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     Abstract - In the software development area, a 

very important question arise “How the 

computers process data?” This subject is 

centered around the concept of Theory of 

Computing and Automata which were introduced 

in 1979, and based heavily in Mathematics. 

        We know that application software can be 

built using programming languages, but what 

kind of languages that a computer can 

understand? How were they created? Were there 

any rules or grammars to govern the languages? 

What are Context-Free Languages, Pushdown 

Automata, and other theoretical machines? 
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I. INTRODUCTION 

        Since the development of computers, scientists 

always try to increase the power of computing for the 

machines. In reality, the real power of a computer is 

the data processing capability, and computer 

scientists can concentrate in either one of the two 

keys components: hardware that is to build faster 

more capable processors (CPU-Central Processor 

Unit), and software or applications that can process 

large volume of data quickly and accurately. 

        This research paper will start with the Theory of 

Computing, Context-Free Languages and Pushdown 

Automata then introduce other methods for the 

abstract machine to recognize context-free 

languages. Queuing Automata is a concept of using 

queue type data structure instead of stack in 

pushdown automata. Counting automata is another 

way to recognize a language using a counter. 

 

II. CONTEXT-FREE LANGUAGES 

        Context-free languages are languages that have 

recursive characteristic. This class includes all 

regular languages and some non-regular, special 

languages such as the language defined such as L = 

{0
n
1

n
: n is greater than or equal 0}. Context-free 

language can be obtained by either one of the two 

methods: context-free grammars and push down 

automata. 

        II. 1. Context-free Grammars 

                Context-free grammars which are used to 

define programming languages in two areas syntactic 

and compilation.  

Definition: A context-free grammar is defined as a 4-

tuple G = (V, ∑, R, S), where: 

1. V is a finite set of variables such as V = {S, 

A, B,…} (capital letters) 

2. ∑ is a finite set of terminals such as ∑ = {a, 

b, c,…} (input strings in lower case letters) 

3. V∩∑  =  Ø  = { } (empty set) 

4. S is the start variable. S is an element in set 

V  (S ∈ V) 

5. R is a finite set that is a collection of rules. 

Each rule is of the form A --> w,  

where A ∈ V and w ∈ (V ⋃ ∑ )
*
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Example: Let set R of rules that includes following 

substitutions: 

  S --> AB 

  A --> a 

  A --> aA 

  B --> b 

  B --> bB 

 

        We can see, S is the start variable, A and B are 

variables, and a, b are terminals (input strings). From 

the rules above, we can construct strings of terminals 

a and b ({a, b}
*
) using the steps below: 

 

1. Initialize the current string with only the start 

variable S (starting point).  

2. Take any variable in the current string put it 

in the left-hand side, and using any rule to 

replace this variable in the current string by 

the right-hand side of the rule. 

3. Go back to step 2 (repeating) until the 

current string contains only terminals. It is the 

language that accepted by the grammar 

(rules). 

        For illustration, from the starting point, we have: 

  S    AB  (rule 1) 

        aAB  (rule 3) 

        aAbB  (rule 5) 

        aaAbB  (rule 3) 

        aaabB  (rule 2) 

        aaabb  (rule 4) 

     Conclusion, the language in this example is: L1 = 

{a
m
b

n
: m > 1, n > 1}  [1] 

 

        II.2. Pushdown Automata 

- Definition of Automata: is the study of 

abstract computing machines, before the 

computers were developed in the late 

1930s, as well as the computational 

problems that can be solved using them. 

The word automata originally came from 

the Greek word “αὐτόματα”, which means 

"self-making". An automaton (automata in 

plural) is an abstract computing device that 

follows a predefined sequence of operation 

automatically. [2] 

 

- Pushdown Automata: is a new type of 

computational model like nondeterministic 

finite automata but also have a special 

component called a stack. A stack is a data 

structure type component that has only one 

end called stack-top, where we can insert 

(push) an element into a stack or remove 

(pop) and element currently is at the top of 

the stack. Because of that, a stack is 

classified as an LIFO (Last In, First Out) 

data structure component. In this 

pushdown automata, the stack provide 

additional memory for the finite amount 

available in the control, they allow 

pushdown automata to recognize some 

non-regular languages. 

 

 

 Figure 1: Schematic of a finite automaton

  

        The figure above represents a schema of a finite 

automaton. The state control (box) represents the 

states and transition functions, the tape represents 

input string, and the arrow represents the reading 

head that points to the next input symbol for reading.  
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    Pushdown automata include a stack as in figure 2.

 

 

      Figure 2: Schematic of a pushdown automaton 

        A pushdown automaton (PDA) can write (push) 

symbols in the stack and read (pop) them back later 

in a LIFO (last in, first out) fashion. When writing a 

new symbol on the stack, other symbols will be 

“pushdown” one position, so the new symbol will be 

pushed in at the top of the stack. All operations 

(reading, writing) on the stack must be done at the 

top (only one end). 

        A stack is proved valuable, because it can hold 

unlimited amount of data. For example, a finite 

automaton cannot recognize the language L2 = {0
n
1

n
 

| n > 0} due to the finite memory. A PDA can 

recognize this language by using stack to store all 

number 0s it read. They following steps illustrate how 

a PDA works. 

1. Read input symbols, for each 0 is read, 

push it onto the stack. 

2. Repeat step 1 until no more 0s on the input 

string (until the first 1s is encountered). 

3. For each 1s, pop a 0 out of the stack. 

4. Repeat step 2 until no more 1s or the end of 

the input string. 

        If both the stack and input string become empty, 

accept the input string as the language  

L2 = {0
n
1

n
| n > 0}. Otherwise, in other cases if the 

input string became empty or the stack is empty 

before the other, reject L2. It is not in the language. 

 

- Definition of Pushdown Automata:  A pushdown 

automaton is a 6-tuple (Q, ∑, Γ, δ, q0, F) where 

Q, ∑, Γ, F are finite sets and satisfy the 

following: 

1. Q is the set of states (q0, q1, q2, …) 

2. ∑ is the input characters (in lower cases) 

3. Γ is the stack alphabets 

4. δ is the transition function: Q x ∑ε x Γε   ----> 

P(Q x Γε) 

5. q0 ∈ Q is the start state 

6. F ⊆ Q is the set of accept states. 

        A pushdown automaton  M  =  (Q, ∑, Γ, δ, q0, F), 

works (computes) as following. It will accept an input 

w, if w can be written as  w  =  w1w2w3…wn,  where  

wi  ∈  ∑ε   (1 < i <  n), and the sequence of states  r0, 

r1, r2, …, rn ∈ Q, and strings s0, s1, s2, … sn ∈ Γ
*
 

where string si (0 < i < n) are the content in the stack, 

exist that satisfy the following conditions: 

1. r0 = q0  and  s0 = ε.  It is the starting point for 

the pushdown automaton (PDA) M, with 

state q0 and empty stack (ε).  

2. For the first n steps (i = 0, …, n-1), we have 

(ri+1, b)  ∈ δ(ri, wi+1, a), where si = at  and  si+1 

= bt for some a, b ∈ Γε  and t ∈ Γ
*
. This 

condition means that (ADP) M moves 

properly according to the state, stack, and 

the next input symbol. 

3. rn = F. This condition states an accept state 

happen at the input end (string input). 

 

Example:   

        We use the language in this example L3 = {a
n
b

n
:  

n > 0} to demonstrate the use of pushdown automata 

(PDA). Let the pushdown automaton is M1 = (Q, ∑, Γ, 

δ, q1, F), where Q = {q1, q2, q3, q4}, ∑ = {0, 1}, Γ = {0, 

$}, F = {q1, q4), and the transition function δ is given 

by the table below. 
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                Figure 3: table of transition functions δ         

        To illustrate the PDA M1, we can use the state 

diagram and notation such as “a, b --> c” that means 

“when the machine read (input) a, it may replace 

symbol b at the top of the stack with c”. All a, b, or c 

could be the symbol ε. If a (input string character) is 

ε, the machine may make the transition (b --> c) 

without reading (any symbol) the input string. If b is ε, 

the machine may make this transition without 

reading, popping any symbol from the stack. If c is ε, 

the machine will not write any symbol on the stack. 

 

 Figure 4: State diagram for the PDA  M1 that 

recognizes L2 = {0
n
1

n
| n > 0}   

        To find out if the stack is empty? The PDA  M1 

initially put a symbol ($) in the stack to mark the stack 

is empty when M1 see it ($) again. Also the accept 

state happen only when the machine (M1) reaches 

the end of the input string.     [3] 

 

III. SIMPLE APPROACH OF PUSHDOWN 

AUTOMATA 

        An automaton is an imaginary machine that 

reads an input string, process the string and accept 

or reject it. This section will present simple ways by 

examples to recognize the languages   L1  =  {a
m
b

n
 | 

m, n > 1}, and  L2  =  {0
n
1

n
 | n > 1}. 

        Example 1:  Let a finite automaton M1 be the 

machine that processes the language        

       L1  =  {a
m
b

n
 | m, n > 1}. 

 As the reading head reads the input string {a, 

a, a, …, a (m times), b, b, …, b (n times)},   M1 moves 

from initial state q0 to state q1 when it read character 

a(s) and stay in q1 until when M1 encounters the first 

character b, it will move from state q1 to state q2 then 

stays in q2 for more b(s). When M1 reach the end of 

the input string (empty character symbol or ε), it will 

accept the language L1  =  {a
m
b

n
 | m, n > 1}, and q2 is 

the acceptance state. In this finite automaton, we 

assume there is at least one character a, one 

character b, and m ≠ n. 

 

       Example 2:  Let  M2 be the machine to process 

the language  L2  =  {a
n
b

n
 | n > 1}.  

        Unlike L1, in this language L2, the number of 

characters a(s) and b(s) are equal. In         L1  =  

{a
m
b

n
 | m, n > 1}, it is not necessary to know or to 

remember the number of a’s, but the following need 

to remember. 

(1) If the first character is b, machine M2 will 

reject the string (not in the language) 

(2) If character a follows character b, M2 will 

reject the string  

(3) If character a follows a, and character b 

follows b, M2 will accept the string 

        But, there is a problem with finite automata. It 

only has a number of finite states therefore cannot 

remember how many a’s in the input string a
n
b

n
, 

where n is greater than the number of states of 

machine M2. Finite automata does not accept the sets 

of strings in the languages               L2  =  {a
n
b

n
 | n > 
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1}. This problem can be done using pushdown 

automata.   [4] 

 

IV. OTHER APPROACHES 

        In this section, we introduce other automata that 

recognize the language L2  =  {a
n
b

n
 | n > 1} instead of 

using pushdown automata. 

        In the example of pushdown automata in section 

(II. 2), the pushdown automaton is          M1 = (Q, ∑, 

Γ, δ, q1, F), where Q = {q1, q2, q3, q4}, ∑ = {0, 1}, Γ = 

{0, $}, F = {q1, q4), and the transition function δ is 

given by the table below. 

 

 

                And the pushdown automaton M1 works as 

illustrated by the following state diagram. 

        

 

        From the starting point, state q1 the input string 

is empty and the stack is also empty, then the 

machine puts a symbol ($) onto the stack to mark the 

beginning. Then the head reads the first number 0, 

the machine will push a 0 onto the stack and move to 

state q2. Then it will stay in state q2 and continue to 

push (number) 0 onto the stack, as long as the head 

read (number) 0. When the machine first read a 

number 1, it will pop a number 0 out of the stack and 

move to state q3. Then it will stay in state q3 and 

continue to pop (number) 0 out of the stack, as long 

as a number 1 is read. When the head reaches the 

end of the tape (input string), which is empty and 

denoted by symbol ε, and if the symbol $ is at the top 

at the stack, the PDA M1 will move to state q4 and 

accept the language     L2  =  {a
n
b

n
 | n > 1}. Other 

cases below, M1 will reject L2. 

a. The head reads number 1 but the ($) symbol 

is at the top of the stack (more 1s than 0s) 

b. The head reach the end of the input tape, but 

number 0(s) is still at the top of the stack 

(more 0s than 1s) 

 

IV.1. Queuing Automata 

                A queue is a “First In, First Out” (FIFO) 

data structure, you can visualize a queue of people at 

a checkout counter in a store. Let the queuing 

automaton be M2, we will see how it work in order to 

recognize language  L2  =  {a
n
b

n
 | n > 1}. 

                In a similar fashion of the pushdown 

automaton M1 above, we define queuing automaton 

M2 = (Q, ∑, Γ, δ, q0, F), where Q = {q0, q1, q2, q3}, ∑ = 

{a, b}, Γ = {a}, F = {q0, q3), and the transition function 

δ is given by the table below. The queuing 

automation M2 works following these steps: 

1. At the starting point, the machine state is 

q0, the queue is empty (ε), the input 

string is also empty (ε). 

2. When the head read the first character 

(a), it will place character (a) at the 

bottom (tail) of the queue, reset the 

bottom pointer of the queue (pointer that 

points to the newest character ‘a’), and 

move to state q1. It will stay in this state 

q1 and repeat step 2 as long as the head 

continues to read character (a).  

3. When the head encounters the first 

character (b), it will remove a character 
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(a) from the top of the queue, reset the 

top pointer that points to the next 

character at the top of the queue, and 

move to state q2. The theoretical 

machine M2 will stay in this state q2 and 

repeat step 3 as long as the head reads 

character (b). 

4. When the head reaches the end of the 

input string (ε), and the queue is also 

empty (ε), the queuing automaton M2 will 

accept language L2  =  {a
n
b

n
 | n > 1}. 

        M2 will reject other cases, whether the input 

string or the queue become empty before the other. 

        We can also use the state diagram to illustrate 

how queuing automaton M2 works. 

 q0           q1   q2          q3 

         ε, ε    a, ε --> a      b, a --> ε           ε, ε 

(starting)              (looping)     (looping)     (accepting) 

Figure 5:  State diagram of machine M2 

 

IV.2. AUTOMATA WITH COUNTER 

      This section introduces theoretical 

machine M3 that uses a counter instead of a stack or 

a queue data structures to recognize the language L2  

=  {a
n
b

n
 | n > 1}  in the example above. The machine 

M3 will process an input string (a a a … b b …) using 

the steps below: 

1. Let start with state q0 and initialize the 

counter to zero (0). 

2. If the machine’s head reads the first 

character of the input string is ‘a’, then 

increment the counter and moves to state q1, 

otherwise reject the language L2.  

3. Continue to read the next character, if it is 

another ‘a’ then increment the counter but 

stay in state q1, otherwise go to step 4. 

Repeating step 3 until character ‘b’ is 

encountered. 

4. Move to state q2 and decrement the counter.  

5. Continue to read input string until the end of 

the string (empty or ε). If the character read 

is ‘b’ go to step 4, otherwise reject L2.  

6. When the input string is empty and the 

counter is zero (0) moves to state q3 an 

accept the language  L2  =  {a
n
b

n
 | n > 1}, 

otherwise reject it.   

 

 

Figure 6:   Diagram of M3: the reading head, counter 

and states 

     The theoretical machine M3 will reject the 

language L2 in either cases following: 

1. The reading head reaches the end of the input 

string (empty or ε), but the counter contains a 

value greater than 0 (more characters ‘a’ than 

‘b’). 

2. The counter contain number 0, but the input 

string still have more character(s) (more 

characters ‘b’ than ‘a’). 

 

V. CONCLUSION 

        In 1954, Kleene presented a theorem states that 

if a language can be defined in one of the three 

following methods, then it is also defined by the other 

two. The three methods of defining a language are 

equivalent. 

       Kleene’s theorem:  Any languages can be 

defined by one of the following equivalent methods: 
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a. Regular expression, or 

b. Finite automaton, or 

c. Transition graphs 

        Can be defined by all three methods. [5]  

        The Kleene’s theorem is considered by many 

computer scientists that it is the beginning of 

automata theory. It proved that finite automata can 

recognize class of languages. These theorems, 

expressions, automata, and graphs can be 

processed by theoretical machines. The earliest 

simple abstract machine for computing was first 

described by Alan Turing in 1936, and followed by 

Alonzo Church in 1937 are considered one of the 

foundational models of computability and in 

theoretically computer science.    [6] 

        With the advancing of technologies, we continue 

to explore new concepts for better machines. The 

machine of the future should be more powerful in 

computing capability and more flexibility to process 

different things. 
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