 0 1 0 0 ) 33846          3.574 
6   ( 0 1 0 1 ) 41960          1.162 
7   ( 0 1 1 0 ) 18223          0.491 
8   ( 0 1 1 1 ) 37651          0.885 
9   ( 1 0 0 0 ) 33136          3.572 
10   ( 1 0 0 1 ) 61377          1.762 
11   ( 1 0 1 0 ) 27278          0.834 
12   ( 1 0 1 1 ) 11582          0.271 
13   ( 1 1 0 0 ) 44656          1.257 
14   ( 1 1 0 1 ) 46412          1.113 
15   ( 1 1 1 0 ) 19478          0.330 
16   ( 1 1 1 1 ) 41384          0.553 

_____________________________________ 
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(a) 

 

(b) 

Fig. 4.  Behavior of the functions V(t) and W(t) for all 
strategies of structural basis during the design.  

 
We can see that the processor time of each 

strategy is inverse proportional of the absolute value 
of the function W(t). 

 

 Next example corresponds to the one-stage 
transistor amplifier in Fig. 5.  

The vector X includes six components:
1

2

1 yx  , 

2

2

2 yx  , 
3

2

3 yx  , 
14 Vx  , 

25 Vx  , 
66 Vx  . The 

model of this network (2) includes three equations  
(M=3) and the optimization procedure (5) includes six 
equations. The total structural basis contains eight 
different strategies. The control vector includes three 

control functions: U=  321 ,, uuu . The Ebers-Moll static 

model of the transistor has been used [27]. The 
results of the analysis of complete structural basis of 
the design strategies are shown in Table 3. 
 

 
Fig. 5. One-stage transistor amplifier. 

TABLE 3. DATA OF COMPLETE STRUCTURAL BASIS OF DESIGNING 

STRATEGIES FOR NETWORK IN FIG. 5 
   ________________________________________  
     N Control Iterations CPU 
     vector  number time (s) 
   ________________________________________ 
     1 ( 0 0 0 )  7683758 518.22 
     2 ( 0 0 1 )  45900  2.42 
     3 ( 0 1 0 )  1151505 60.14 
     4 ( 0 1 1 )  47464  2.53 
     5 ( 1 0 0 )  109784  5.87 
     6 ( 1 0 1 )  4753  0.25 
     7 ( 1 1 0 )  303579  14.83 
     8 ( 1 1 1 )  4940  0.08 
   ________________________________________
    

 Fig. 6 shows the behavior of the functions V(t) and 
W(t) for a time interval when the majority of the design 
strategies are finished. 
 

 The strategies with control vector 101 and 111 
have extremely large value of the relative derivative 
W(t) from the beginning of the design process and that 
is why the Lyapunov function is decreases very 
rapidly.  The relative design time is very small for two 
these strategies and it is equal to 0.00048 and 
0.00015 accordingly. The strategies with the control 
vector 001, 011 and 100 have the sufficient level of 
the function W during the analyzed interval and the 
relative design time is equal to 0.0054, 0.0061 and 
0.0114 accordingly. Nevertheless three other design 
strategies with the control vector 000, 010 and 110 are 
not finished during the presented interval. 
 

 It occurs because the function W for these 
strategies decreases rapidly while the Lyapunov 
function had a relatively large value. After this the 
Lyapunov function decreases very slowly and the 
relative design time is equal to 1.0, 0.116 and 0.029 
accordingly. 
  

 Other example corresponds to the two-stage 
transistor amplifier in Fig. 7. This network is 
characterized by five dependent parameters and the 
control vector includes five control functions: U = 

(
54321 ,,,, uuuuu ).   The structural basis consists of 

32 design strategies. The results of the analysis of 
some design strategies from the structural basis are 
shown in Table 4. 

 
Fig. 6.  Behavior of the functions V(t) and W(t) for all 

strategies of structural basis during the design process for 
network in Fig. 5. 
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Fig. 7. Two-stage transistor amplifier. 
 

TABLE 4. DATA OF COMPLETE STRUCTURAL BASIS OF DESIGNING 

STRATEGIES FOR NETWORK IN FIG. 7 
_____________________________________ 

       N         Control      Iterations     CPU 
            vector      number        time (s) 

_____________________________________ 
     1        (0 0 0 0 0)      165962 299.56 
     2        (0 0 0 0 1)      337487 737.55 
     3        (0 0 1 0 0)      44118 68.87 
     4        (0 0 1 0 1)      14941 19.06 
     5        (0 0 1 1 1)      21971 22.03 
     6        (0 1 1 0 1)      4544 4.56 
     7        (1 0 1 0 1)      2485 1.65 
     8        (1 0 1 1 1)      7106 3.57 
     9        (1 1 1 0 1)      2668 1.32 
    10        (1 1 1 1 1)      79330 10.11 

_____________________________________ 
 

 The behavior of the functions V(t) and W(t) for 
these strategies is shown in Fig. 8.  
 These graphs correspond to a time interval when 
the majority of the design strategies are finished. The 
strategies 6, 7, 8 and 9 have a large value of the 
relative derivative W(t) from the initial of the design 
process. This property provides extremely fast 
decreasing of the Lyapunov function. The design time 
for these design strategies is presented in Table 4. 
We can see that just these strategies 6, 7, 8 and 9 
have the design time lesser than other strategies. The 
strategies 4, 5 and 10 have an average value of the 
function W in the initial part of the design process and 
these strategies have an average value of the design 
time. At last, the strategies 1, 2 and 3 have a large 
design time and just these strategies have a very fast  

 

 
Fig. 8.  Behavior of the functions V(t) and W(t) for some 

strategies for circuit in Fig. 7. 

decreasing of the function W during initial part of the 
design process. 
 

 The analysis of the three-stage amplifier of Fig. 9 
shows very similar results. These results are 
presented below in Table 5 and Fig. 10. Functions 
V(t) and W(t) were the main objects of the analysis 
and have been analyzed for some strategies that 
compose the structural basis of the general  
methodology. Fig. 10 shows the behavior of the 
functions V(t) and W(t) for some design strategies. 
These graphs correspond to a time interval when the 
majority of the design strategies are finished. 
 

 
 

Fig. 9. Three-stage transistor amplifier. 
 
 

TABLE 5. DATA OF SOME DESIGN STRATEGIES FOR THREE-STAGE 

AMPLIFIER 
________________________________________ 
  N       Control    Iterations CPU 
            Vector    number time (s) 
________________________________________ 
  1      ( 0 0 0 0 0 0 0 )    2354289 420.18  
  2      ( 0 0 1 0 1 0 1 )    110889 117.15    
  3      ( 0 1 1 1 0 0 0 )    1075433 272.01   
  4      ( 1 0 1 0 1 0 1 )    102510 49.76    
  5      ( 1 0 1 1 1 0 1 )    107541 43.99  
  6      ( 1 0 1 1 1 1 1 )    38751 12.53    
  7      ( 1 1 1 0 1 1 1 )    43387 13.67   
  8      ( 1 1 1 1 1 0 0 )    185085 110.62    
  9      ( 1 1 1 1 1 1 0 )    147094 66.13   
 10     ( 1 1 1 1 1 1 1 )    52651 4.56    
________________________________________ 
 
 
 

 
Fig. 10. Behavior of the functions V(t) and W(t) for some 

strategies during the design process for network in Fig. 9. 
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The strategies 6, 7, and 10 have a minimal relative 
computer time because the function W(t) for these 
strategies has a relatively large negative value during 
a long time of the design process in spite of the large 
value of Lyapunov function V(t) in initial time interval. 
On the contrary, the function W(t)  has a relatively 
small value for  the strategies 1, 2 and 3. That is why 
these strategies have a large computer design time. 
We can state that the large absolute value of the 
function W(t) on initial part of the design process 
provoke the less computer time.  

We can state that the behavior of the Lyapunov 
function V and the relative time derivative W surely 
determine the design time. It means that it is possible 
be guided by means of these functions to predict the 
computer design time for any design strategy. We 
could analyzed the initial time interval of the functions 
V(t) and W(t) behavior for the different strategies and 
by this analysis we can  predict  the strategies that 
have a minimal computer design time. 

 V. CONCLUSION 
 

 The problem of the minimal-time design algorithm 
construction can be solved adequately on the basis of 
the control theory. The design process in this case is 
formulated as the controllable dynamic system. The 
Lyapunov function and its time derivative include the 
sufficient information to select more perspective 
design strategies from infinite set of the different 
design strategies that exist into the general design 
methodology. The special functions W(t) and S(t) 
have been proposed to predict the better design 
strategies with a minimal design time. There is a 
close relation between the computer time and the 
properties of the Lyapunov function of design 
process. These functions can be used as the 
principal tool to the time optimal design algorithm 
prediction. The successful solution of this problem 
permits to construct the minimal-time system design 
algorithm. 
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