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Abstract— In this paper, development of seeded 
bisection iteration method using perturbation-based 
mechanism is presented. The seeded bisection method 
uses one initial guess root value provided by the user 
to generate the two initial values for the classical 
Bisection iteration method. The flowchart for the 
perturbation-based seeded bisection iteration method 
(PSBIM) was presented and two functions were chosen 
and used for sample numerical examples to show the 
applicability of the new concepts presented in this 
paper. The simulation was conducted in Matlab 
software. The results showed that the initial seed value 
for the first function was 0.6253353000 but the 
generated two initial values for the PSBIM were 
iterations are  0.6253353006 and    0.6961310521. Also, 
the convergence cycle of the PSBIM is 11 for the first 
function. In the same way, the results showed that the 
initial seed value for the first function is 1.0764738270 
but the generated two initial values for PSBIM iterations 
are   1.0764738281 and    1.2084326042 while the 
convergence cycle of the PSBIM was 15 for the second 
function. 
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1. INTRODUCTION 

Classical bisection iteration method is one of the most 

popular iteration method because of its simplicity 

[1,2,3,4,5,6,7]. However, the drawback of the Bisection 

method is the slow rate which gives rise to high 

convergence cycle number [8,9,10,11,12,13,14]. In 

addition, the Bisection method requires two initial guess 

root values [15,16,17] for the function and the guessed root 

values must be such that one of the values must be above 

the actual root while the other guess root must e below the 

actual root. This requirement makes it difficult to apply 

seeded iteration concept to the Bisection method. In seeded 

iteration methods, only one guess root is required to 

conduct the iteration.  

Consequently, in this paper, a seeded Bisection method 

with perturbation-based mechanism is presented. The 

perturbation-based seeded bisection iteration method 

(PSBIM) requires users to supply only one seed  (guess root 

value) and the PSBIM procedure will generate the required 

two initial roots and hence complete the Bisection iteration 

for finding the root of the function. The relevant flowchart 

for the PSBIM is presented along with numerical examples. 

 

II.   THE PERTURBATION-BASED 

SEEDED BISECTION METHOD 

In the perturbation-based seeded bisection iteration method 

(PSBIM), the assumption is that the function f(x) has at 

least a root x and a seed point, x0 can be selected by the 

user such that when the  PSBIM  is implemented for the 

function based on x0, two other inital root values , xL and 

xUwill be generted such that xL  and xU  will be generated 

such that f( xL )*f( xU ) < 0. The flowchart   for the 

perturbation-based seeded Bisection method is 

given in Figure 1. 
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Figure 1 : The flowchart for the Perturbation-Based Seeded Bisection Method 

 

III. RESULTS AND DISCUSSIONS 

The following two functions were chosen for the numerical 

example on the application of the perturbation-based seeded 

bisection method; 

1) 𝐟(𝐱)   = 𝐱−𝟎.𝟓 −  𝐋𝐧(𝟏 + 𝐱𝟎.𝟓) + 𝟎. 𝟓𝐋𝐧(𝟏 − 𝐱 )  = 𝟎 

2) 𝐟(𝐱)   = 𝐱𝟐 −  𝐬𝐢𝐧(𝐱) − 𝟎. 𝟓 = 𝟎 

Mathlab software was used to determine the roots of the 

two chosen functions using the perturbation-based seeded 

bisection iteration method (PSBIM) with error tolerance of  

f(XU) < 10−5 
. The initial seed (guess root value) was 

selected for each function and the iteration was conducted 

until the error tolerance threshold was satisfied. The r two 

initial roots generated from the single guess root for the 

first function is shown in Table 1 while Table 2 shows the 

results of the PSBIM iterations and the convergence cycle. 

The results in Table 1 shows that the initial seed value for 
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the first function is 0.6253353000 but the generated two 

initial values for PSBIM iterations are  
xL = 0.6253353006 and xU =  0.6961310521. Also, Table 

2 results show that the convergence cycle of the PSBIM is 

11 for the first function. 

 

 

Table 1  The two initial roots generated from the single guess root for the first function, f(x)   = x−0.5 −  Ln(1 + x0.5) +
0.5Ln(1 − x )  = 0 

i   xi f(xi) f(xi−1)* f(xi) xL xU 

0 f(x0)=f(x) 0.6253353000 0.19105792 1.00000000 0.6253353006 0.6961310521 

1 f(x1) = f(x+δ) 0.6253353006 0.19105792 0.03650313     

2 f(x2) = f(1-(Δ*x)) 0.6961310521 -0.00372126 -0.00071098     

3 f(x3) = f(1-(2*Δ)*x) 0.7069551029 -0.03458368 0.00012869     

 

Table 2 The convergence cycle of the perturbation-based seeded bisection method with error tolerance of f(XU) < 10−5  for the 

first  function; 𝐟(𝐱)   = 𝐱−𝟎.𝟓 −  𝐋𝐧(𝟏 + 𝐱𝟎.𝟓) + 𝟎. 𝟓𝐋𝐧(𝟏 − 𝐱 )  = 𝟎 

n XL XU f(XL) f(XU) X f(X) f(XL)*f(X) 

1 0.6253353 0.696131 1.9105791769E-01 -0.003721259 0.6607332 0.094845 1.8120823801E-02 

2 0.6607332 0.696131 9.4844662917E-02 -0.003721259 0.6784321 0.045954 4.3585283625E-03 

3 0.6784321 0.696131 4.5954387189E-02 -0.003721259 0.6872816 0.021228 9.7552848926E-04 

4 0.6872816 0.696131 2.1228190580E-02 -0.003721259 0.6917063 0.008783 1.8645018494E-04 

5 0.6917063 0.696131 8.7831407123E-03 -0.003721259 0.6939187 0.002539 2.2296763527E-05 

6 0.6939187 0.696131 2.5385866237E-03 -0.003721259 0.6950249 -0.000589 -1.4962326639E-06 

7 0.6939187 0.695025 2.5385866237E-03 -0.000589396 0.6944718 0.000975 2.4753168579E-06 

8 0.6944718 0.695025 9.7507677490E-04 -0.000589396 0.6947483 0.000193 1.8815200816E-07 

9 0.6947483 0.695025 1.9296122418E-04 -0.000589396 0.6948866 -0.000198 -3.8242425808E-08 

10 0.6947483 0.694887 1.9296122418E-04 -0.000198187 0.6948175 -0.000003 -5.0273755205E-10 

11 0.6947483 0.694817 1.9296122418E-04 -2.60538E-06 0.6947829 0.000095 1.8366012656E-08 

12 0.6947829 0.694817 9.5179810005E-05 -2.60538E-06 0.6948002 0.000046 4.4056532189E-09 

13 0.6948002 0.694817 4.6287686629E-05 -2.60538E-06 0.6948088 0.000022 1.0109818971E-09 

14 0.6948088 0.694817 2.1841270773E-05 -2.60538E-06 0.6948131 0.000010 2.1006878076E-10 

15 0.6948131 0.694817 9.6179742904E-06 -2.60538E-06 0.6948153 0.000004 3.3723540853E-11 

 
In the same way, the results in Table 3 shows that the initial 

seed value for the first function is 1.0764738270 but the 

generated two initial values for PSBIM iterations are  
xL = 1.0764738281 and xU =  1.2084326042. Also, Table 4 

results show that the convergence cycle of the PSBIM is 15 

for the second function. In all, the perturbation-based 

approach has been successfully applied in the seeded 

Bisection iteration method  

 

Table 3  The two initial roots generated from the single guess root for the second function, 𝐟(𝐱)   = 𝐱𝟐 −  𝐬𝐢𝐧(𝐱) −
𝟎. 𝟓 = 𝟎 

i   xi f(xi) f(xi−1)* f(xi) xL xU 

0 f(xo)=f(x) 1.0764738270 -0.22149444 1.00000000 1.0764738281 1.2084326042 

1 f(x1) = f(x+δ) 1.0764738281 -0.22149444 0.04905979     

2 f(x2) = f(1-(Δ*x)) 1.2084326042 0.02524783 -0.00559225     

3 f(x3) = f(1-(2*Δ)*x) -1.6613796806 3.25608258 0.08220901     

 

Table 4  The convergence cycle of the perturbation-based seeded bisection method with error tolerance of f(XU) < 10−6  for the 

second function,  𝐟(𝐱)   = 𝐱𝟐 −  𝐬𝐢𝐧(𝐱) − 𝟎. 𝟓 = 𝟎 

n XL XU f(XL) f(XU) X f(X) f(XL)*f(X) 

1 1.0764738 1.208433 -2.2149443987E-01 0.025247827 1.1424532 -0.104456 2.3136392076E-02 

2 1.1424532 1.208433 -1.0445585943E-01 0.025247827 1.1754429 -0.041194 4.3030041952E-03 

3 1.1754429 1.208433 -4.1194474093E-02 0.025247827 1.1919378 -0.008372 3.4487162939E-04 

4 1.1919378 1.208433 -8.3717934744E-03 0.025247827 1.2001852 0.008338 -6.9806494091E-05 

5 1.1919378 1.200185 -8.3717934744E-03 0.008338296 1.1960615 -0.000042 3.4881971606E-07 

6 1.1960615 1.200185 -4.1666067984E-05 0.008338296 1.1981233 0.004142 -1.7258435867E-07 

7 1.1960615 1.198123 -4.1666067984E-05 0.004142084 1.1970924 0.002049 -8.5359252084E-08 

8 1.1960615 1.197092 -4.1666067984E-05 0.002048651 1.1965769 0.001003 -4.1795372313E-08 
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9 1.1960615 1.196577 -4.1666067984E-05 0.001003103 1.1963192 0.000481 -2.0025599897E-08 

10 1.1960615 1.196319 -4.1666067984E-05 0.000480621 1.1961903 0.000219 -9.1437554418E-09 

11 1.1960615 1.196190 -4.1666067984E-05 0.000219453 1.1961259 0.000089 -3.7035936383E-09 

12 1.1960615 1.196126 -4.1666067984E-05 8.88875E-05 1.1960937 0.000024 -9.8370284078E-10 

13 1.1960615 1.196094 -4.1666067984E-05 2.36092E-05 1.1960776 -0.000009 3.7619503216E-10 

14 1.1960776 1.196094 -9.0288105012E-06 2.36092E-05 1.1960856 0.000007 -6.5820962123E-11 

15 1.1960776 1.196086 -9.0288105012E-06 7.2901E-06 1.1960816 -0.000001 7.8494430234E-12 

 

IV . CONCLUSION   

The application of perturbation approach to realize seeded 

Bisection iteration method is presented. The seeded 

bisection method uses one initial value to generate the two 

initial values for the classical Bisection iteration method. 

Sample numerical examples were used to show the 

applicability of the new concepts presented in this paper. 

The simulation was conducted in Matlab software. 
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