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Abstract— In this paper, comparative evaluation of 

initial value options for numerical iterative solution to 

eccentric anomaly (E) in Kepler's equation for orbital 

motion is presented. Two existing analytical 

expressions for the initial value of E are considered and 

compared with two new analytical expressions for the 

initial value of E proposed in this paper. Particularly, the 

initial value of E for each of the four options is 

separately applied in Newton Raphson iteration for 

computing E and then, the convergence cycles are 

compared for the four different initial value options.  

The two existing initial value options are tagged Eo1 

and Eo2 while the two proposed initial value options are 

tagged Eo3 and Eo4. Specifically, the comparison is 

performed for different configurations of the parameters 

in the Kepler’s equation for E, namely, the first 

eccentricity (e) and the mean anomaly (M).  The results 

showed that for M =7 ° and e = 0.999, Eo1 has 

convergence cycle greater than 13, Eo2 has 

convergence cycle of 5, Eo3 has convergence cycle of 4 

and Eo4 has convergence cycle of 3. Also, for M =7 °  

and e = 0.09 , Eo1 has convergence cycle  of 3 while the 

rest of the three options have convergence cycle  of 2. 

Again,  for M =0.7 °  and e = 0.09  all the four options 

have convergence cycle  of 2. Finally, for M =0.7 °  and e 

= 0.99 , Eo1 and Eo2  have convergence cycle  of 8 

while Eo3 has convergence cycle  of 6 and Eo4 has 

convergence cycle  of 5. In all, the proposed Eo4 initial 

value option is the best option with the lowest 

convergence cycle in all cases. Again, the Eo4 and Eo3 

initial value options performed better that the existing 

two initial value options, Eo1and Eo2. 
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I.  INTRODUCTION 

In satellite orbital motion studies, the location of satellite on 

a Keplerian orbit requires either the eccentric anomaly (E) 

or the true anomaly (v) [1,2,3,4]. Fortunately, Kepler’s 

equation for orbital motion provided analytical expression 

that relates the mean anomaly (M) and the eccentric 

anomaly [5,6,7,8,9,10,11,12,14]. Hence, Kepler’s equation 

can be used to determine the eccentric anomaly (E) and 

hence the location of a satellite in its orbit. However, the 

Kepler’s equation in terms of eccentric anomaly (E) is 

transcendental in nature [12,14,15,16,17,18,19,20]. As 

such, it requires iterative solution to determine the value of 

E. 

Over the years, researchers have applied several iterative 

methods to solve for the eccentric anomaly 

[7,8,9,14,2122,23,24]. However, there has been consistent 

effort to find ways to minimize the number of iterations 

required to arrive at acceptable solution to the Kepler's 

equation for eccentric anomaly. In most cases, the choice of 

the initial value of E has been found to be the key factor. 

Several authors have published different initial value 

analytical expression options for E for application in the 

Kepler's equation [7,8,9,14,2122,23,24]. In this paper, two 

additional analytical expressions for the initial value of E 

are presented and then compared with two other existing 

initial value options that are widely used in different 

published works. The essence of this paper is to 

demonstrate the higher efficiency of the proposed initial 

value options for E that are presented in this paper.  

Notably, the convergence cycle is the key parameter used in 

comparing the performance of the various initial values of 

E presented in this paper. Particularly, the four different 

initial value options of E are applied in Newton Raphson  

iteration solution to E and the convergence cycles of the 

Newton Raphson  iteration are compared. In all, the initial 

value expressions for E that are proposed in this paper will 

be very useful for researchers on satellite orbital motion 

studies. 

2.   METHODOLOGY 

The Kepler's e orbit equation relating the mean anomaly 

(M) and the eccentric anomaly (E) is given as 

[12,14,15,16,17,18,19,20,2122,23,24]; 

𝐸 = 𝑀 +  𝑒(sin (𝐸))                       (1) 

𝑓(𝐸) = 𝐸 − 𝑀 −  𝑒(sin (𝐸))                (2) 

http://www.jmest.org/
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𝛿𝑓(𝐸) = 1 −  𝑒(cos (𝐸))          (3) 

In the Kepler's orbit equation, circular and elliptic orbit has 

its eccentricity (e) value in the range;  0 ≤ 𝑒 ≤ 1 . Let the 

initial value of E be 𝐸𝑛 , then the next expected actual  

value of E is 𝐸𝑛+1  and it is  given as; 

𝐸𝑛+1 =  𝐸𝑛 −
𝐸𝑛−𝑀− 𝑒(sin (𝐸𝑛))

1 − 𝑒(cos (𝐸𝑛)) 
  for n = 0,1,2,3…N   (4) 

For each 𝐸𝑛+1 , the convergence to the actual value of E is 

tested using the specified tolerance error, 𝜺, such that the 

iteration stops when |𝐸𝑛+1 − 𝐸𝑛  |  ≤ |ε|. The Newton 

Raphson’s algorithm for the solution to E is given as 

follows; 

Step 1::  

Input the values of  M, e and 𝜺 

Step 2::  

Step 2.1::  

Initialize the counter , n =0    
Step 2.2::  

Compute the initial value of eccentric  

anomaly,  𝐸𝑛    
Step 3::  

Compute  𝑓(𝐸𝑛 ) = 𝐸𝑛   − 𝑀 −  𝑒(sin (𝐸𝑛 ))     

Step 4::  

Compute     𝛿𝑓(𝐸𝑛 ) = 1 −  𝑒(cos (𝐸𝑛 ))          

Step 5::  

Increment the counter ,  n = n + 1 

Step 6::  

Compute  𝐸𝑛  =  𝐸𝑛−1 −
𝐸𝑛−1−𝑀− 𝑒(sin (𝐸𝑛−1))

1 − 𝑒(cos (𝐸𝑛−1)) 
 

Step 7::  

If (|𝐸𝑛  − 𝐸𝑛−1| >  |ε| then Goto Step 3  EndIf 

Step 8::  

Output 𝐸𝑛    

Step 9::  

End 

 

III.  INITIAL VALUE EXPRESSIONS OPTIONS FOR 

ITERATIVE SOLUTION OF E. 

There are different analytical expression options for the 

initial value of E.  In this section, two existing initial value 

options are presented  along with two other initial value 

expressions proposed in this paper.  

Option 1 initial value of E  

Generally, if M and e are given, the initial value of E is 

simply taken as M i(n radians). Hence, in this paper, this 

option of the initial value is denoted as  𝐸01 where;  

𝐸01 = 𝑀  (5) 

Option 2 initial value of E  

 Based on [25], if M and e are given, the initial value of E, 

denoted in this paper as 𝐸02 is given as; 

𝐸02 = 𝑀 +
𝑒(sin (𝑀))

1−sin (𝑀+𝑒)+sin (𝑀)
                 (6) 

Option 3 : Proposed initial value of E  

In this paper,  two other initial value options are presented. 

Based on the 𝐸01 = 𝑀, an enhanced initial value , denoted 

as 𝐸03 is defined as follows; 

𝐸03 = 𝑀 + 𝑒[𝑠𝑖𝑛(𝑀 + 𝑒{𝑠𝑖𝑛(𝑀 + 𝑒 )})]                      (7) 

Option 4 : Proposed initial value of E  

In this paper, an empirically derived initial value expression 

for E is given as follows;   

𝐸04 = 𝑀 + 𝑒[𝑠𝑖𝑛(𝑀 + 𝑒{𝑠𝑖𝑛(𝑀 + φ )})]                      (8) 

Where φ is defined with respect to the parameter values in 

Table 1. 

φ =  
(B) sin(M)   +   (D) cos(M) 

(
1

e
)−(A)sin(M)−(C)cos(M)

                 (9) 

 

Table 1 The values of coefficient A, B , C and D obtained for the three range of values of x 

 Range of value of  e A B C D 

1 
0 .5 𝑒 ≤ 1 

 
-0.584013113 1.173439404 0.809460441 0.077357763 

2 

0 .01 ≤ 𝑒 ≤ 0.5 

Or 

M < 1.1° 
 

-0.248393819 1.019165175 0.961260155 0.004043021 

 

IV.   RESULTS AND DISCUSSION 

Newton Raphson iteration solution to eccentric  anomaly 

(E) was conducted based on the four (4) initial value 

expressions for E with tolerance error in the order of 10−7. 

The results of the Newton Raphson iteration solution to 

eccentric  anomaly (E) for M =7 °;  e = 0.999  and Eo =Eo1 

=7°  are given in Table 1  and Table 5. The results showed 

that the algorithm converged to acceptable tolerance error at  

cycle greater than the 13th cycle. Also, the results of the 

Newton Raphson iteration solution to eccentric  anomaly 

for M =7 ° ; e = 0.999  and Eo =Eo2 = 38.52700657° are 

given in Table 2 and Table 5. The results showed that the 

algorithm converged to acceptable tolerance error at the 5th 

cycle. Again, the results of the Newton Raphson iteration 

solution to eccentric  anomaly for M =7 ° ; e = 0.999  and 

Eo =Eo3 = 38.52700657° are given in Table 3 and Table 5. 

The results showed that the algorithm converged to 

acceptable tolerance error at the 4th cycle. Furthermore, the 

results of the Newton Raphson iteration solution to 

eccentric anomaly for M =7 °;  e = 0.999  and Eo =Eo4 

= 38.52700657° are given in Table 4 and Table 5. The 

results showed that the algorithm converged to acceptable 

tolerance error at the 3rd cycle. 

Further comparison are made for different combinations of 

the values of e and M. The comparison of the convergence 

cycle for the four initial value expressions for M =7 °  and e 

= 0.09 is given in Table 6. The results showed that Eo1 has 

convergence cycle  of 3 while the rest of the three options 

have convergence cycle  of 2.  

Also, the comparison of the convergence cycle for the four 

initial value expressions for M =0.7 °  and e = 0.09 is given 

in Table 7. The results showed that all the four options have 

convergence cycle  of 2.  

Again, the comparison of the convergence cycle for the 

four initial value expressions for M =0.7 °  and e = 0.99 is 

given in Table 8. The results showed that Eo1 and Eo2  

have convergence cycle  of 8 while Eo3 has convergence 

cycle  of 6 and Eo4 has convergence cycle  of 5. 

http://www.jmest.org/
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Furthermore, the comparison of the convergence cycle for 

the four initial value expressions for M =0.7 °  and e = 

0.999  is given in Table 9. The results showed that Eo1 has 

convergence cycle of 15, Eo2 has convergence cycle of 8, 

Eo3 has convergence cycle of 6 and Eo4 has convergence 

cycle  of 5. 

In all, the proposed Eo4 initial value option is the best 

option with the lowest convergence cycle in all cases. 

Again, the Eo4 and Eo3 initial value options performed 

better that the existing two initial value options, Eo1and 

Eo2. 

 

 

Table 1  Results of the Newton Raphson iteration solution to eccentric  anomaly for M =7 °; e = 0.999  and Eo =Eo1 =7° 

Cycle Xi x = E  radian Error in radian  E_in degree 

1 
0.122173047639611 14.536308441504100 1.3493662E+01 832.87 

2 
14.536308441504100 4.816322642723040 5.6877587E+00 275.95 

3 
4.816322642723040 -1.529093414458350 -6.5313503E-01 -87.61 

4 
-1.529093414458350 -0.847573673862184 -2.2081954E-01 -48.56 

5 
-0.847573673862184 -0.195915163638087 -1.2361860E-01 -11.23 

6 
-0.195915163638087 5.950918708566250 6.1546060E+00 340.96 

7 
5.950918708566250 -104.664118867952000 -1.0562234E+02 -5996.81 

8 
-104.664118867952000 -36.381313805268300 -3.7470685E+01 -2084.50 

9 
-36.381313805268300 13.583437732934300 1.2611546E+01 778.27 

10 
13.583437732934300 -12.986033563543600 -1.2701161E+01 -744.04 

11 
-12.986033563543600 131.860700875498000 1.3182453E+02 7555.06 

12 
131.860700875498000 -27865.892292707200000 -2.7866049E+04 -1596598.02 

13 
-27865.892292707200000 17431955.825668200000000 1.7431956E+07 998777497.47 

 

Table 2 Results of the Newton Raphson iteration solution to eccentric  anomaly for M =7 ° ;  e = 0.999  and Eo =Eo2 = 

38.52700657° 

Cycle Xi x = E  radian Error in radian  E_in degree 

1 0.672423115651716 1.0020393991491100000 3.8137796E-02 57.41 

2 1.002039399149110 0.9194817462886810000 2.8164415E-03 52.68 

3 0.919481746288681 0.9123401935492860000 2.0223407E-05 52.27 

4 0.912340193549286 0.9122881672950390000 1.0693433E-09 52.27 

5 0.912288167295039 0.9122881645437810000 0.0000000E+00 52.27 

 

 

Table 3 Results of the Newton Raphson iteration for solution to eccentric  anomaly for M =7 °;  e = 0.999  and Eo =Eo3 = 

38.52700657° 

Cycle Xi x = E  radian Error in radian  E_in degree 

1 0.974412139449801 0.9158698975614130000 1.3972004E-03 52.48 

2 0.915869897561413 0.9123011335337930000 5.0407797E-06 52.27 

3 0.912301133533793 0.9122881647147340000 6.6445183E-11 52.27 

4 0.912288164714734 0.9122881645437810000 0.0000000E+00 52.27 
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Table 4 Results of the Newton Raphson iteration for solution to eccentric  anomaly for M =7 °;  e = 0.999  and Eo =Eo4 = 

38.52700657° 

Cycle Xi x = E  radian Error in radian  E_in degree 

1 0.922346108393473 0.9123894402910420000 3.9367333E-05 52.28 

2 0.912389440291042 0.9122881749674050000 4.0513949E-09 52.27 

3 0.912288174967405 0.9122881645437810000 0.0000000E+00 52.27 

 

Table 5 Comparison of the convergence cycle for the four initial value expressions for M =7 °  and e = 0.999 

 Initial Value option M e Eo Ea n 

Eo1 7 0.999 7 52 >> 13 

Eo2 7 0.999 38.52700657 52.27026153 5 

Eo3 7 0.999 55.8297031 52.27026153 4 

Eo4 7 0.999 52.84653926 52.27026153 3 
 

Table 6 Comparison of the convergence cycle for the four initial value expressions for M =7 °  and e = 0.09 

 Initial Value option M e Eo Ea n 

Eo1 7 0.09 7 7.690026 3 

Eo2 7 0.09 7.689613 7.690026 2 

Eo3 7 0.09 7.725318 7.690026 2 

Eo4 7 0.09 7.694186 7.690026 2 
 

Table 7 Comparison of the convergence cycle for the four initial value expressions for M =0.7 °  and e = 0.09 

 Initial Value option M e Eo Ea n 

Eo1 0.7 0.09 0.7 0.769228 2 

Eo2 0.7 0.09 0.769216 0.769228 2 

Eo3 0.7 0.09 0.810348 0.769228 2 

Eo4 0.7 0.09 0.769422 0.769228 2 
 

Table 8 Comparison of the convergence cycle for the four initial value expressions for M =0.7 °  and e = 0.99 

 Initial Value option M e Eo Ea n 

Eo1 0.7 0.99 0.7 21.36188 8 

Eo2 0.7 0.99 4.787187 21.37795 8 

Eo3 0.7 0.99 43.18186 21.36052 6 

Eo4 0.7 0.99 25.15964 21.35957 5 
 

Table 9 Comparison of the convergence cycle for the four initial value expressions for M =0.7 °  and e = 0.999 

 Initial Value option M e Eo Ea n 

Eo1 0.7 0.999 0.7 23.78045 15 

Eo2 0.7 0.99 4.787187 21.37795 8 

Eo3 0.7 0.99 43.18186 21.36052 6 

Eo4 0.7 0.99 25.15964 21.35957 5 
 

V.  CONCLUSION 

The initial value options for solving Kepler’s equation for 

eccentric anomaly (E) are studied. Two existing analytical 

expressions for the initial value of E are considered and 

compared with two new analytical expressions for the 

initial value of E proposed in this paper. The initial value 

options are used in the Newton Raphson iteration scheme to 

sole for E in the Kepler’s equation and the convergence 

cycle of the iteration scheme for the different initial value 

options are compared for different configuration of the 

parameters of the Kepler’s equation. The results showed 

that the proposed two initial value options performed better 

than the existing two initial value options. 
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