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Abstract—Counting the number of the fuzzy
subgroups of finite groups has been done by
many authors. In early papers, natural equivalence
relation is being used to calculate the number of
distinct fuzzy subgroups of some finite groups. In
this paper; we wish to compute the fuzzy
subgroups of some groups by a new equivalence
relation = existing in the literature. In fact we will
determine the exact number of fuzzy subgroups of
Z>XZ,, Dg and S;
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Introduction

Without any equivalence relation, the number of
fuzzy subgroups of any finite group is infinite.
Recently, Tarnauceanu has treated the problem of
classifying the fuzzy subgroups of a finite group by a
new equivalence relation =~ introduced in [7].In the
present paper we will compute the number of fuzzy
subgroups of Z,xZ,, Dg and S;.

Preliminaries

Let us denote by C the set consisting of all chains
of subgroups of G terminated in G. An equivalence
relation on C can be constructed in the following
manner, for two chains

Cl: H]_CHZC....C Hm: G
CrKicKyc . cKn=G

of C, we put C;~ C, iff m =nand 3 fe Aut G such
that f(H|) =K,l<i<n

First we calculate Fix fi= {H< G|f;(H) = H}

In this case the orbit of a chain C € C is {f(C)|feAut
G},while the set of all chains in C that are fixed by an
automorphism f of G is Fixs(f) = {CeC|f(C) = C}.Now
the Burnside’s lemma leads to the following theorem.

Theorem 2.1 The number N of all distinct fuzzy
subgroups with respect to ~ of a finite group G is
given by

1

szzfﬂut(c) |Fixe ()|

The number of distinct fuzzy subgroups of
ZoXZo
Subgroups of Z,xZ, are as below

<(0,0)>
<(0,0),(0,1)>
<(0,0),(1,0)>
<(0,0),(1,1)>
- <(0,0),(0,1),(1,0),(1,1)>= Z,xZ,
Number of automorphisms of Z,xZ, is 6.We study
all automorphisms one by one

1) f1:2Z:%XZ, = Z,%x2Z,
(0,0)(0,0) ——
(0,1)(0,1)
(1,00(1,1)
(1,1 @0
Fix fi={H< Z,XZ,|f,(H)=H}

Ll

={<(0,0)>,<(0,0),(0,1)>, Z,xZ, }

Lattice of these subgroups are as follows
ZoXZ5

<(0,0),(0,1)> |

<(0,0)> |

Clearly Fixz (f;)={ CeC|f(C)=C}

:{ 22X22,<(0,0),(0,1)> c ZoyXZo,
<(0,0)> c ZoXZs,

<(0,0)> < <(0,0),(0,1)> c Z,XZ5}
2) o1 ZoxZ5 —» Z,%2Z,

(0,0)(0,0) ——

©01@@1) —

(1,0)(1,00

(1,1) (0,2)

Fix f,={H< Z,XZ,|f,(H)=H}
={<(0,0)>,<(0,0),(1,0)>, Z,xZ, }
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Lattice of these subgroups are as follows

ZoXZ>

<(0,0),(1,0)> | |

<(0,0)> |

Clearly Fixe (f,)={ CeC|f»(C)=C}
={Z,%Z,,<(0,0),(1,0)> c Z,XZ;,, <(0,0)> c Z,XZ5,
<(0,0)> < <(0,0),(1,0)> c Z,xZ,}

Therefore |Fixq (f2)|=4

3)fs: ZoxZy - ZoXxZ,

(0,0) (0,00 ——

0,110 ___

(1,00 (0,1) —

(1,12) (1,2)

Fix fa={H< Z,xZ,|f3(H)=H}
={<(0,0)>,<(0,0),(1,1)>, Z,XxZ, }

Lattice of these subgroups are as follows

ZyXZ,

<(0,0),(1,1)> | |

<(0,0)> |

Clearly Fix (f;)={ CeC|fs(C)=C}
={Z,%Z,,<(0,0),(1,1)> c Z,XZ,, <(0,0)> c Z,XZ5,
<(0,0)> < <(0,0),(1,1)> c Z,xZy}

Therefore |Fix¢ (f3)|=4

4) fy: ZyX2Zy = ZpoXZy

(0,0) (0,00 ——

0,110

10 @1,1) —

(1,12) (0,2)
Fix f,2={H< Z,xZ,|f4(H)=H}

={<(0,0), Z,xZ,}

Lattice of these subgroups is as follows
ZoXZo

<(0,0)> |

Clearly Fixs (f)={ CeC|f4(C)=C}

={ Z,xZ,,<(0,0)> c Z,xZ,}
Therefore|Fixs (f4)]=2

5)fs 1 Z,xZ, = Z,XZ,

(0,0)(0,0) ——
01 @1
(1,0)0(01)
(1,1) (1,0)
Fix fs={H< Z,XZ,|fs(H)=H}

={<(0,0)>, Z,xZ,}

Lattice of these subgroups is as follows
ZoXZ5

<(0,0)> |

Clearly Fixe (fs)={ CeC|fs(C)=C}
={ Z,%xZ,,<(0,0)> ¢ Z,XZ,}
Therefore|Fixs (f5)|=2

6) fe : ZoXZy » ZyXxZ,

(0,0) (0,00 ——

01)(01) —

(1,020 _—

(1,2) (1,1)

Fix fe={H< Z,xZ,|fs(H)=H}

={<(0,0)>,<(0,0),(0,1)>,<(0,0),(1,0)>,<(0,0),(1,1)>,
ZzXZg}

Lattice of these subgroups is as follows

72 X172

<(0,0),(0,1)> <(0,0), (1,0)> <(0,0), (1,1)>
~

/
<(0,0)> /

Clearly Fixz (fs)={ CeClfs(C)=C}

In this case , members of Fix: (fs) are

- ZyXZ,

—-<(0,0),(0,1)> c Z,xZ,
—-<(0,0),(1,0)> c Z,xZ,
5<(0,0),(1,1)> c ZoXZ,

—<(0,0)> c Z,xZ,

—-<(0,0)> < <(0,0),(0,1)> c Z,xZ,
—-<(0,0)> € <(0,0),(1,0)> c ZoxZ,
—<(0,0)>c <(0,0),(1,1)> c ZoXZ,
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Therefore |Fixs (fs)|=8

So, number N of all distinct fuzzy subgroups of

Z,XZ,
=2(3.4+2.2+8)=4
The number of distinct fuzzy subgroups of S;
S5={1,(12),(13),(23),(123),(132)}

There are six subgroups of Sz, those are

{14,(12).{1,(23)}{1,(13)}.{1,(123),(132)} and S,

itself.
|[Aut(S3)|=3!=2x3=6
Therefore number of automorphism of S;is 6.
Now, we will study all automorphism one by one.
1) 1 |
(12) —(12)
(13) —(13)
(23) —(23)
(123) —(123)

(132) _(132)
Fix(f1)={H<Ss|f1(H)=H}

={1{1,(12)}{1,(23)}{1.(13)}.{1,(123),(132)},S5}

Lattice of these subgroups is as follows.

S3
// \ s B

{l, (12)} {l (23)} {l (13)}

Fixc (f1) = { CeC|f,(C) = C}
Clearly members of Fix (f) are
-S;

—{1,(12)} c Sg
—{1,(23)} c S5
—={1,(13)} c S5
S{1,(123),(132)} < Ss
S{l}eSs
—{I} cp,a23 <Ss
{1} (23 <S3
{1} <13 <S3

—{I} c,223),132)} <S3

Therefore |Fixz (f1)|=10
2)

fz: I 1
(12) —(13)
(13) —(23)
(23) —(12)
(123) __(123)
(132) _ (132)

Fix(f,)={H<S;|f,(H)=H}
={1}1.{1,(123),(132)},S5}
Lattice of these subgroups is as follows
Ss
{I,(123),d32)}
{ll}

Fixe (f2)={ CeClf(C)=C}
Clearly members of Fix (f,) are
—S;3

—{,(123),132)} < S3
>{l}cSs
{1} cp,123),132); <Ss3
Therefore |Fix: (f2)|=4

3)
f3: | I |
(12) —(23)
(13) —(12)
(23) —(13)

(123) __(123)
(132) __(132)

Fix(f3)={H<Ss|f3(H)=H}
={{1}.{1,(123),(132)},Ss}
Lattice of these subgroups is as follows
Ss
{|,(123),(132)}
{ll}

Fixc (f3)={ CeClf3(C)=C}
Clearly members of Fix (f3) are
—S3

—{1,(123),(132)} =53
~{l}<Ss
—{1} cp1,a23), 32} <S3
Therefore |Fix; (f2)|=4
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4)
foo | ——|
(12) —(13)
(13) —(12)
(23) —(23)

(123) —(132)
(132) —(123)

Fix(f4)={H<Ss|f4(H)=H}
={{1},{1,(23)},{1,(123),(132),S3}

Lattice of these subgroups is as follows

SN

{1, (123), (132)}

{1, 23)} /
{1

Fixc (f2)={ CeClfs(C)=C}
Clearly members of Fixs (f;) are
-S;

—0,23) <S3
—1,(123),(132)} <S3
>{l}cS3
—{I} cqi,23) <Ss
{1} e, 123),(132) <S3
Therefore |Fixs (f4)|=6
5)

fs: | |
(12) —(23)
(13) —(13)
(23) —(12)
(123)——(132)
(132)—(123)

Fix(fs)={H<=Ss|fs(H)=H}
Lattice of these subgroups is as follows

{I, (123), (132)}

{1, (13)} /
{1}

Fixe (fs)={ CeC|fs(C)=C}
Clearly members of Fix. (fs) are
-S;

SN

—0,13) cS3
—{1,(123),(132)} <S3
~{l}<Ss
—{I} 23 <S3
{1} cp,(129), 132 <S3
Therefore |Fix¢s (fs)|=6

6)

fe: | |
(12)—(12)
(13)—(23)
(23) —(13)

(123)__(132)
(132)_(123)

Fix(fs)={H<Ss|fs(H)=H}

Lattice of these subgroups is as follows

SN

{1, (123), (132)}

{1, (12)} /
{1y

Fixc (fe)={ CeClfe(C)=C}
Clearly members of Fix (fs) are
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-S;
—0,a2) <S3
—{1,(123),(132)} S3
>{l}cS3
{1} <2y <Ss
{1} cp.123).(132)y <S3
Therefore |Fix¢ (fs)|=6

Therefore Number N of all distinct fuzzy subgroups
of S;

=2(10+2x4+3x6)=6

The number of distinct fuzzy subgroups of Dg
Dg=<a,bla* = b%?=1,ab = ba ' >

Clearly Dg={1, a, a?, a3, b, ab,a?b, ab}

We have ten subgroups of Dg,those are

{1}{1,b},{1,a%},{1,a?b}.{1,ab}.{1,a3b}{1,a%, b, a®b}{
1,a,a? a3}, {1,a? ab, a®b} and Dy itself.

|Aut Dg|=n¢p(n)=4¢(4)=4%x2=8
Automorphism group of Dg is well known, namely
Aut Dg={fypl0 <a<4—-1with(a,4)=10<p <
4 -1}
:{fl,O 'f1,1'f1,2'f1,3 'f3,0 'f3,1 'f3,2 'f3,3 }
Where f, g(a") = a®
fap(a'b) =a®*Fp for all 0<i<n-1=
4-1

1) fiela) =d
fl,o(aib) =a'b

Take f; 4 =f1

f1:Dg Dg
11
a a
a’_a?
a>___ad
b—_b
ab——ab
a’b— a’b
a*b__a3b

Fix fi={H< Dg|fi(H)=H}

:{{1}!{1' b}:Kl,{l,az}:KZ,{l,azb}:K3,{1,ab}:K4,{1,
a3b}:K5!{1!a2' b’ azb}:Ml!{llal azr a3}:M21{1!a21 ab: a3b
},Dg}

Lattice of these subgroups is as follows

M, M Ms
o Kz/ |

Fixs (f)={ CeC|f(C)=C}
Clearly from above lattice diagram

|Fixe (f1)]=32
2) f1,1(ai) =a'
f1,1(aib) = a'*lp

Take f;, =f,

fo:Dg Dg
1 1
a__a
a’_a®
a>__a
b— _ab
ab——a?b
a’b__a’b
a*b__b

Fix f,={H< Dg|f2(H)=H}
={{1},{1,a%},{1,a, a? a*},Dg}
Lattice of these subgroups is as follows

8
{1,a,¢% a%}
{1.9%
{1}

Fix¢ (f,)={ CeC|f,(C)=C}
Members of Fix; (f,) are
- Dg

- {1,a,a? a%}c Dg

- {l,az}c D8

- {1,a%}(1,a,a?% a?c Dg
- {1}c Dg

- {1}c{1,a%} Ds

- {1}c(1,a,a? a’c Dg
- {1}{1,a%}(1,a,a? a3« Dg
[Fixe (f2)|=8
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3 fisla) =a
fis(@'b) = a'*3b
Take f1'3 =f3

f3:D3—D8
— 1

b—a3b
ab—>b
a’b_ab
a®b __a’b
Fix f;={H< Dg|f3(H)=H}
={{1}{1,a’}{1,a, a* a*},Dg}

Lattice of these subgroups is as follows

Ds
{1,a, clrz, a3}
{1,a%}

i

Clearly in this case also
|Fixc (f3)|=8

4)  fzi(a) = a*
f3,1(aib) — a3i+1b
Take f3’1 =f4

f4:D8_Dg
I

ab—>b
a’b_—a3b
a®b_a’b
Fix f,={H< Ds|fs(H)=H}
={{1}.{1,a*}.{1,a,a® a%},Dg}

Lattice of these subgroups is as follows
8
{1,a,a? a%}
{1,12}
{1}

Clearly in this case also
|Fixc (f2)|=8
5)  faaa) = a¥

f3_1(aib) — a3i+3b
Take f3’3 :f5

f5:D8 Dsg
11

a___ad

2

a a

a®i_a

b—a®b

ab—a?b

a’h_ab

alb_b
Fix fs={H< Dg|fs(H)=H}

={1}{1.a’}{1,a,a® a®},Dg}
Lattice of these subgroups is as follows
Ds

|
{1,a,a?% a®}
{112}
ty
Clearly in this case also
|Fixc (fs)|=8
6) f1,2(ai) =a

f1,2(aib) = a'*?p
Take f;, =fg

fe:Dg_Dg
11

a’h_b

a’b__ab
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Fix fo={H< Dg|fs(H)=H} o
={1},{1,a%}{1,a?,b,a’b}{1,a,a? a3},{1,a?%, ab,a®b},Dg}
Subgroup lattice diagram of these subgroups is as Mz M2 M2
follows / \
Ds
/ Ky K3 Kz

35 {1}
\ i
\\ / Clearly in this case

N IFixe (f,)|=24
e 8) foz(a) = a
i — 3i+2
Clearly in this case f_?_.;(k‘; I])c) —_]? b
3,2 —18
|Fixe (fs)|=16
7) f3,0(ai) = a3i fg:Dg_Dg
f3,0(aib) = a*b 1 1
Take f3'0 =f7 a3
a2 a2
f7:D8_Dg s
1 1 al_a
3 b a%b
a__a
2 2 ab—ab
a a
3 a’h_ b
a. a
! 3h__a3b
b a b_a
Fix fe={H< Dg|fs(H)=H}
ab—-a3b
2p_q? ={{1},{1,a%}.{1,ab}.{1,a*h},
a*h—a®h {1,a2,b,a?b}{1,a, a2, a*}{1,a2, ab, a*b},Dg}
a’h_ ab Subgroup lattice diagram of these subgroups is as
Fix fz={H< Dg|f7(H)=H} follows

={1},{1,h},{1,a?},{1,a?b}{1,a%, b, a?b}{1,a,a? a®} {1,
a?,ab, a3b},Dg}

Subgroup lattice diagram of these subgroups is as
follows

www.jmest.org
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Ds
Mz M 1 M 3
KL Kz K3

{1}

Clearly in this case
|Fix¢ (fs)|=24
Therefore N of all distinct fuzzy subgroups of Dg

=-(32+4% 8 + 16+ 2 X 24)=16
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