
Journal of Multidisciplinary Engineering Science and Technology (JMEST)

ISSN: 2458-9403

Vol. 8 Issue 6, June - 2021

www.jmest.org

JMESTN42353813 14107

Queuing / Counting Automata

Hieu D. Vu
Fort Hays State University

600 Park Street
Hays, KS. 67601
hdvu@fhsu.edu

 Abstract - In the software development area, a

very important question arise “How the

computers process data?” This subject is

centered around the concept of Theory of

Computing and Automata which were introduced

in 1979, and based heavily in Mathematics.

 We know that application software can be

built using programming languages, but what

kind of languages that a computer can

understand? How were they created? Were there

any rules or grammars to govern the languages?

What are Context-Free Languages, Pushdown

Automata, and other theoretical machines?

Keywords—Computing theories, Context-Free
languages, Context-free grammar, Formal
language, Automata, Turing machines,
Pushdown automata, Computational problems,
Turing machine.

I. INTRODUCTION

 Since the development of computers, scientists

always try to increase the power of computing for the

machines. In reality, the real power of a computer is

the data processing capability, and computer

scientists can concentrate in either one of the two

keys components: hardware that is to build faster

more capable processors (CPU-Central Processor

Unit), and software or applications that can process

large volume of data quickly and accurately.

 This research paper will start with the Theory of

Computing, Context-Free Languages and Pushdown

Automata then introduce other methods for the

abstract machine to recognize context-free

languages. Queuing Automata is a concept of using

queue type data structure instead of stack in

pushdown automata. Counting automata is another

way to recognize a language using a counter.

II. CONTEXT-FREE LANGUAGES

 Context-free languages are languages that have

recursive characteristic. This class includes all

regular languages and some non-regular, special

languages such as the language defined such as L =

{0
n
1

n
: n is greater than or equal 0}. Context-free

language can be obtained by either one of the two

methods: context-free grammars and push down

automata.

 II. 1. Context-free Grammars

 Context-free grammars which are used to

define programming languages in two areas syntactic

and compilation.

Definition: A context-free grammar is defined as a 4-

tuple G = (V, ∑, R, S), where:

1. V is a finite set of variables such as V = {S,

A, B,…} (capital letters)

2. ∑ is a finite set of terminals such as ∑ = {a,

b, c,…} (input strings in lower case letters)

3. V∩∑ = Ø = { } (empty set)

4. S is the start variable. S is an element in set

V (S ∈ V)

5. R is a finite set that is a collection of rules.

Each rule is of the form A --> w,

where A ∈ V and w ∈ (V ⋃ ∑)
*

http://www.jmest.org/
mailto:hdvu@fhsu.edu

Journal of Multidisciplinary Engineering Science and Technology (JMEST)

ISSN: 2458-9403

Vol. 8 Issue 6, June - 2021

www.jmest.org

JMESTN42353813 14108

Example: Let set R of rules that includes following

substitutions:

 S --> AB

 A --> a

 A --> aA

 B --> b

 B --> bB

 We can see, S is the start variable, A and B are

variables, and a, b are terminals (input strings). From

the rules above, we can construct strings of terminals

a and b ({a, b}
*
) using the steps below:

1. Initialize the current string with only the start

variable S (starting point).

2. Take any variable in the current string put it

in the left-hand side, and using any rule to

replace this variable in the current string by

the right-hand side of the rule.

3. Go back to step 2 (repeating) until the

current string contains only terminals. It is the

language that accepted by the grammar

(rules).

 For illustration, from the starting point, we have:

 S  AB (rule 1)

  aAB (rule 3)

  aAbB (rule 5)

  aaAbB (rule 3)

  aaabB (rule 2)

  aaabb (rule 4)

 Conclusion, the language in this example is: L1 =

{a
m
b

n
: m > 1, n > 1} [1]

 II.2. Pushdown Automata

- Definition of Automata: is the study of

abstract computing machines, before the

computers were developed in the late

1930s, as well as the computational

problems that can be solved using them.

The word automata originally came from

the Greek word “αὐτόματα”, which means

"self-making". An automaton (automata in

plural) is an abstract computing device that

follows a predefined sequence of operation

automatically. [2]

- Pushdown Automata: is a new type of

computational model like nondeterministic

finite automata but also have a special

component called a stack. A stack is a data

structure type component that has only one

end called stack-top, where we can insert

(push) an element into a stack or remove

(pop) and element currently is at the top of

the stack. Because of that, a stack is

classified as an LIFO (Last In, First Out)

data structure component. In this

pushdown automata, the stack provide

additional memory for the finite amount

available in the control, they allow

pushdown automata to recognize some

non-regular languages.

 Figure 1: Schematic of a finite automaton

 The figure above represents a schema of a finite

automaton. The state control (box) represents the

states and transition functions, the tape represents

input string, and the arrow represents the reading

head that points to the next input symbol for reading.

http://www.jmest.org/

Journal of Multidisciplinary Engineering Science and Technology (JMEST)

ISSN: 2458-9403

Vol. 8 Issue 6, June - 2021

www.jmest.org

JMESTN42353813 14109

 Pushdown automata include a stack as in figure 2.

 Figure 2: Schematic of a pushdown automaton

 A pushdown automaton (PDA) can write (push)

symbols in the stack and read (pop) them back later

in a LIFO (last in, first out) fashion. When writing a

new symbol on the stack, other symbols will be

“pushdown” one position, so the new symbol will be

pushed in at the top of the stack. All operations

(reading, writing) on the stack must be done at the

top (only one end).

 A stack is proved valuable, because it can hold

unlimited amount of data. For example, a finite

automaton cannot recognize the language L2 = {0
n
1

n

| n > 0} due to the finite memory. A PDA can

recognize this language by using stack to store all

number 0s it read. They following steps illustrate how

a PDA works.

1. Read input symbols, for each 0 is read,

push it onto the stack.

2. Repeat step 1 until no more 0s on the input

string (until the first 1s is encountered).

3. For each 1s, pop a 0 out of the stack.

4. Repeat step 2 until no more 1s or the end of

the input string.

 If both the stack and input string become empty,

accept the input string as the language

L2 = {0
n
1

n
| n > 0}. Otherwise, in other cases if the

input string became empty or the stack is empty

before the other, reject L2. It is not in the language.

- Definition of Pushdown Automata: A pushdown

automaton is a 6-tuple (Q, ∑, Γ, δ, q0, F) where

Q, ∑, Γ, F are finite sets and satisfy the

following:

1. Q is the set of states (q0, q1, q2, …)

2. ∑ is the input characters (in lower cases)

3. Γ is the stack alphabets

4. δ is the transition function: Q x ∑ε x Γε ---->

P(Q x Γε)

5. q0 ∈ Q is the start state

6. F ⊆ Q is the set of accept states.

 A pushdown automaton M = (Q, ∑, Γ, δ, q0, F),

works (computes) as following. It will accept an input

w, if w can be written as w = w1w2w3…wn, where

wi ∈ ∑ε (1 < i < n), and the sequence of states r0,

r1, r2, …, rn ∈ Q, and strings s0, s1, s2, … sn ∈ Γ
*

where string si (0 < i < n) are the content in the stack,

exist that satisfy the following conditions:

1. r0 = q0 and s0 = ε. It is the starting point for

the pushdown automaton (PDA) M, with

state q0 and empty stack (ε).

2. For the first n steps (i = 0, …, n-1), we have

(ri+1, b) ∈ δ(ri, wi+1, a), where si = at and si+1

= bt for some a, b ∈ Γε and t ∈ Γ
*
. This

condition means that (ADP) M moves

properly according to the state, stack, and

the next input symbol.

3. rn = F. This condition states an accept state

happen at the input end (string input).

Example:

 We use the language in this example L3 = {a
n
b

n
:

n > 0} to demonstrate the use of pushdown automata

(PDA). Let the pushdown automaton is M1 = (Q, ∑, Γ,

δ, q1, F), where Q = {q1, q2, q3, q4}, ∑ = {0, 1}, Γ = {0,

$}, F = {q1, q4), and the transition function δ is given

by the table below.

http://www.jmest.org/

Journal of Multidisciplinary Engineering Science and Technology (JMEST)

ISSN: 2458-9403

Vol. 8 Issue 6, June - 2021

www.jmest.org

JMESTN42353813 14110

 Figure 3: table of transition functions δ

 To illustrate the PDA M1, we can use the state

diagram and notation such as “a, b --> c” that means

“when the machine read (input) a, it may replace

symbol b at the top of the stack with c”. All a, b, or c

could be the symbol ε. If a (input string character) is

ε, the machine may make the transition (b --> c)

without reading (any symbol) the input string. If b is ε,

the machine may make this transition without

reading, popping any symbol from the stack. If c is ε,

the machine will not write any symbol on the stack.

 Figure 4: State diagram for the PDA M1 that

recognizes L2 = {0
n
1

n
| n > 0}

 To find out if the stack is empty? The PDA M1

initially put a symbol ($) in the stack to mark the stack

is empty when M1 see it ($) again. Also the accept

state happen only when the machine (M1) reaches

the end of the input string. [3]

III. SIMPLE APPROACH OF PUSHDOWN

AUTOMATA

 An automaton is an imaginary machine that

reads an input string, process the string and accept

or reject it. This section will present simple ways by

examples to recognize the languages L1 = {a
m
b

n
 |

m, n > 1}, and L2 = {0
n
1

n
 | n > 1}.

 Example 1: Let a finite automaton M1 be the

machine that processes the language

 L1 = {a
m
b

n
 | m, n > 1}.

 As the reading head reads the input string {a,

a, a, …, a (m times), b, b, …, b (n times)}, M1 moves

from initial state q0 to state q1 when it read character

a(s) and stay in q1 until when M1 encounters the first

character b, it will move from state q1 to state q2 then

stays in q2 for more b(s). When M1 reach the end of

the input string (empty character symbol or ε), it will

accept the language L1 = {a
m
b

n
 | m, n > 1}, and q2 is

the acceptance state. In this finite automaton, we

assume there is at least one character a, one

character b, and m ≠ n.

 Example 2: Let M2 be the machine to process

the language L2 = {a
n
b

n
 | n > 1}.

 Unlike L1, in this language L2, the number of

characters a(s) and b(s) are equal. In L1 =

{a
m
b

n
 | m, n > 1}, it is not necessary to know or to

remember the number of a’s, but the following need

to remember.

(1) If the first character is b, machine M2 will

reject the string (not in the language)

(2) If character a follows character b, M2 will

reject the string

(3) If character a follows a, and character b

follows b, M2 will accept the string

 But, there is a problem with finite automata. It

only has a number of finite states therefore cannot

remember how many a’s in the input string a
n
b

n
,

where n is greater than the number of states of

machine M2. Finite automata does not accept the sets

of strings in the languages L2 = {a
n
b

n
 | n >

http://www.jmest.org/

Journal of Multidisciplinary Engineering Science and Technology (JMEST)

ISSN: 2458-9403

Vol. 8 Issue 6, June - 2021

www.jmest.org

JMESTN42353813 14111

1}. This problem can be done using pushdown

automata. [4]

IV. OTHER APPROACHES

 In this section, we introduce other automata that

recognize the language L2 = {a
n
b

n
 | n > 1} instead of

using pushdown automata.

 In the example of pushdown automata in section

(II. 2), the pushdown automaton is M1 = (Q, ∑,

Γ, δ, q1, F), where Q = {q1, q2, q3, q4}, ∑ = {0, 1}, Γ =

{0, $}, F = {q1, q4), and the transition function δ is

given by the table below.

 And the pushdown automaton M1 works as

illustrated by the following state diagram.

 From the starting point, state q1 the input string

is empty and the stack is also empty, then the

machine puts a symbol ($) onto the stack to mark the

beginning. Then the head reads the first number 0,

the machine will push a 0 onto the stack and move to

state q2. Then it will stay in state q2 and continue to

push (number) 0 onto the stack, as long as the head

read (number) 0. When the machine first read a

number 1, it will pop a number 0 out of the stack and

move to state q3. Then it will stay in state q3 and

continue to pop (number) 0 out of the stack, as long

as a number 1 is read. When the head reaches the

end of the tape (input string), which is empty and

denoted by symbol ε, and if the symbol $ is at the top

at the stack, the PDA M1 will move to state q4 and

accept the language L2 = {a
n
b

n
 | n > 1}. Other

cases below, M1 will reject L2.

a. The head reads number 1 but the ($) symbol

is at the top of the stack (more 1s than 0s)

b. The head reach the end of the input tape, but

number 0(s) is still at the top of the stack

(more 0s than 1s)

IV.1. Queuing Automata

 A queue is a “First In, First Out” (FIFO)

data structure, you can visualize a queue of people at

a checkout counter in a store. Let the queuing

automaton be M2, we will see how it work in order to

recognize language L2 = {a
n
b

n
 | n > 1}.

 In a similar fashion of the pushdown

automaton M1 above, we define queuing automaton

M2 = (Q, ∑, Γ, δ, q0, F), where Q = {q0, q1, q2, q3}, ∑ =

{a, b}, Γ = {a}, F = {q0, q3), and the transition function

δ is given by the table below. The queuing

automation M2 works following these steps:

1. At the starting point, the machine state is

q0, the queue is empty (ε), the input

string is also empty (ε).

2. When the head read the first character

(a), it will place character (a) at the

bottom (tail) of the queue, reset the

bottom pointer of the queue (pointer that

points to the newest character ‘a’), and

move to state q1. It will stay in this state

q1 and repeat step 2 as long as the head

continues to read character (a).

3. When the head encounters the first

character (b), it will remove a character

http://www.jmest.org/

Journal of Multidisciplinary Engineering Science and Technology (JMEST)

ISSN: 2458-9403

Vol. 8 Issue 6, June - 2021

www.jmest.org

JMESTN42353813 14112

(a) from the top of the queue, reset the

top pointer that points to the next

character at the top of the queue, and

move to state q2. The theoretical

machine M2 will stay in this state q2 and

repeat step 3 as long as the head reads

character (b).

4. When the head reaches the end of the

input string (ε), and the queue is also

empty (ε), the queuing automaton M2 will

accept language L2 = {a
n
b

n
 | n > 1}.

 M2 will reject other cases, whether the input

string or the queue become empty before the other.

 We can also use the state diagram to illustrate

how queuing automaton M2 works.

 q0 q1 q2 q3

 ε, ε a, ε --> a b, a --> ε ε, ε

(starting) (looping) (looping) (accepting)

Figure 5: State diagram of machine M2

IV.2. AUTOMATA WITH COUNTER

 This section introduces theoretical

machine M3 that uses a counter instead of a stack or

a queue data structures to recognize the language L2

= {a
n
b

n
 | n > 1} in the example above. The machine

M3 will process an input string (a a a … b b …) using

the steps below:

1. Let start with state q0 and initialize the

counter to zero (0).

2. If the machine’s head reads the first

character of the input string is ‘a’, then

increment the counter and moves to state q1,

otherwise reject the language L2.

3. Continue to read the next character, if it is

another ‘a’ then increment the counter but

stay in state q1, otherwise go to step 4.

Repeating step 3 until character ‘b’ is

encountered.

4. Move to state q2 and decrement the counter.

5. Continue to read input string until the end of

the string (empty or ε). If the character read

is ‘b’ go to step 4, otherwise reject L2.

6. When the input string is empty and the

counter is zero (0) moves to state q3 an

accept the language L2 = {a
n
b

n
 | n > 1},

otherwise reject it.

Figure 6: Diagram of M3: the reading head, counter

and states

 The theoretical machine M3 will reject the

language L2 in either cases following:

1. The reading head reaches the end of the input

string (empty or ε), but the counter contains a

value greater than 0 (more characters ‘a’ than

‘b’).

2. The counter contain number 0, but the input

string still have more character(s) (more

characters ‘b’ than ‘a’).

V. CONCLUSION

 In 1954, Kleene presented a theorem states that

if a language can be defined in one of the three

following methods, then it is also defined by the other

two. The three methods of defining a language are

equivalent.

 Kleene’s theorem: Any languages can be

defined by one of the following equivalent methods:

http://www.jmest.org/

Journal of Multidisciplinary Engineering Science and Technology (JMEST)

ISSN: 2458-9403

Vol. 8 Issue 6, June - 2021

www.jmest.org

JMESTN42353813 14113

a. Regular expression, or

b. Finite automaton, or

c. Transition graphs

 Can be defined by all three methods. [5]

 The Kleene’s theorem is considered by many

computer scientists that it is the beginning of

automata theory. It proved that finite automata can

recognize class of languages. These theorems,

expressions, automata, and graphs can be

processed by theoretical machines. The earliest

simple abstract machine for computing was first

described by Alan Turing in 1936, and followed by

Alonzo Church in 1937 are considered one of the

foundational models of computability and in

theoretically computer science. [6]

 With the advancing of technologies, we continue

to explore new concepts for better machines. The

machine of the future should be more powerful in

computing capability and more flexibility to process

different things.

References:

[1]. Maheshwari, Smid, “Introduction to Theory of
Computation”, Carleton University, Ottawa,
 Canada. 2014. Pages: 87-88.

[2]. Hopcroft, Motwani, and Ullman, “Introductory to
Automata Theory, Languages, and
 Computation” 2

e
, Addition-Wesley, 2001.

Pages: 1.

[3]. Michael Sipser, “Introduction to the Theory of
Computation”, Massachusetts Institute of
 Technology, PWS Publishing Company,
Boston, MA. 02116-4324. 1997. Pages: 101-105.

[4]. S.P Eugene Xavier, “Theory of Automata, Formal
Languages and Computation”, New Age
 International (P) Ltd., Publishers, 2005.
Pages: 159.

[5].
https://assets.ctfassets.net/kdr3qnns3kvk/ohtVAyD8u
gH9W04aczUnI/c3122fa3b5346dee2089871cdd7c4e
b7/07-Kleenes-Theorem.pdf download
06/17/2021 at 10:22am

[6]. https://plato.stanford.edu/entries/turing-machine/
 download 06/17/2021 at 01:10pm

http://www.jmest.org/
https://assets.ctfassets.net/kdr3qnns3kvk/ohtVAyD8ugH9W04aczUnI/c3122fa3b5346dee2089871cdd7c4eb7/07-Kleenes-Theorem.pdf
https://assets.ctfassets.net/kdr3qnns3kvk/ohtVAyD8ugH9W04aczUnI/c3122fa3b5346dee2089871cdd7c4eb7/07-Kleenes-Theorem.pdf
https://assets.ctfassets.net/kdr3qnns3kvk/ohtVAyD8ugH9W04aczUnI/c3122fa3b5346dee2089871cdd7c4eb7/07-Kleenes-Theorem.pdf
https://plato.stanford.edu/entries/turing-machine/
https://plato.stanford.edu/entries/turing-machine/

