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Abstract— In this paper, analysis of perturbance 

coefficient-based seeded secant iteration method was 

presented. Unlike the classical secant method which 

requires two initial guess values for finding the root of 

the function, the seeded secant method requires only 

one initial guess value to perform the iteration. 

Available studies have shown the use of one initial 

arbitrary guess value,  𝐱𝟎 and a perturbance coefficient, 

𝛅𝐱 = 0.01. The study in this paper seeks to determine 

the range of values for 𝐱𝟎  and 𝛅𝐱  that will yield best 

results in terms of convergence cycle. Five functions 

from different published works were selected, the 

perturbance coefficient-based seeded secant iteration 

method was simulation in Matlab software for finding 

the root of each of the five functions for different values 

of  𝐱𝟎  and 𝛅𝐱 . The results shows that a perturbance 

coefficient value of 𝛅𝐱 ≤ 𝟎. 𝟎𝟎𝟎𝟎𝟎𝟏  gives best 

convergence cycle results. Also, the initial guess root 

value should be within ± 20% above or below the 

expected actual root of the function. 

Keywords— Iteration Method, Secant Method, 
Seeded Secant Iteration, Classical Secant Method, 
Perturbance coefficient-Based Seeded Secant 

 

 

I.  INTRODUCTION 

Normally, the classical secant numerical iteration method 

requires two initial (guess root) values to be selected for the 

iteration purpose and the two selected values are expected 

to be close to one another [1,2,3,4,5]. The question of how 

close the two initial values should be is not yet answered. 

On the other hand, some modified versions of the secant 

method (referred in this paper as seeded secant) have opted 

for one initial value (the seed). There are two versions of 

such seeded secant method [6,7,8,9,10]. In the first version, 

𝑥0 is the initial guess value and the second value for the 

iteration is obtained by adding f(𝑥0) to 𝑥0. The first version 

of seeded secant is referred in this paper as the residue-

based seeded secant. This is because f(𝑥0) is the  residue 

(error) obtained when the root is assumed to be 𝑥0.  If  𝑥0 is 

the root of f(𝑥)  then f(𝑥0) will be zero (0).  

In the second version of the seeded secant, 𝑥0 is the initial 

guess value and the second value for the iteration is 

obtained by adding to 𝑥0  a value 𝛅  computed using a 

perturbance coefficient denoted as 𝛅𝑥 , where 𝛅 = (𝛅𝑥)𝑥0. 

In the published works, the perturbance coefficient value of 

𝛅𝑥,  = 0.01 was used to run the secant iteration. The second 

version of the seeded secant is referred in this paper as 

perturbance coefficient-based seeded secant. This is 

because 𝛅𝑥,  is the perturbance coefficient (small fraction) 

that is used to compute the perturbance  value , 𝛅 which is 

added to the assumed root, 𝑥0 to obtain the second initial 

root as 𝑥0 + 𝛅   𝐨𝐫   𝑥0 + (𝛅𝑥)𝑥0.   

In any case, the convergence of the seeded secants is faster 

when the initial guess value is close to the actual root of the 

equation. Again, how close the initial guess should be is not 

yet answered. In this paper, the focus in on the analysis of 

the perturbance coefficient-based seeded secant method to 

determine the appropriate range of value for the small 

perturbance coefficient relative to the guess seed value and 

also the appropriate range of values for the seed (the single 

initial guess value) relative to the actual root of the 

equation. 

 

II.  THEORETICAL BACKGROUND ON SECANT 

METHOD 

 

A.  The Classical Secant Method 

In the classical secant method, it is generally assumed that 

the function f(x) has a root x in the range xL  and xU  and it 

is differentiable in that range xL  and xU  [11,12,13,14]. The 

algorithm for the classical secant method is as follows: 

Step 1:  

Step 1.1: Input: Initial values for  xL  and xU   
Step 1.2: Input: Desired Accuracy, 𝜖  

Step 1.3: Input: Maximum Number of Iterations , n 

Step 2: For K = 1  To n  Step 1 do: 

Step 3:  

Step 3.1: Compute  f(xL) 

Step 3.2: Compute  f(xU) 

Step 4:    𝒙 =  xU − f(xU) (
xU −xL

 f(xU) − f(xL)
)  

Step 5:      

Step 5.1:    If |𝒙 − xU| <  𝜖  Then   

Step 5.1.1:    Output    𝒙 

Step 5.1.2:    Goto Step 8; 

Step 5.2: Else 

Step 5.2.1: xL   =  xU   
Step 5.2.2: xU  =  𝒙   

Step 5.3: EndIf 

Step 6: Next K 

Step 7: Output  “Maximum number of iterations 
exceeded; Method failed to find the root” 
Step 8  Stop 
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B.  The Perturbance coefficient-Based Seeded Secant 

Method 

In the perturbance coefficient-based seeded secant method, 

it is assumed that the function f(x) has a root x near a seed 

point xp. Importantly, the function is differentiable in the 

range x  and xp . Also, the seeded secant uses a small 

perturbance coefficient value (𝛅𝑥) of say 0.01 along with 

the seed value, x to do the iteration. Then, δ = (𝛅𝑥) 𝑥𝑜= 

(0.01) 𝑥𝑜  . The algorithm for the seeded secant method is 

as follows: 

Step 1:  

Step 1.1: Input: Initial value for  𝑥𝑜    
Step 1.2:   Set  value for 𝛅𝑥 =  0.01     
Step 1.3: Input: Desired Accuracy, 𝜖  

Step 1.4: δ = (𝛅𝑥) 𝑥𝑜= (0.01) 𝑥𝑜 

Step 1.5: Input: Maximum Number of  Iterations, n 

Step 2: For K = 1  To  n  Step 1 do: 

Step 3:     

Step 3.1: Compute  f(𝑥𝑘−1) 

Step 3.2: Compute  f(𝑥𝑘−1 +  𝛅) 

Step 4:     𝑥𝑘 =   𝑥𝑘−1 − f(𝑥𝑘−1) (
 𝛅

 f(𝑥𝑘−1+ 𝛅) − f(𝑥𝑘−1)
)  

Step 5:      

Step 5.1:    If |𝑥𝑘 − 𝑥𝑘−1| <  𝜖  Then   

Step 5.1.1:    Output    𝑥𝑘  

Step 5.1.2:    Goto Step 8; 

Step 5.3: EndIf 

Step 6: Next K 

Step 7: Output  “Maximum number of iterations 
exceeded; Method failed to find the root” 
Step 8  Stop 

III.  METHODOLOGY 

In the available published works, a constant perturbance 

coefficient value of δx = 0.01 is used for the Perturbance 

coefficient-Based Seeded Secant iteration.  As such, in the 

published works, δx  is defined as follows;  

𝛅𝐱 =
1

𝟏𝟎𝟐 =  
1

𝟏𝟎𝟎
= 𝟎. 𝟎𝟏          (1) 

 In this paper, the perturbance coefficient value is defined 

as follows; 

𝛅𝐱 =
1

𝟏𝟎𝐖  = 𝟏𝟎−𝐖                  (2) 

Hence, in this study, for a given function a seed value, 𝑥𝑜 is 

selected and the value of w in Eq 2 is varied from 1 to 9 and 

for each value of w the resultant perturbance coefficient 

value, 𝛅𝐱  is used in the Perturbance coefficient-Based 

Seeded Secant iterations. The convergence cycle number, 

Nw   for each 𝛅𝐱  is noted. Hence, the effect of the 

perturbance coefficient value, 𝛅𝐱 on the convergence cycle 

for the given function and seed value can be assessed. In 

this study, the seed value is expressed as a percentage of the 

actual root as follows: 

𝐩 = (
𝑥𝑜

𝑥𝐶𝑛
)  𝟏𝟎𝟎  %             (3) 

Where xCn   is the value of x  at the convergence cycle. 

Again, similar iterations are conducted for the same 

function but with different seed values,  𝑥𝑜  (that give 

different P values). Specifically, values of 𝑥𝑜 that give p = 

70%,  90 %, 110% 200% , 300%, 400% and 500% are used. 

Furthermore, the same iterations are repeated for different 

functions. The results obtained enable the generalization of 

the effect of the perturbance coefficient value, δ w and the 

seed value, 𝑥𝑜 on the convergence cycle for any function. In 

all the cases , 𝛅 = (𝛅𝑥)𝑥 . 

 

IV. RESULTS AND DISCUSSIONS 

 

A.  Selected Functions 

Five different functions were used in the study and they are 

as follows: 

1) 𝐟(𝐱)   =  𝐱𝟑.𝟓 − 𝟖𝟎 = 𝟎 

2) 𝐟(𝐱)   =  𝐱𝟔 − 𝐱 − 𝟏 = 𝟎 

3) 𝐟(𝐱)   = 𝐜𝐨𝐬(𝐱) − 𝐱𝐞𝐱  = 𝟎 

4) 𝐟(𝐱)   = 𝐱−𝟎.𝟓 −  𝐋𝐧(𝟏 + 𝐱𝟎.𝟓) + 𝟎. 𝟓𝐋𝐧(𝟏 −

𝐱 )  = 𝟎 

5) 𝐟(𝐱)   = 𝐱𝟐 −  𝐬𝐢𝐧(𝐱) − 𝟎. 𝟓 = 𝟎 

B.  Determination of the convergence cycle for 𝒙𝒐 = 90%  

of Actual Root and δx  of 0.01 

Existing works on the Perturbance coefficient-Based 

Seeded Secant used initial value, 𝑥𝑜  that are about 90% to 

110% of the actual root ( xcn ) of the function and a 

perturbance coefficient (δx) of 0.01. We now consider the 

first function in the list , that is; f(x)   =  x3.5 − 80. In order 

to select the initial root value that is close enough to the 

actual root of the function, the graph of the function is 

plotted. In Figure 1, the graph of the first function  f(x)   =
 x3.5 − 80 is plotted. From Figure 1, the root of the function 

is about 3.497. An initial root value of 90% of the actual 

root and a perturbance coefficient value of 0.01 is used.  

That means, for the first function, xo = 0.9(Xcn) =
 0.9(3.497)  = 3.148 (as shown in Table 1 and Table 2).  

Similarly, the expected actual root of all the listed functions 

and the selected initial root values are shown in Table 1. In 

each case, xo /xcn  is 90% of the expected actual root, as 

shown in Table 2 on the column with the heading as 

(xo /xcn )100%. Also, δx = 0.01 is used for each of the 

functions. The desired accuracy, ϵ = 1x10−13. That means, 

the iteration stops when f(x)  ≤  1x10−13. The Perturbance 

coefficient-Based Seeded Secant iteration result for the first 

function is shown in Table 2 for , xo = 0.9(xcn) =
 0.9(3.497)  = 3.148 , δx = 0.01  and ϵ = 1x10−13 . The 

results show that the iteration converged in the 8th cycle 

with the root as x8 = 3.497357.   

 

 

 

 

 

 

 

 

 

http://www.jmest.org/


Journal of Multidisciplinary Engineering Science and Technology (JMEST) 

ISSN: 2458-9403 

Vol. 2 Issue 1, January - 2015 

www.jmest.org 

JMESTN42353752 13561 

x 𝐟(𝐱)   =  𝐱𝟑.𝟓 − 𝟖𝟎 

 

3.470 -2.1689 

3.475 -1.77567 

3.480 -1.38103 

3.485 -0.98496 

3.490 -0.58748 

3.495 -0.18856 

3.500 0.21178 

3.505 0.613556 

3.510 1.016767 

3.515 1.421416 

3.520 1.827507 

3.525 2.235043 

3.530 2.644027 

3.535 3.054461 

Figure 1 The graph of the function  f(x)   =  x3.5 − 80 

 

Table 1  The expected actual root of all the listed functions and the selected initial root values 

Function δx x0 xo +δ f(xo) f(xo +δx) x1 

1 0.01 3.1476215 3.1576215 -24.6727902 -24.0551319 3.5470784 

2 0.01 1.0212517 1.0312517 -0.8867718 -0.8284664 1.1733425 

3 0.01 0.4659816 0.4759816 0.1508030 0.1227065 0.5196547 

4 0.01 0.6253353 0.6353353 0.1910579 0.1640292 0.6960224 

5 0.01 1.0764738 1.0864738 -0.2214944 -0.2045652 1.2073094 

 

Table 2   The convergence cycle (cn) for the five  functions when the Perturbance coefficient-Based Seeded Secant iterations 

is used to determine the root of each of the functions 

 Function S/N Actual Root (Xcn) Xo (xo/xcn)100% δx (δx/Xo) cn f(xcn) 

1 3.50 3.15 90.0 0.01 3.18E-03 8 0.00E+00 

2 1.13 1.02 90.0 0.01 9.79E-03 11 -8.88E-16 

3 0.52 0.47 90.0 0.01 2.15E-02 8 0.00E+00 

4 0.69 0.63 90.0 0.01 1.60E-02 7 0.00E+00 

5 1.20 1.08 90.0 0.01 9.29E-03 8 0.00E+00 

 

C.  Determination of the convergence cycle for 𝒙𝒐 = 90% 

of Actual Root and δx of 𝟏𝟎−𝟏, 𝟏𝟎−𝟐,…, 𝟏𝟎−𝟗 

 

The  Perturbance coefficient-Based Seeded Secant iteration 

simulated for the various functions for xo = 90% of  actual 

root,  δx  of  10−1 ,  10−2 ,…,  10−9   (that is for w = 

1,2,3,4,…,9. ) and  ϵ = 1x10−13 . The Perturbance 

coefficient-Based Seeded Secant iteration result for the first 

function is shown in Table 3 for , xo = 0.9(Xcn) =
 0.9(3.497)  = 3.148 , w = 1 (that is δx =𝟏𝟎−𝟏 = 0.1 ) and 

ϵ = 1x10−13. The results show that the iteration converged 

in the 11th cycle which is above the convergence cycle of 8 

in the case when  w = 2 (that is δx =𝟏𝟎−𝟐 = 0.01 ).  The 

convergence cycle for the other functions for , xo =
0.9(Xcn) =  0.9( 3.497)  = 3.148 , w = 1 (that is δx 

=𝟏𝟎−𝟏 = 0.1 ) and ϵ = 1x10−13 are shown in Table 4. 

The convergence cycle for the five functions for , xo =
0.9(Xcn) =  0.9(3.497)  = 3.148 , w = 1 , 2,3,…,9 (that is 

δx =𝟏𝟎−𝟏, 𝟏𝟎−𝟐,…, 𝟏𝟎−𝟗) and ϵ = 1x10−13 are shown in 

Table 5 and Figure 2. From the results it can be seen that 

for the functions studied, the convergence cycle decreases 

as the perturbance coefficient , δx  decreases. However, the 

convergence cycle remains the same for all δx ≥ 𝟏𝟎−𝟔 .  

Essentially, the appropriate perturbance coefficient, (δx)  is 

𝟏𝟎−𝟔.  
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Table 3  The  Perturbance coefficient-Based Seeded Secant iteration result for the first function, 𝐟(𝐱)   =  𝐱𝟑.𝟓 − 𝟖𝟎 = 𝟎 

Iteration Cycle number (n)  δX Xk Xk + δX f(xk) f(xk+ δX) x(k+1) 

1 1.0E-01 3.147622 3.247622 -2.47E+01 -18.2725 3.533114 

2 1.0E-01 3.533114 3.633114 2.90E+00 11.40642 3.49903 

3 1.0E-01 3.49903 3.59903 1.34E-01 8.440108 3.497417 

4 1.0E-01 3.497417 3.597417 4.76E-03 8.301406 3.497359 

5 1.0E-01 3.497359 3.597359 1.67E-04 8.296476 3.497357 

6 1.0E-01 3.497357 3.597357 5.83E-06 8.296303 3.497357 

7 1.0E-01 3.497357 3.597357 2.04E-07 8.296297 3.497357 

8 1.0E-01 3.497357 3.597357 7.14E-09 8.296297 3.497357 

9 1.0E-01 3.497357 3.597357 2.50E-10 8.296297 3.497357 

10 1.0E-01 3.497357 3.597357 8.71E-12 8.296297 3.497357 

11 1.0E-01 3.497357 3.597357 3.27E-13 8.296297 3.497357 

 

Table 4 The convergence cycle for the five functions for , xo = 0.9(Xcn) =  0.9(3.497)  = 3.148 , w = 1 (that is δx =𝟏𝟎−𝟏 = 

0.1 ) and ϵ = 1x10−13 

 

Function  Actual Root  Xo (Xo/Xn)100% δx (δx/Xo)  Cn f(xcn) 

1 3.497 3.148 90.0 0.10 3.18E-02 12 0.00E+00 

2 1.135 1.021 90.0 0.10 9.79E-02 20 8.44E-15 

3 0.518 0.466 90.0 0.10 2.15E-01 12 5.00E-15 

4 0.695 0.625 90.0 0.10 1.60E-01 12 2.55E-15 

5 1.196 1.076 90.0 0.10 9.29E-02 12 0.00E+00 
 

Table 5  The convergence cycle for the five functions for , xo = 0.9(Xcn) =  0.9(3.497)  = 3.148 , w = 1 , 2,3,…,9 (that is δx 

=𝟏𝟎−𝟏, 𝟏𝟎−𝟐,…, 𝟏𝟎−𝟗) and ϵ = 1x10−13 

 

(Xo/Xn)100% δx Log(δx) Conv. Cycle Fn 1 Conv. Cycle Fn 2 Conv. Cycle Fn 3 Conv. Cycle Fn 4 Conv. Cycle Fn 5 

90 1.00E-01 -1.0 12 20 12 12 12 

90 1.00E-02 -2.0 8 11 8 7 8 

90 1.00E-03 -3.0 7 8 6 6 6 

90 1.00E-04 -4.0 6 7 6 5 6 

90 1.00E-05 -5.0 6 7 5 5 6 

90 1.00E-06 -6.0 6 6 5 5 5 

90 1.00E-07 -7.0 6 6 5 5 5 

90 1.00E-08 -8.0 6 6 5 5 5 

90 1.00E-09 -9.0 6 6 5 5 5 
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Figure 2 The convergence cycle for the five functions for , xo = 0.9(Xcn) =  0.9(3.497)  = 3.148 , w = 1 , 2,3,…,9 (that is δx 

=𝟏𝟎−𝟏, 𝟏𝟎−𝟐,…, 𝟏𝟎−𝟗) and ϵ = 1x10−13 

D.  Determination of the convergence cycle for 𝜹𝒙 = 𝟏𝟎−𝟔  and  𝒙𝒐 = 70%,  90 %, 110% 200% , 300%, 400% and 500% of 

the actual root 

 

The  Perturbance coefficient-Based Seeded Secant iteration 

was iterated for the various functions for for δx = 10−6 ,  
xo = 70%,  90 %, 110% 200% , 300%, 400% and 500% of 

the actual root  and  ϵ = 1x10−13. The convergence cycle 

for all the five functions are shown in Table 5. The results 

show that the convergence cycle decreases as the initial root 

, xo get closer to the actual root . Hence, the convergence 

cycle when xo = 99% of Xcn is smaller than the 

convergence cycle when xo = 90% of Xcn.  

In respect of the results in Table 6 and Figure 3, it can be 

recommended that, xo =  xcn ±  20%  of xcn is a good 

initial root for iteration. Also, in respect of the results in 

Table 4 and Figure 2, δx = 10−6  is the good perturbance 

coefficient value for the iteration. 

Table 6 The convergence cycle for all the five functions for for δx = 10−6 ,  xo = 70%,  90 %, 110% 200% , 300%, 400% and 

500% of the actual root  and  ϵ = 1x10−13. 

δx (Xo/Xn)100% CONV. Cycle Fn 1 CONV. Cycle Fn 2 CONV. Cycle Fn 3 CONV. Cycle Fn 4 
CONV. Cycle 

Fn 5 

1.00E-06 70 7 12 6 5 6 

1.00E-06 80 7 8 5 5 6 

1.00E-06 90 6 6 5 5 5 

1.00E-06 99 5 5 4 4 4 

1.00E-06 101 5 5 4 4 4 

1.00E-06 110 6 6 5 5 5 

1.00E-06 120 6 7 5 6 6 

1.00E-06 130 7 7 6 6 6 
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Figure 3  The convergence cycle for all the five functions for for δx = 10−6 ,  xo = 70%,  90 %, 110% 200% , 300%, 400% 

and 500% of the actual root  and  ϵ = 1x10−13. 

 

V.  CONCLUSION    

A version of secant numerical iteration method referred in 

paper as perturbance coefficient-based seeded secant was 

studied. The study focused on the determination of 

appropriate initial root guess value and the appropriate 

value of the perturbance coefficient value for the initial 

root. Five different functions were used in the study and the 

results obtained showed that a perturbance coefficient value 

of 0.000001 gives best convergence cycle results. Also, the 

initial guess root value should be within ±20% above or 

below the expected actual root of the function. 
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