
Journal of Multidisciplinary Engineering Science and Technology (JMEST)

ISSN: 2458-9403

Vol. 8 Issue 3, March - 2021

www.jmest.org

JMESTN42353693 13689

A Methodology for Refactoring Legacy DBs and
DB Software Applications Using the

(Elementary) Mathematical Data Model and
MatBase

Christian Mancas

DATASIS ProSoft srl
Bucharest, Romania

christian.mancas@gmail.com

AbstractThis paper presents, in order, the
steps needed to refactor any legacy db scheme
and corresponding db software application by
using the (Elementary) Mathematical Data Model
and MatBase – the tool mainly based on it, but
also on the Entity-Relationship and Relational
Data Models. This methodology is fully illustrated
with a case study: refactoring the MS Northwind
Traders demo db. Both business analysis,
architecture, design, and implementation flaws are
tackled algorithmically, yielding both much higher
quality refactored db schemes that guarantee data
plausibility and the full set of the associated non-
relational constraints needed to be enforced by
the corresponding db software applications. The
latter may be enforced by MatBase through
automatically generated object-oriented and
event-driven code.

Keywords—database and database software
application refactoring; the (Elementary)
Mathematical Data Model; MatBase; conceptual
data modeling; database design; non-relational
constraints; MS Northwind Traders database

I. INTRODUCTION

Not only legacy databases (dbs) and database
(db) software applications, but also currently
developed ones are very often suffering from poor
business analysis, architecture, design, and/or
implementation.

While implementations are rather easily corrected
or/and improved, for business analysis, architecture,
and design powerful conceptual and technological
tools are needed to both discover flaws and correct
them.

We have since decades already introduced and
used the (Elementary) Mathematical Data Model
((E)MDM) [13, 16] for the business analysis, archi-
tecture, and design of new dbs and corresponding db
software applications. MatBase [13-17] is an
intelligent prototype db and knowledge base
management system based on both the Entity-
Relationship (E-R) Data Model [7, 11, 20], the
Relational one [1, 11], and, especially, the (E)MDM.

This paper proves that both the (E)MDM and
MatBase may be successfully used as well for legacy
ones, through a case study on the MS Northwind
Traders demo db, provided since decades by
Microsoft to all the users of both the MS Access and
the MS SQL Server db management systems (DBMS)
[18].

A. Related Work

 Lot of research and practice accounting for db and
db software application refactoring has been
published. For example, the most recent ones are [2-
5, 8, 9].

 Similarly, lot of tools have also been developed for
helping with such refactoring, e.g. [6, 10, 19].

 Compared to all of them, both (E)MDM and Mat-
Base, on one hand, provide everything that the above
mentioned ones offer and, on the other, have many
more powerful unique features, such as detecting and
classifying E-R diagram (E-RD) cycles [17], assisting
the business analysis process [11], detecting all existi-
ng key constraints [11, 12, 16], discovering of non-
relational constraints associated to E-RD cycles [14,
16], guaranteeing the coherence and minimality of
constraint sets [13, 16], etc.

B. Paper Outline

 Section 2 briefly discusses the main flaws in the
db architecture and design of the MS Northwind
Traders demo db (for a detailed discussion, see [16]).
Section 3 presents the corrected and enhanced
relational db scheme obtained after refactoring it by
using the (E)MDM and MatBase, as well as the
associated set of non-relational constraints. The paper
ends with conclusion, further work, and references.

II. MS NORTHWIND TRADERS MAIN FLAWS

The following 3 subsections briefly discuss the
business analysis, general design, and table design
main flaws detected in the MS Northwind Traders
demo db. As it can be seen, this db scheme suffers
from a lot of bad architectural and implementation
decisions (for details, see Exercises 4.24 from [11], as
well as 2.8 and 3.2 from [16]).

http://www.jmest.org/
mailto:christian.mancas@gmail.com

Journal of Multidisciplinary Engineering Science and Technology (JMEST)

ISSN: 2458-9403

Vol. 8 Issue 3, March - 2021

www.jmest.org

JMESTN42353693 13690

A. Business Analysis Main Flaws

For detecting the flaws of this type, the MatBase
implementation of the Algorithm A0 (Assisting the
Data Analysis and Modeling Process), introduced,
discussed, and exemplified in [11], was applied on the
corresponding E-R data model obtained in the
Exercise 4.2 of [11]. Here are its main findings:

1. As they have exactly same structures, Custo-
mers, Employees, Suppliers, and Shippers
seem to be several instances of a same
object set. From their instances data, it is
clear, however, that:

- Customers are people working for some com-
panies.

- Employees are people working for the North-
wind Traders company.

- Suppliers are people working for some
supplying companies.

- Shippers are shipping companies (for which
every employee data are always null).

 Moreover, all four of them are heavily over-
loaded semantically, as neither companies, nor
cities, states, countries, or job titles are text
strings, but are object sets.

Consequently, a much better solution is to ab-
stract instead two object sets, People and Compa-
nies, plus other four new ones, namely: Job Titles,
Cities, States/Provinces, and Countries/Regions
(as, in the MS solution, you can have, for
example, some customers living in the city Seattle
from the WA, U.S.A. state, and others from the
same Seattle city, but from the Romanian state
Dolj, which could be stored in their db as
belonging to Brazil, etc.).

2. There is no need for 4 statuses object sets,
which should be abstracted into only one.
Moreover, the corresponding status name
should be unique.

3. Both static sets Categories and Payment Me-
thods should be replaced by dynamic ones:
all the time new product categories and even
payment methods (e.g., the bracelets used by
the yearly UNTOLD music festival in Cluj-
Napoca, Romania) are surfacing and it is not
at all an easy task to modify code for each
such new element in all corresponding db
schemes and applications.

4. Not only for easing selection of the subset of
employees from People, but especially for
gaining generality and being able to sell this
db application not only to Northwind Traders,
but to any other interested company, an
Owner object set is added for storing only the
company that owns any copy of this db
application.

5. For Products, there is a multivalued column
Supplier IDs: while this MS Access recent fea-
ture may seem an advantage (and even

“cool”: unnormalization has lot of fans…), we
strongly advise you not to use it ever: you
cannot use SQL to search within such fields,
or sort on them, or group by on them, or count
their components, etc. For example, you can-
not select with SQL all products offered by a
supplier. Consequently, it was replaced with a
regular MainSupplier mapping (column) and a
Supplying Options (relationship type) object
set, for storing any additional suppliers, pro-
duct by product, if any.

6. Finally, the worse db design flaw, which ren-
ders this demo db unusable by any trade
company is embedded in the text mapping
(column) Quantity Per Unit also of the set
(table) Products: its values are, for example,
“10 boxes x 20 packs”, “12 bottles of 550 ml”,
“36 boxes”, etc. Trivially, for searching within
them you need parsing and semantical
analysis… No wonder that there is no total
amount for customer orders, that the Amount
Due in Invoices must be manually
established, no unitary price comparisons are
possible, no automatic stock maintenance is
possible, etc., etc., etc. Consequently, this
mapping (column) was modified to take
positive natural values and new sets (tables)
for MeasureUnits and PackTypes were added
as codomains for newly added mappings
(columns) MeasureUnit, Package, and
Wrapping, respectively; also added were cor-
responding natural mappings (columns) Pac-
kageNo and WrappingNo.

B. General Design Flaws

Next, the MatBase implementation of Algorithm A1
(Translating E-R data models into (E)MDM schemes)
[16] was applied for automatically obtaining the
corresponding initial (E)MDM scheme. Then, applying
the MatBase implementation of Algorithm A2
(Assisting validation and enhancement of initial
(E)MDM schemes) [16] yielded the following general
and particular set (table) and function (column) types
of design flaws:

- A few codomain (range) constraints have been
added (i.e. phone numbers are naturals of at most 12
digits) and others have been modified (e.g., UNI-
CODE(50) was replaced by UNICODE(64), with 64
being the smallest power of 2 greater than 50).

- Nearly all number mappings (columns) have been
restricted to their positive subsets (e.g., there may not
be negative quantities, costs, prices, a.s.o.).

- Many totality (NOT NULL) constraints were added
(e.g., it is impossible not to know (from) where people
or companies work, at least a main supplier for any
product, their quantities per unit, neither the first, nor
the last names of employees and customers, etc.).

- Another very severe general design flaw is the al-
most complete lack of semantic keys (see, for

http://www.jmest.org/

Journal of Multidisciplinary Engineering Science and Technology (JMEST)

ISSN: 2458-9403

Vol. 8 Issue 3, March - 2021

www.jmest.org

JMESTN42353693 13691

example, the best practice rule R-K-2 from subsection
3.11.1.2 of [11]). It is not acceptable to distinguish
between elements of any object set only by their
autonumbers. Consequently, all obvious key
constraints have been added too (and documented,
see next subsection) in this step.

- For all mappings (columns) that cannot be used
for unique identification of their domain sets (tables),
corresponding nonprime constraints were added as
well.

- All tuple (check) constraints shown in subsection
C.1 were discovered and added as well.

- As the structural functions (foreign keys)
Customer Order and Purchase Order of the Inventory
Transactions should be automatically generated, they
have been turned into corresponding computed
mappings (columns).

- As the inventory transaction foreign keys should
be automatically generated too, both Inventory
structural functions became computed as well. As
such, their one-to-oneness need not be enforced (but
at least during the db software application testing
process this could be useful).

- It is better to add autonumber primary key IDs to
both Employee Privileges and Supplying Options, so
that future extensions of this db scheme may
reference them naturally and faster.

- Group By of Sales Reports should not be unique
(as there might be several sales reports grouped by a
same column).

- There is no need of the Boolean mapping
(column) Posted to Inventory, as its values may be
computed from the corresponding *Inventory one.

- For homogeneity, all primary keys have been
abbreviated as ID.

- All structural functions have been renamed by re-
moving their suffix ID (e.g., Order ID of Invoices is
renamed as Order). See best practice rule R-DA-1
from subsection 2.10.1 of [11].

Next, the MatBase implementation of Algorithm
A4.0 (Detecting and classifying E-RD cycles) [16, 17]
was run on this corrected, enhanced, and validated
(E)MDM scheme, yielding a total of 75 cycles. They
were next analyzed with the help of the MatBase
implementation of Algorithm A4 (Assistance of the E-
RD cycles analysis) [14, 16], which helped discovery
of the constraints that are presented in the subsection
3.B, which were also added to the enhanced db
scheme.

C. Table by Table Main Flaws

Next, the MatBase implementation of Algorithm
A3” (Assistance of detecting keys) [11, 12, 16] was
run for each set (table), yielding the following

semantic key constraints (where denotes
concatenation of columns; mathematically: the
Cartesian function product operator):

1. For Doc. Statuses: Status Name (There
should not be two statuses having same names.)

2. For Categories: Category (There should not
be two categories having same names.)

3. For PaymMethods: PayMethod (There may
not be two payment methods having same names.)

4. For Privileges: Privilege Name (There should
not be two privileges having same names.)

5. For Countries/Regions: Country/Region
(There may not be two countries / regions having
same names.)

6. For States/Provinces: Country/Region State/
Province (There may not be two states/provinces of a
same country/region having same names.)

7. For Cities: City Zip/Postal Code State/Pro-
vince (There may not be two cities of a same state/
province having same names and zip / postal codes.)

8. For Job Titles: Job Title (There should not be
two job titles having same names.)

9. For MeasureUnits: MeasureUnit (There may
not be two measure units having same symbols.)

10. For PackTypes: PackType (There should not
be two package types having same names.)

11. For People:

 – E-mail Address (There should not be two
persons using a same e-mail address.)

 – Mobile Phone (There should not be two persons
using a same mobile phone.)

 – Web Page (There should not be two persons
using a same web page.)

– First Name Last Name Business Phone
(There should not be two persons having same first
and last names, and using a same business phone,
as it would confuse both colleagues, customers, and
shippers.)

– First Name Last Name Company Job Title
(There should not be two persons having same first
and last names, and employed by a same company in
same jobs, as it would confuse both colleagues,
customers, and shippers.)

12. For Companies:

 – E-mail Address (There may not be two compa-
nies using a same e-mail address.)

 – Business Phone (There may not be two compa-
nies using a same business phone.)

 – Mobile Phone (There may not be two
companies using a same mobile phone.)

 – Fax Number (There should not be two
companies using a same fax line.)

 – Web Page (There may not be two companies
using a same web page.)

– Company City Address (There may not be
two companies having same name and street address
in a same city.)

http://www.jmest.org/

Journal of Multidisciplinary Engineering Science and Technology (JMEST)

ISSN: 2458-9403

Vol. 8 Issue 3, March - 2021

www.jmest.org

JMESTN42353693 13692

– Company City Zip/Postal Code (There may
not be two companies having same names and zip /
postal codes in a same city.)

13. For Products:

 – Product Code (There should not be two
products having same code.)

– Product Name Category (There should not be
two products of a same category having same
names.)

14. For Orders: Order Date Employee Custo-
mer (There should not be two orders established in a
same day, by a same employee, for a same custo-
mer.)

15. For Order Details:

 – *Inventory (There should not be two inventory
transactions generated by the same order detail.
Automatically generated by the application when
posting corresponding order detail to the Inventory
Transactions.)

– Order Product (There should not be two order
details of a same order for a same product.)

16. For Invoices: Order Invoice Date (There
should not be two invoices for a same order issued in
a same day.)

17. For Purchase Orders: Creation Date

Supplier Created By (There should not be two
purchase orders created in a same day, by a same
employee, for a same supplier.)

18. For Purchase Order Details:

 – *Inventory (There should not be two inventory
transactions generated by the same purchase order
detail. Automatically generated by the application
when posting corresponding purchase order detail to
the Inventory Transactions.)

– Purchase Order Product (There should not be
two purchase order details of a same purchase order
for a same product.)

19. For Inventory Transaction Types: Type Name
(There should not be two inventory transaction types
having same names.)

20. For Inventory Transactions:

– Product *Customer Order (For each inventory
transaction corresponding to a detail customer order
there is only one such detail row for any product.)

– Product *Purchase Order (For each inventory
transaction corresponding to a detail purchase order
there is only one such detail row for any product.)

21. For Employee Privileges: Employee
Privilege (It would be senseless to store twice that an
employee has a right.)

22. For Supplying Options: Supplier Product (It
would be senseless to store twice that a company
supplies a product.)

23. For Sales Reports: Title (There should not be
two reports having same names.)

24. For Strings: String Data (There is no use in
storing a same string twice.)

 In the next step, the MatBase implementation of
Algorithms A5 (Assistance for guaranteeing the cohe-
rence of constraint sets) and A6 (Guaranteeing mini-
mality of constraint sets) [13, 16] were run on this db
scheme without changing it, as it is both coherent and
minimal.

III. CORRECTED AND ENHANCED SOLUTION

The MatBase implementation of Algorithm A7
(Automatic translation of (E)MDM schemes into
relational ones and associated sets of non-relational
constraints) [16] was run on the above final (E)MDM
scheme. Its output is presented in the next two
subsections. In the process, MatBase automatically
generated both the forms of the refactored
corresponding db software application and the object-
oriented event-driven code needed to enforce the
non-relational constraints [15, 16].

For the time being, queries and reports from the
legacy db application must be manually refactored, if
needed. The same goes for populating the refactored
db with the corresponding legacy one instance.

A. The Relational DB Schema and a Plausible DB
Instance

The conventions used for relational db (rdb)
schemes are those described in [11]. Here, we remind
only the needed ones for understanding what follows,
namely:

- The parentheses after table names contain
their keys (with the primary ones underlined).

- Between these parentheses and the tables,
tuple (check) constraints are written (if any).

- The first header lines of the tables contain the
column names (in italics, with computed columns pre-
fixed by *).

- The second header lines contain domain and
referential integrity (foreign key) constraints. Im(T) is
an abbreviation for Im(T.ID), where Im(f) denotes the
image of mapping f (i.e., the set of values taken by f).
Consequently, for any foreign key column fk, the
associated referential integrity constraint Im(T) states
that fk references the primary key (ID) of the table T.

- The third header lines are reserved for the
NOT NULL constraints.

- AUTON(n) denotes the set of autonumbers
(i.e., the unique integers automatically generated by
the system) with at most n digits.

- NAT(n), INT(n), CURRENCY
+
(n) denote the

subsets of, respectively, naturals, integers, and
positive currencies with at most n digits.

- RAT
+
(n, m) denotes the subset of the positive

rational (floating point) numbers with at most n digits,
out of which the last m are the decimal ones.

- UNICODE(n) denotes the subset of strings of
length at most n made of UNICODE characters.

http://www.jmest.org/

Journal of Multidisciplinary Engineering Science and Technology (JMEST)

ISSN: 2458-9403

Vol. 8 Issue 3, March - 2021

www.jmest.org

JMESTN42353693 13693

Owner

OwnerCompany

Im(Companies)

NOT NULL

0

Inventory Transaction Types (ID, Type Name)

ID Type Name

AUTON(2) UNICODE(32)

NOT NULL NOT NULL

1 Bought

2 Sold

Countries / Regions (ID, Country / Region)

ID Country / Region

AUTON(3) UNICODE(64)

NOT NULL NOT NULL

1 U.S.A.

2 Romania

PaymMethods (ID, PayMethod)

ID PayMethod

AUTON(1) UNICODE(16)

NOT NULL NOT NULL

1 Card

2 Cash

Privileges (ID, Privilege Name)

ID Privilege Name

AUTON(2) UNICODE(32)

NOT NULL NOT NULL

1 Purchase Approvals

Strings (ID, String Data)

ID String Data

AUTON(9) UNICODE(255)

NOT NULL NOT NULL

1 Northwind Traders

2 Continue?

Supplying Options (ID, Supplier Product)

ID Supplier Product

AUTON(12) Im(Suppliers) Im(Products)

NOT NULL NOT NULL NOT NULL

1 2 1

2 2 2

Employee Privileges (ID, Employee Privilege)

ID Employee Privilege

AUTON(12) Im(People) Im(Privileges)

NOT NULL NOT NULL NOT NULL

1 0 1

2 1 1

Job Titles (ID, Job Title)

ID Job Title

AUTON(2) UNICODE(32)

NOT NULL NOT NULL

1 Salesman

2 VP Sales

3 Sales Manager

MeasureUnits (ID, MeasureUnit)

ID MeasureUnit

AUTON(2) UNICODE(16)

NOT NULL NOT NULL

0 kg

1 g

2 ml

Doc. Statuses (ID, Status Name)

ID Status Name

AUTON(2) UNICODE(32)

NOT NULL NOT NULL

1 New

2 No stock

3 Taxable

PackTypes (ID, PackType)

ID PackType

AUTON(2) UNICODE(16)

NOT NULL NOT NULL

0 box

1 bag

2 bottle

Categories (ID, Category)

ID Category

AUTON(3) UNICODE(32)

NOT NULL NOT NULL

1 Beverages

2 Spices

3 Pasta

http://www.jmest.org/

Journal of Multidisciplinary Engineering Science and Technology (JMEST)

ISSN: 2458-9403

Vol. 8 Issue 3, March - 2021

www.jmest.org

JMESTN42353693 13694

States / Provinces (ID, Country / Region State / Province)

ID Country / Region State / Province

AUTON(5) Im(Countries / Regions) UNICODE(64)

NOT NULL NOT NULL NOT NULL

1 1 WA

2 2 B

Cities (ID, City Zip / Postal Code State / Province)

ID City State / Province Zip / Postal Code

AUTON(7) UNICODE(64) Im(States / Provinces) UNICODE(16)

NOT NULL NOT NULL NOT NULL NOT NULL

1 Seattle 1 98000

2 Bucharest 2 700000

Companies (ID, E-mail Address, Fax Number, Business Phone, Mobile Phone, Web Page, Company City

Address, Company City Zip / Postal Code)

ID Company City Zip / Postal Code

AUTON(9) UNICODE(64) Im(Cities) UNICODE(16)

NOT NULL NOT NULL NOT NULL NOT NULL

0 Northwind Traders 1 98101

1 Supplier A 1 98101

2 Company AA 1 98191

Address E-mail Address Business
Phone

Mobile
Phone

UNICODE(4096) UNICODE(64) NAT(12) NAT(12)

NOT NULL NOT NULL NOT NULL NOT NULL

1, 1
st
 Avenue S off@northwindtrad.com 1236660000 3216660000

1, Olive Way SupplA@gmail.com 1235550100 3215550100

2, Pine Str. CompAA@gmail.com 1237770200 3217770200

Fax Number Web Page Notes Attachements

NAT(12) HYPERLINK UNICODE(4096) ATTACHMENT

People (ID, E-mail Address, Mobile Phone, Web Page, First Name Last Name Business Phone, First Name

Last Name Company Job Title)

ID First Name Last Name Zip / Postal Code

AUTON(12) UNICODE(64) UNICODE(64) UNICODE(16)

NOT NULL NOT NULL NOT NULL NOT NULL

0 Andrew Cencini 98101

1 Laura Giussani 98161

Address E-mail Address Business Phone Mobile Phone

UNICODE(4096) UNICODE(64) NAT(12) NAT(12)

NOT NULL

123, 2nd Avenue andrew@northwindtraders.com 1235550100 1235550102

123, 8th Avenue laura@northwindtraders.com 1235550100 1235550103

City Company Job Title

Im(Cities) Im(Companies) Im(Job Titles)

NOT NULL

1 0 2

1 0 3

Fax Number Web Page Notes Attachements

http://www.jmest.org/

Journal of Multidisciplinary Engineering Science and Technology (JMEST)

ISSN: 2458-9403

Vol. 8 Issue 3, March - 2021

www.jmest.org

JMESTN42353693 13695

NAT(12) HYPERLINK UNICODE(4096) ATTACHMENT

Products (ID, Product Code, Product Name Category)

ID Product Name Category Product Code

AUTON(9) UNICODE(64) Im(Categories) UNICODE(25)

NOT NULL NOT NULL NOT NULL NOT NULL

1 Northwind Traders tea 1 NWTB-1

2 Northwind Traders syrup 2 NWTCO-3

Package PackageNo Wrapping WrappingNo

Im(PackTypes) NAT(2) Im(PackTypes) NAT(2)

NOT NULL NOT NULL

1 20 0 10

2 12

MeasureUnit Quantity Per Unit Standard Cost List Price

Im(MeasureUnits) RAT
+
(18,4) CURRENCY

+
(14) CURRENCY

+
(14)

NOT NULL NOT NULL NOT NULL NOT NULL

2 10 $13.50 $18.00

3 550 $7.50 $10.00

MainSupplier Minimum Reorder Qty Reorder Level Target Level

Im(Companies) NAT(9) NAT(9) NAT(9)

NOT NULL

1 10 10 40

1 25 25 100

Description Discontinued Attachments

UNICODE(4096) BOOLEAN ATTACHMENT

 Sales Reports (ID, Title)

ID Title Display Group By

AUTON(2) UNICODE(64) UNICODE(32) UNICODE(32)

NOT NULL NOT NULL NOT NULL NOT NULL

1 Sales by Product Product Product

2 Sales by Category Category Category

Default Filter Row Source

BOOLEAN UNICODE(4096)

 NOT NULL

 SELECT DISTINCT [Product Name] FROM [Products] ORDER BY [Product Name];

 SELECT DISTINCT [Category] FROM [Categories] ORDER BY [Category];

Orders (ID, Order Date Customer Employee) Status Tax Status Shipped Date Order Date Paid Date
Order Date

ID Order Date Customer Employee

AUTON(9) [1/1/1900, 12/31/9999], now() Im(People) Im(People)

NOT NULL NOT NULL NOT NULL NOT NULL

1 3/6/2006 1 1

2 4/3/2006 0 0

Shipped Date Paid Date *TotAmount Ship
Customer

Shipper

[1/1/1900, 12/31/9999] [1/1/1900, 12/31/9999] CURRENCY
+
(14), 0 Im(People) Im(Companies)

 NOT NULL

http://www.jmest.org/

Journal of Multidisciplinary Engineering Science and Technology (JMEST)

ISSN: 2458-9403

Vol. 8 Issue 3, March - 2021

www.jmest.org

JMESTN42353693 13696

3/9/2006 3/6/2006 $48 2

4/3/2006 4/3/2006 $10 2

Shipping Fee Taxes

CURRENCY
+
(14), 0 CURRENCY

+
(14), 0

NOT NULL NOT NULL

$12.00 $0.00

$0.00 $0.00

Notes Tax Rate Ship Address Ship ZIP / Postal Code

UNICODE(4096) NAT(2), 0 UNICODE(4096) UNICODE(16)

 NOT NULL

 0%

 0%

Ship City Payment Type Status Tax Status

Im(Cities) Im(PaymMethods) Im(Doc. Statuses), 0 Im(Doc. Statuses)

 NOT NULL

 1 0

 1 0

Order Details (ID, *Inventory, Order Product)

ID Order Product Quantity

AUTON(10) Im(Orders) Im(Products) RAT
+
(18,4)

NOT NULL NOT NULL NOT NULL NOT NULL

1 2 1 2

2 2 2 1

Discount Unit Price Status

[0, 1], 0 CURRENCY
+
(14) Im(Doc. Statuses)

NOT NULL NOT NULL NOT NULL

0.00% $18.00 1

0.00% $10.00 1

Date Allocated *Inventory Purchase Order

[1/1/1900, 12/31/9999] Im(Inventory Transactions) Im(Purchase Orders)

 NOT NULL

 1

 2

Invoices (ID, Order Invoice Date) Due Date > Invoice Date

ID Order Invoice Date Due Date

AUTON(9) Im(Orders) [1/1/1900, 12/31/9999], now() [1/1/1900, 12/31/9999]

NOT NULL NOT NULL NOT NULL NOT NULL

1 2 3/9/2006 4/9/2006

2 2 4/3/2006 5/3/2006

Amount Due Shipping Tax

CURRENCY
+
(14) CURRENCY

+
(14), 0 CURRENCY

+
(14), 0

NOT NULL NOT NULL NOT NULL

$0.00 $0.00 $0.00

$0.00 $0.00 $0.00

Purchase Orders (ID, Creation Date Supplier Created By) Creation Date Submitted Date Approved Date

Payment Date Expected Date

ID Creation Date Supplier Created By

AUTON(9) [1/1/1900, 12/31/9999], now() Im(Companies) Im(People)

http://www.jmest.org/

Journal of Multidisciplinary Engineering Science and Technology (JMEST)

ISSN: 2458-9403

Vol. 8 Issue 3, March - 2021

www.jmest.org

JMESTN42353693 13697

NOT NULL NOT NULL NOT NULL NOT NULL

1 3/6/2006 2 1

2 4/3/2006 2 0

Submitted Date Approved Date Payment
Date

Payment Amount Submitted By

[1/1/1900, 12/31/9999] [1/1/1900, 12/31/9999] [1/1/1900,
12/31/9999]

CURRENCY
+
(14), 0 Im(People)

3/6/2006 3/9/2006 3/9/2006 $40 1

4/3/2006 4/3/2006 4/3/2006 $8 0

Shipping Fee Taxes Approved By Notes

CURRENCY
+
(14), 0 CURRENCY

+
(14), 0 Im(People) UNICODE(4096)

NOT NULL NOT NULL

$12.00 $0.00 0

$0.00 $0.00 0

Payment Method Expected Date Status

Im(PaymMethods) [1/1/1900, 12/31/9999] Im(Doc. Statuses), 0

 NOT NULL

1 3/23/2006 0

1 4/17/2006 0

Purchase Order Details (ID, *Inventory, Purchase Order Product)

ID Purchase Order Product Quantity

AUTON(10) Im(Purchase Orders) Im(Products) RAT
+
(18,4)

NOT NULL NOT NULL NOT NULL NOT NULL

1 1 1 2

2 1 2 1

Unit Cost Date Received *Inventory

CURRENCY
+
(14) [1/1/1900, 12/31/9999] Im(Inventory

Transactions)

NOT NULL

$14.00 3/20/2006 3

$8.00 4/10/2006 4

Inventory Transactions (ID, *Customer Order Product, *Purchase Order Product)

Transaction Modified Date Transaction Created Date

ID Transaction
Created Date

*Customer Order *Purchase Order Product

AUTON(9) [1/1/1900,
12/31/9999],

now()

= Order *Inventory
-1

 = Purchase Order *Inventory
-1

 Im(Products)

NOT NULL NOT NULL NOT NULL

1 3/6/2006 1 1

2 3/6/2006 2 2

3 4/3/2006 1 1

4 4/3/2006 2 2

Transaction Modified Date Quantity Transaction Type Comments

[1/1/1900, 12/31/9999], now() RAT
+
(18,4) Im(Inventory Transaction Types) UNICODE(255)

 NOT NULL NOT NULL

 2 2

 1 2

 2 1

 1 1

http://www.jmest.org/

Journal of Multidisciplinary Engineering Science and Technology (JMEST)

ISSN: 2458-9403

Vol. 8 Issue 3, March - 2021

www.jmest.org

JMESTN42353693 13698

MeasureUnits (ID, MeasureUnit)

ID MeasureUnit MultipleOf MultiplicityOrder

AUTON(2) UNICODE(16) Im(MeasureUnits) NAT
+
(3)

NOT NULL NOT NULL

0 g

1 kg 0 1000

2 ml

B. The Associated Non-Relational Constraint Set

The following non-relational constraints associated
to the above presented rdb scheme were enforced by
MatBase in the refactored db software application,
through automatically generated forms and object-
oriented event-driven code [15, 16]:

OC: card(Owner) = 1 (Any db application copy may
be owned by only one company.)

PBPC: (x,yPeople)(Business Phone(x) = Busi-

ness Phone(y) Company(x) = Company(y)) (Any
two employees using a same business phone are
working for a same company.)

SOC: (xSupplying Options)(Supplier(x) Main-
Supplier(Product(x))) (Whenever the fact that a sup-
plier is supplying a product is stored by MainSupplier,
it should not be also stored by Supplying Options.)

OEC: Ship Customer Ship City Ship Address

 Ship ZIP/Postal Code (Whenever ship customer is
specified, both ship city, address, and zip / postal
code must be specified too.)

OOEC: (xOrders)(Company(Employee(x)) =
OwnerCompany(1)) (Any employee must be
employed by the owner company.)

ODDC: (xOrder Details)(Order Date(Order(x))

Date Allocated(x) Shipped Date(Order(x))) (Date Al-
located should be between the corresponding orders’
Order Date and Shipped Date.)

ODACC: (xOrder Details)(Status(x) Tax Sta-
tus(Order(x))) (The customer orders’ tax statuses may
not be the same as their statuses.)

ODCC: (x Order Details)(y Inventory Tran-

sactions)(Order(x) = Customer Order(y) Product(x)

= Product(y) Quantity(x) = Quantity(y) Date

Allocated(x) Transaction Created Date(x)) (The
product and quantity of any inventory transaction
corresponding to a customer order detail should be
the same as the one of that customer order detail and
the transaction created date may be at least equal to
the corresponding allocating date.)

ODPACC: (xOrder Details)(Status(Purchase

Order(x)) Tax Status(Order(x))) (The purchase
orders’ tax statuses may not be the same as any of
their corresponding customer orders’ statuses.)

ODPSACC: (xOrder Details)(Status(Purchase

Order(x)) Status(x)) (Order details’ statuses are al-
ways distinct of the statuses of their corresponding
purchase orders.)

IADC: (xInvoices)(Amount Due(x) *TotA-
mount(Order(x))) (For any invoice, its amount due va-
lue may not be greater than the total one of the
corresponding order.)

EPC: (xEmployee Privileges)(Company(Emplo-
yee(x)) = OwnerCompany(1)) (Only employees of the
owner company may have privileges on the db
application objects.)

POEC: (xPurchase Orders)(Company(Created
By(x)) = Company(Submitted By(x)) = Company(Ap-
proved By(x)) = OwnerCompany(1)) (All persons that
are creating, submitting, and approving purchase or-
ders must be employed by the owner company.)

PODDC: (xPurchase Order Details)(Approved

Date(Purchase Order(x)) Date Received(x) Pay-
ment Date(Purchase Order(x))) (Date Received
should be between the corresponding purchase
orders’ Approved Date and Payment Date.)

PODPCC: (x Purchase Order Details)(y In-
ventory Transactions)(Purchase Order(x) = Purchase

Order(y) Product(x) = Product(y) Quantity(x) =

Quantity(y) Date Received(x) Transaction Created
Date(x)) (The product and quantity of any inventory
transaction corresponding to a purchase order detail
should be the same as the one of that purchase order
detail and the transaction created date may be at least
equal to the corresponding receiving date.)

GCC1: (x Purchase Order Details)(y Order

Details)(Purchase Order(x) = Purchase Order(y)
Product(x) = Product(y)) (Whenever an order detail
has an associated purchase order, that purchase
order should have a detail one for the same product
as the one of the order detail.)

GCC2: (x Purchase Order Details)(y Order
Details)(Purchase Order(Inventory(x)) = Purchase Or-

der(y) Product(x) = Product(y)) (Whenever an order
detail has an associated purchase order, that
purchase order should have a detail one for the same
product as the one of the order detail and to which it
corresponds an inventory transaction for that
purchase order.)

http://www.jmest.org/

Journal of Multidisciplinary Engineering Science and Technology (JMEST)

ISSN: 2458-9403

Vol. 8 Issue 3, March - 2021

www.jmest.org

JMESTN42353693 13699

NEC: (Customer Order, Purchase Order) (There
must not be inventory transactions for which both
customer and purchase orders are specified.)

PODRDC: (x Purchase Order Details)(Date

Received(x) Payment Date(Purchase Order(x)))
(Purchase ordered products’ receiving dates may not
be prior to corresponding purchase orders’ payment
dates; of course that, whenever special arrangements
were made with suppliers such that shipments may
arrive before corresponding payments, Payment Date
should be replaced by Approved Date.)

ITTC1: (xInventory Transactions)(Customer Or-

der(x) NULLS Transaction Type(x) {2, 3}) (In-
ventory transactions corresponding to customer
orders may only be of types “Sold” and “Reserved”.)

ITTC2: (xInventory Transactions)(Purchase Or-

der(x) NULLS Transaction Type(x) = 1)
(Inventory transactions corresponding to purchase
orders may only be of type “Bought”.)

ITTC3: (xInventory Transactions)(Purchase Or-

der(x) NULLS Customer Order(x) NULLS
Transaction Type(x) = 4) (Inventory transactions not
corresponding to either customer or purchase orders
may only be of type “Waste”.)

IV. CONCLUSION AND FURTHER WORK

We have presented, in order, the steps needed to
refactor any legacy db scheme by using the (E)MDM
and MatBase. We fully illustrated this methodology
with a case study: refactoring the MS Northwind
Traders demo db scheme and software application.

Due to paper length limitations, only main flaws
and step results are presented; for full details, see
Exercises 2.8 and 3.2 from [16]. Both business
analysis, architecture, design, and implementation
flaws were tackled algorithmically.

We obtained both a much higher quality refactored
db scheme that guarantees data plausibility and the
full set of the associated non-relational constraints
that were enforced in the corresponding db software
refactored application through MatBase automatically
generated object-oriented and event-driven code.

The 12 steps of this original proposed
methodology, solely based on the (E)MDM algorithms
implemented in MatBase (some of them providing
only assistance to the db designers, whenever the
steps or some of their sub-steps cannot be
automatically performed), are the following:

1. Reverse engineer the legacy db scheme into
an E-R data model (automatically).

2. Redo the business analysis to correct and en-
hance the E-R data model (assisted).

3. Translate the refactored E-R data model into
an initial (E)MDM scheme (automatically).

4. Analyze, correct, and enhance the initial
scheme (assisted).

5. Detect and classify all cycles in the corres-
ponding E-RD (automatically).

6. Analyze these cycles and detected all
associated non-relational constraints (assisted).

7. Detect all keys for all sets/tables (assisted).
8. Check and enforce the constraint set cohe-

rence (assisted).
9. Enforce the constraint set minimality

(automatically).
10. Translate the final (E)MDM scheme above ob-

tained into the corresponding refactored rdb scheme,
its associated non-relational constraint set (automati-
cally), and refactor the corresponding db management
software application (assisted).

11. Enforce the non-relational constraints through
automatically generated code (automatically).

12. Populate the refactored rdb with the instance
of the legacy one (assisted).

Further work will be done to automate as much as
possible the processes of refactoring the queries and
reports of the legacy db applications (i.e., last substep
of step 10) and the one of extracting data instances
from the legacy dbs and populating the corresponding
refactored ones with it (i.e., step 12).

As seen from both this paper and [11, 16], the MS
Northwind Traders demo db is, in fact, rather a
counterexample of a db scheme and software
application, which is not at all guaranteeing data
plausibility (as it does not enforce at least all existing
basic constraints as not nulls, domain, and key ones).
Similarly, as it does not enforce the associated
existing non-relational constraints, the corresponding
db software application is not helping users to
maintain their data quality. Moreover, through an
incredible bad design decision for a column, it is not at
all useful for any trading company.

Unfortunately, this is not at all an exception: from
the similar MS SQL Server Pubs, Oracle Express HR,
MySQL Sakila, MySQL World, and DB2 Express-C
Sample dbs to most of the hundreds of thousand com-
mercial legacy dbs, all of them would greatly benefit
from being refactored with the methodology proposed
in this paper.

Fortunately, however, some of these missing con-
straints are enforced by its associated db software ap-
plication. Nonetheless, as already discussed in [11],
this is not at all ideal, from several points of view, out
of which the more important are the following ones:

- software applications are always prone to errors;

- rather often, DBAs are working directly with dbs,
bypassing the software applications (generally for
trying to recover updates made between the last avai-
lable backups and system/application crashes), which
may result in implausible db instances;

- lack of algorithmic business analysis and db
design favors non-discovery of all existing business
rules, especially in complex subuniverses, which then
allows storing implausible data.

http://www.jmest.org/

Journal of Multidisciplinary Engineering Science and Technology (JMEST)

ISSN: 2458-9403

Vol. 8 Issue 3, March - 2021

www.jmest.org

JMESTN42353693 13700

Consequently, it is always much better to discover
all business rules in any subuniverse of discourse, for-
malize them, and then enforce them through DBMSes
(for the relational ones provided by the chosen DBMS
versions) and corresponding db software applications
(for both the non-relational ones and the relational
ones that are not provided by the chosen DBMS
versions).

REFERENCES

[1] Abiteboul, S., Hull, R., Vianu, V. (1995).
Foundations of Databases. Addison-Wesley, Reading,
MA.

[2] Ambler, S. W., Sadalage, P. J. (2006).
Refactoring Databases: Evolutionary Database
Design. Addison-Wesley Professional.

[3] Ambysoft Inc. (2020). The Process of Database
Refactoring: Strategies for Improving Database
Quality.
http://agiledata.org/essays/databaseRefactoring.html

[4] Ambysoft Inc. (2020). Catalog of Database Re-
factorings.http://www.agiledata.org/essays/databaseR
efactoringCatalog.html

[5] Birchall, C. (2016). Re-Engineering Legacy
Software. Manning Publications.

[6] Blu Age (2020). Blue Age Database and data
Modernization. https://www.bluage.com/products/db-
modernization

[7] Chen, P.P. (1976). The entity-relationship
model: Toward a unified view of data. ACM TODS
1(1): 9-36.

[8] Fowler, M., Beck, K., Brant, J., Opdyke, W., Ro-
berts, D. (1999). Refactoring: Improving the Design of
Existing Code. Addison-Wesley Professional.

[9] Harrison, N. (2011). A Developers’ Guide to Re-
factoring Databases. https://www.red-
gate.com/simple-talk/opinion/opinion-pieces/a-
developers-guide-to-refactoring-databases/

[10] Leiloff, L. et al. (2017). DELTA – A Tool for
Database Refactoring.
https://www.researchgate.net/publication/320986991_
DELTA_-_A_tool_for_database_refactoring

[11] Mancas, C. (2015). Conceptual Data Modeling
and Database Design: A Completely Algorithmic Ap-
proach. Volume I: The Shortest Advisable Path. Apple
Academic Press / CRC Press (Taylor & Francis
Group), Palm Bay, FL.

[12] Mancas, C. (2016a). Algorithms for Key Disco-
very Assistance. In: Repa, V., Bruckner, T. (eds). BIR
2016, Lecture Notes in Business Information Proces-
sing vol. 261, pp. 322–338. Springer, Cham, Switzer-
land.

[13] Mancas, C. (2018). MatBase Constraint Sets
Coherence and Minimality Enforcement Algorithms.
In: Benczur, A., Thalheim, B., Horvath, T. (eds.), Proc.
22

nd
 ADBIS Conf. on Advances in DB and Inf. Syst.,

LNCS 11019, pp. 263–277. Springer, Cham, Switzer-
land.

[14] Mancas, C. (2019). MatBase E-RD Cycles As-
sociated Non-Relational Constraints Discovery Assis-
tance Algorithm. In: Arai, K., Bhatia, R., Kapoor, S.
(eds.), Intelligent Computing, Proc. 2019 Computing
Conference, AISC Series 997.1 (2019):390–409.
Springer, Cham, Switzerland.

[15] Mancas, C. (2019). MatBase - a Tool for
Transparent Programming while Modeling Data at
Conceptual Levels. In: Proc. 5

th
 Int. Conf. on Comp.

Sci. & Inf. Techn. (CSITEC 2019), pp. 15–27. AIRCC
Pub. Corp., Chennai, India.

[16] Mancas, C. (2021). Conceptual Data Modeling
and Database Design: A Completely Algorithmic Ap-
proach. Volume II: Refinements for an Expert Path.
Apple Academic Press / CRC Press (Taylor & Francis
Group), Palm Bay, FL (in press).

[17] Mancas, C., Mocanu, A. (2017). MatBase DFS
Detecting and Classifying E-RD Cycles Algorithm. J.
Comp. Sci. App. and Inform. Techn. 2(4):1–14.

[18] Microsoft Corp. (2016). Northwind Database.
https://access-templates.com/tag/northwind.html

[19] Quest Software Inc. (2020). ApexSQL
Refactor. https://solutioncenter.apexsql.com/sql-
database-refactoring-introduction/

[20] Thalheim, B. (2000). Entity-Relationship Mo-
deling. Foundations of Database Technology. Sprin-
ger-Verlag.

http://www.jmest.org/
http://agiledata.org/essays/databaseRefactoring.html
http://www.agiledata.org/essays/databaseRefactoringCatalog.html
http://www.agiledata.org/essays/databaseRefactoringCatalog.html
https://www.bluage.com/products/db-modernization
https://www.bluage.com/products/db-modernization
https://www.red-gate.com/simple-talk/opinion/opinion-pieces/a-developers-guide-to-refactoring-databases/
https://www.red-gate.com/simple-talk/opinion/opinion-pieces/a-developers-guide-to-refactoring-databases/
https://www.red-gate.com/simple-talk/opinion/opinion-pieces/a-developers-guide-to-refactoring-databases/
https://www.researchgate.net/publication/320986991_DELTA_-_A_tool_for_database_refactoring
https://www.researchgate.net/publication/320986991_DELTA_-_A_tool_for_database_refactoring
https://access-templates.com/tag/northwind.html
https://solutioncenter.apexsql.com/sql-database-refactoring-introduction/
https://solutioncenter.apexsql.com/sql-database-refactoring-introduction/

